Download citation
Download citation
link to html
Modulated enhanced diffraction (MED) is a technique allowing the dynamic structural characterization of crystalline materials subjected to an external stimulus, which is particularly suited for in situ and operando structural investigations at synchrotron sources. Contributions from the (active) part of the crystal system that varies synchronously with the stimulus can be extracted by an offline analysis, which can only be applied in the case of periodic stimuli and linear system responses. In this paper a new decomposition approach based on multivariate analysis is proposed. The standard principal component analysis (PCA) is adapted to treat MED data: specific figures of merit based on their scores and loadings are found, and the directions of the principal components obtained by PCA are modified to maximize such figures of merit. As a result, a general method to decompose MED data, called optimum constrained components rotation (OCCR), is developed, which produces very precise results on simulated data, even in the case of nonperiodic stimuli and/or nonlinear responses. The multivariate analysis approach is able to supply in one shot both the diffraction pattern related to the active atoms (through the OCCR loadings) and the time dependence of the system response (through the OCCR scores). When applied to real data, OCCR was able to supply only the latter information, as the former was hindered by changes in abundances of different crystal phases, which occurred besides structural variations in the specific case considered. To develop a decomposition procedure able to cope with this combined effect represents the next challenge in MED analysis.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576715017070/po5045sup1.pdf
Supplementary material


Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds