organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 4-oxo-1,4-di­hydro­pyridine-3-carboxyl­ate

crossmark logo

aSchool of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
*Correspondence e-mail: longsihui@yahoo.com

Edited by S. Parkin, University of Kentucky, USA (Received 20 May 2021; accepted 30 May 2021; online 4 June 2021)

The title compound, C8H9NO3, likely generated through hydrolysis and esterification of 3′-carb­oxy-3-methyl-(1,4′-bipyridin)-1-ium chloride by ethanol, which contained water, has a nearly planar conformation. The crystal structure is sustained by one-dimensional chains along the a-axis direction based on bifurcated N—H⋯(O,O) hydrogen bonds between the NH group of the 4-oxo-1,4-di­hydro­pyridine ring and the two carbonyl O atoms.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) was first synthesized by Ross (1966[Ross, W. C. J. (1966). J. Chem. Soc. C, pp. 1816-1821.]). It may be a potential inhibitor of the glycolytic process by which many cancer cells derive an appreciable proportion of their energy requirement (Ross, 1966[Ross, W. C. J. (1966). J. Chem. Soc. C, pp. 1816-1821.]). Balogh et al. (1980[Balogh, M., Hermecz, I., Mészaros, Z., Simon, K., Pusztay, L., Horváth, G. & Dvortsak, P. (1980). J. Heterocycl. Chem. 17, 359-368.]) demonstrated that the compound exhibited anti­microbial activity. In our study, the compound was obtained serendipitously during an attempt to grow single crystals of 3′-carb­oxy-3-methyl-(1,4′-bipyridin)-1-ium chloride in ethanol. The compound has a nearly planar conformation, as evidenced by the dihedral angle between the 4-oxo-1,4-di­hydro­pyridine ring and the ester moiety [2.3 (2)°]. In the crystal, the mol­ecules form chains propagating parallel to the a-axis through bifurcated hydrogen bonds between the NH group and the two carbonyl oxygen atoms. The hydrogen bond parameters for NH⋯O=C (ring) are: 1.96 (2) Å for bond length, and 134.9 (17)° for the bond angle. The corresponding parameters for NH⋯O=C (ester) are 2.15 (2) Å and 139.6 (17)° (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 (2) 1.96 (2) 2.6771 (15) 134.9 (17)
N1—H1⋯O2i 0.90 (2) 2.15 (2) 2.9002 (17) 139.6 (17)
Symmetry code: (i) [x-1, y, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
(a) Packing of the mol­ecules in the title compound viewed along the a axis; (b) Chain sustained by bifurcated hydrogen bonds between the NH group and two carbonyl O atoms (blue dashed lines).

Synthesis and crystallization

The title compound was obtained during an attempt to grow single crystals of 3′-carb­oxy-3-methyl-(1,4′-bipyridin)-1-ium chloride by slow evaporation of an ethano­lic solution. 3′-Carb­oxy-3-methyl-(1,4′-bipyridin)-1-ium chloride was dissolved in bulk ethanol at 343 K, and then the resulting solution was left in a refrigerator. Colorless plate-shaped crystals (Fig. 3[link]) were harvested after several days. Structure determination by single-crystal X-ray diffraction revealed the identity of the crystals to be ethyl 4-oxo-1,4-di­hydro­pyridine-3-carboxyl­ate. Hydrolysis and esterification of 3′-carb­oxy-3-methyl-[1,4′-bipyridin]-1-ium chloride may have led to the title compound (Fig. 4[link]).

[Figure 3]
Figure 3
A representative crystal of I.
[Figure 4]
Figure 4
Reaction scheme.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H9NO3
Mr 167.16
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 6.4973 (2), 11.5323 (5), 11.2908 (5)
β (°) 91.500 (4)
V3) 845.72 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.86
Crystal size (mm) 0.07 × 0.03 × 0.02
 
Data collection
Diffractometer Rigaku Oxford Diffraction, Synergy Custom system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Inc., Tokyo, Japan.])
Tmin, Tmax 0.311, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5379, 1693, 1456
Rint 0.022
(sin θ/λ)max−1) 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.129, 1.11
No. of reflections 1693
No. of parameters 114
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.22
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Inc., Tokyo, Japan.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Ethyl 4-oxo-1,4-dihydropyridine-3-carboxylate top
Crystal data top
C8H9NO3F(000) = 352
Mr = 167.16Dx = 1.313 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 6.4973 (2) ÅCell parameters from 3630 reflections
b = 11.5323 (5) Åθ = 6.8–76.4°
c = 11.2908 (5) ŵ = 0.86 mm1
β = 91.500 (4)°T = 293 K
V = 845.72 (6) Å3Needle, clear light colourless
Z = 40.07 × 0.03 × 0.02 mm
Data collection top
Rigaku Oxford Diffraction, Synergy Custom system, HyPix
diffractometer
1693 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source1456 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 10.0000 pixels mm-1θmax = 77.4°, θmin = 6.8°
ω scansh = 87
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 145
Tmin = 0.311, Tmax = 1.000l = 1314
5379 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.1472P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1693 reflectionsΔρmax = 0.21 e Å3
114 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52166 (14)0.40585 (10)0.20366 (11)0.0600 (4)
O20.57531 (15)0.62403 (10)0.09977 (11)0.0584 (4)
O30.28325 (16)0.71651 (9)0.05152 (11)0.0555 (3)
N10.08871 (17)0.47182 (12)0.17157 (11)0.0471 (3)
C10.25305 (18)0.53513 (12)0.14051 (12)0.0388 (3)
C20.33512 (19)0.42840 (13)0.19022 (13)0.0436 (4)
C30.1821 (2)0.34638 (14)0.22568 (15)0.0538 (4)
H30.2242950.2749790.2559370.065*
C40.0203 (2)0.36993 (15)0.21635 (15)0.0517 (4)
H40.1147860.3150800.2411860.062*
C50.04315 (19)0.55121 (13)0.13385 (13)0.0421 (3)
H50.0083990.6199670.1018770.051*
C60.3901 (2)0.62675 (12)0.09660 (13)0.0421 (3)
C70.3996 (3)0.81144 (16)0.00264 (19)0.0663 (5)
H7A0.4701550.7862410.0675190.080*
H7B0.5014530.8391600.0602900.080*
C80.2495 (4)0.90531 (19)0.0281 (2)0.0899 (7)
H8A0.3179240.9656880.0703840.135*
H8B0.1942500.9365160.0432030.135*
H8C0.1396590.8741190.0769090.135*
H10.224 (3)0.4880 (17)0.1645 (17)0.071 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0234 (5)0.0609 (7)0.0956 (9)0.0027 (4)0.0007 (5)0.0191 (6)
O20.0296 (5)0.0541 (7)0.0918 (9)0.0041 (4)0.0038 (5)0.0110 (6)
O30.0411 (6)0.0456 (6)0.0799 (8)0.0017 (4)0.0029 (5)0.0130 (5)
N10.0211 (5)0.0596 (8)0.0608 (7)0.0002 (5)0.0018 (5)0.0002 (6)
C10.0255 (6)0.0448 (8)0.0460 (7)0.0000 (5)0.0022 (5)0.0028 (6)
C20.0241 (6)0.0512 (8)0.0555 (8)0.0001 (5)0.0018 (5)0.0018 (6)
C30.0321 (7)0.0519 (9)0.0774 (11)0.0012 (6)0.0020 (7)0.0147 (8)
C40.0288 (7)0.0588 (9)0.0678 (10)0.0075 (6)0.0045 (6)0.0075 (7)
C50.0279 (6)0.0467 (8)0.0517 (8)0.0028 (5)0.0006 (5)0.0024 (6)
C60.0307 (6)0.0423 (7)0.0532 (8)0.0010 (5)0.0016 (5)0.0022 (6)
C70.0674 (11)0.0478 (9)0.0842 (12)0.0088 (8)0.0079 (9)0.0110 (8)
C80.1063 (19)0.0616 (13)0.1014 (17)0.0040 (11)0.0053 (14)0.0288 (11)
Geometric parameters (Å, º) top
O1—C21.2450 (16)C1—C21.449 (2)
O2—C61.2032 (16)C1—C51.3765 (17)
O3—C61.3395 (17)C1—C61.4760 (19)
O3—C71.448 (2)C2—C31.437 (2)
N1—C41.350 (2)C3—C41.344 (2)
N1—C51.3314 (19)C7—C81.492 (3)
C6—O3—C7117.28 (12)C4—C3—C2121.85 (15)
C5—N1—C4120.66 (12)C3—C4—N1121.15 (14)
C2—C1—C6121.28 (11)N1—C5—C1122.33 (13)
C5—C1—C2119.33 (12)O2—C6—O3122.66 (13)
C5—C1—C6119.40 (12)O2—C6—C1125.66 (13)
O1—C2—C1124.89 (13)O3—C6—C1111.68 (11)
O1—C2—C3120.46 (14)O3—C7—C8107.00 (16)
C3—C2—C1114.65 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (2)1.96 (2)2.6771 (15)134.9 (17)
N1—H1···O2i0.90 (2)2.15 (2)2.9002 (17)139.6 (17)
Symmetry code: (i) x1, y, z.
 

Funding information

The authors thank the Natural Science Foundation of Hubei Province for financial support (2014CFB787).

References

First citationBalogh, M., Hermecz, I., Mészaros, Z., Simon, K., Pusztay, L., Horváth, G. & Dvortsak, P. (1980). J. Heterocycl. Chem. 17, 359–368.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Inc., Tokyo, Japan.  Google Scholar
First citationRoss, W. C. J. (1966). J. Chem. Soc. C, pp. 1816–1821.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds