research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and properties of bis­­(iso­seleno­cyanato-κN)tetra­kis­(4-meth­­oxy­pyridine-κN)cobalt(II)

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by S. Parkin, University of Kentucky, USA (Received 8 February 2023; accepted 15 February 2023; online 21 February 2023)

Reaction of CoCl2·6H2O with KNCSe and 4-meth­oxy­pyridine in water led to the formation of the title compound, [Co(NCSe)2(C6H7NO)4] or Co(NCSe)2(4-meth­oxy­pyridine)2, which was characterized by single-crystal X-ray diffraction. Its asymmetric unit consists of one crystallographically independent Co cation, two seleno­cyanate anions and four 4-meth­oxy­pyridine coligands in general positions. In the crystal structure, the cobalt cations are sixfold coordinated by two terminal N-bonded seleno­cyanate anions and four 4-meth­oxy­pyridine coligands within a slightly distorted octa­hedral coordination. Between the complexes, weak C—H⋯Se inter­actions are found. IR spectroscopic investigations revealed that the CN stretching vibration of the anionic ligands is observed at 2068 cm−1, which is in agreement with the presence of only terminally coordinated seleno­cyanate anions. PXRD measurements prove that a pure compound was obtained. Differential thermoanalysis coupled to thermogravimetry (DTA-TG) at different heating rates shows that the TG curves are poorly resolved. PXRD measurements of the residue obtained by a TG measurement prove that an amorphous compound was obtained.

1. Chemical context

Coordination compounds based on transition-metal thio­cyanates show versatile structural behavior (Buckingham, 1994[Buckingham, D. A. (1994). Coord. Chem. Rev. 135-136, 587-621.]; Barnett et al., 2002[Barnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2002). Chem. Commun. pp. 1640-1641.]; Werner et al., 2015[Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236-3245.]) and promising magnetic properties, because this ligand is able to mediate reasonable magnetic exchange (Barasiński et al., 2010[Barasiński, A., Sobczak, P., Drzewiński, A., Kamieniarz, G., Bieńko, A., Mroziński, J. & Gatteschi, D. (2010). Polyhedron, 29, 1485-1491.]; Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Mousavi et al., 2020[Mousavi, M., Duhayon, C., Bretosh, K., Béreau, V. & Sutter, J. P. (2020). Inorg. Chem. 59, 7603-7613.]). In this context, compounds based on Co(NCS)2 are of special inter­est because they can show inter­esting magnetic behavior, such as, for example, slow relaxations of the magnetization, which is indicative of single-chain magnetism (Lescouëzec et al., 2005[Lescouëzec, R., Toma, L. M., Vaissermann, J., Verdaguer, M., Delgado, F. S., Ruiz-Pérez, C., Lloret, F. & Julve, M. (2005). Coord. Chem. Rev. 249, 2691-2729.]; Sun et al., 2010[Sun, H. L., Wang, Z. M. & Gao, S. (2010). Coord. Chem. Rev. 254, 1081-1100.]; Dhers et al., 2015[Dhers, S., Feltham, H. L. C. & Brooker, S. (2015). Coord. Chem. Rev. 296, 24-44.]). For the synthesis of such compounds, the CoII cations must be linked via the anionic ligands into mono-periodic or di-periodic networks. Compounds with di-periodicity are rare; the majority of compounds being mono-periodic, in which the CoII cations are octa­hedrally coordinated and linked into chains by pairs of anionic ligands (Guang et al., 2007[Guang, Y., Qian, Z., Xiang-Pei, Z., Yu, Z. & Ng, S. W. (2007). J. Chem. Res. 384-386.]; Shi et al., 2007[Shi, J. M., Chen, J., Wu, C. J. & Ma, J. P. (2007). J. Coord. Chem. 60, 2009-2013.]; Shurdha et al., 2013[Shurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583-10594.]; Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]). If the chains are linear, ferromagnetic ordering (Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.]) or single-chain magnet behavior (Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]) is observed and if they are corrugated or exhibit an alternating Co coordination, the magnetic exchange is weak or completely suppressed (Dockum et al., 1983[Dockum, B. W., Eisman, G. A., Witten, H. & Reiff, W. M. (1983). Inorg. Chem. 22, 150-156.]; Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.], 2022[Böhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. & Näther, C. (2022). Inorg. Chem. 61, 16841-16855.]). All this is well investigated for Co(NCS)2 compounds but not much is known for compounds based on Co(NCSe)2, because only two compounds with μ-1,3-bridging seleno­cyanate anions are reported in the literature (Boeckmann et al., 2011[Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.]; Wöhlert et al., 2012[Wöhlert, S., Ruschewitz, U. & Näther, C. (2012). Cryst. Growth Des. 12, 2715-2718.]; Neumann et al., 2019[Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652-2655.]). First results indicate that they behave in a similar manner to their thio­cyanate analogs and that the exchange of thio- by seleno­cyanate leads to an increase in the magnetic intra­chain inter­actions (Neumann et al., 2019[Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652-2655.]).

[Scheme 1]

Unfortunately, the synthesis of compounds in which CoII cations are linked by seleno­cyanate anions into chains in solution is always difficult to achieve or even impossible, because CoII is not very chalcophilic and therefore, in most cases, compounds with terminally coordinated seleno­cyanate anions are obtained. To overcome this problem, we have developed an alternative approach for the synthesis of coordination networks based on thermal ligand removal of suitable precursor compounds that can be used for the synthesis of a wide range of materials including thio- and seleno­cyanates but also halide coordination compounds (Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.]; Boeckmann et al., 2011[Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.]; Näther & Jess, 2004[Näther, C. & Jess, I. (2004). Eur. J. Inorg. Chem. 2004, 2868-2876.]). For thio­cyanate compounds, the precursors usually consist of discrete complexes of the general formula Co(NCS)2(L)4 (L = mono-coordinating coligand), in which the CoII cations are octa­hedrally coordinated by two terminal N-bonded thio­cyanate anions and four coligands. Upon heating, most of compounds of this type lose half of the ligands in the first mass loss and the octa­hedral metal coordination is retained by the sulfur atoms that were not involved in the metal coordination in the precursor, which enforces the formation of compounds with bridging anionic ligands.

In the course of our systematic work we became inter­ested in the corresponding Co(NCSe)2 compounds with 4-meth­oxy­pyridine as coligand, because its thio­cyanate analog Co(NCS)2(4-meth­oxy­pyridine)2 crystallizes in the desired chain structure and is well investigated. This compound shows a metamagnetic transition and single-chain relaxations and this was investigated on powders but also using single crystals (Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]; Foltyn et al., 2022[Foltyn, M., Pinkowicz, D., Näther, C. & Rams, M. (2022). Phys. Chem. Chem. Phys. 24, 24439-24446.]). The reaction of CoCl2·6H2O, KSeCN with 4-meth­oxy­pyridine in water, however, always led to the formation of a compound with the composition Co(NCSe)2(4-meth­oxy­pyridine)4 (see Synthesis and crystallization) for which the CN stretching vibration of the anionic ligand is observed at 2068 cm−1, indicative for the presence of only terminally bonded seleno­cyanate anions (Fig. S1). Even if CoCl2·6H2O and KSeCN were used in excess, no other crystalline phase was obtained. To identify this phase unambiguously, single crystals were grown and characterized by single-crystal X-ray diffraction.

2. Structural commentary

Single-crystal structure determination proved that the title compound, Co(NCSe)2(4-meth­oxy­pyridine)4, consists of discrete complexes in which the Co cations are sixfold coordinated to four 4-meth­oxy­pyridine coligands and two terminal seleno­cyanate anions that coordinate via the N atom of the anionic ligand to the metal center (Fig. 1[link]). The asymmetric unit consists of one CoII cation, two seleno­cyanate anions and four 4-meth­oxy­pyridine ligands in general positions. From the bond lengths and angles, it is obvious that the octa­hedra are slightly distorted (Table 1[link]). This is also obvious from the angle variance of 1.77 and the quadratic elongation of 1.00 calculated using the method of Robinson (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]).

Table 1
Selected geometric parameters (Å, °)

Co1—N2 2.092 (2) Co1—N21 2.170 (2)
Co1—N1 2.108 (2) Co1—N41 2.174 (2)
Co1—N11 2.139 (2) Co1—N31 2.203 (2)
       
N2—Co1—N1 178.93 (10) N11—Co1—N41 91.26 (8)
N2—Co1—N11 90.65 (9) N21—Co1—N41 92.61 (9)
N1—Co1—N11 90.00 (9) N2—Co1—N31 88.71 (9)
N2—Co1—N21 90.08 (9) N1—Co1—N31 90.47 (9)
N1—Co1—N21 89.20 (9) N11—Co1—N31 88.32 (8)
N11—Co1—N21 176.06 (9) N21—Co1—N31 87.83 (9)
N2—Co1—N41 90.07 (9) N41—Co1—N31 178.70 (9)
N1—Co1—N41 90.76 (9)    
[Figure 1]
Figure 1
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.

The title compound is isotypic to M(NCS)2(4-meth­oxy­pyridine) (M = Co, Fe, Ni) already described in the literature (Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Jochim et al., 2018[Jochim, A., Ceglarska, M., Rams, M. & Näther, C. (2018). Z. Anorg. Allg. Chem. 644, 1760-1770.]). In this context, it is noted that Ni(NCS)2(4-meth­oxy­pyridine) crystallizes in two polymorphic modifications, of which the form (ortho­rhom­bic, space group Pccn) that is not isotypic to the title compound and M(NCS)2(4-meth­oxy­pyridine (M = Co, Fe) represents the thermodynamically stable phase at room temperature (Jochim et al., 2018[Jochim, A., Ceglarska, M., Rams, M. & Näther, C. (2018). Z. Anorg. Allg. Chem. 644, 1760-1770.]). However, from this experimental observation one cannot conclude that the title compound is metastable at room temperature and that a second form must exist. It is also noted that the thio­cyanate analogs with manganese and cadmium crystallize in a third form (monoclinic, space group C2/c) and that the Cd(NCS)2 compound also shows dimorphism and additionally crystallizes in a fourth form (tetra­gonal, space group P41), which shows the pronounced structural variability for such simple complexes (Jochim et al., 2019[Jochim, A., Gallo, G., Dinnebier, R. E. & Näther, C. (2019). Z. Naturforsch. B, 74, 49-58.]). Finally, it is noted that we have not found any evidence that the title compound crystallizes in a further crystalline form.

3. Supra­molecular features

In the crystal structure, the discrete complexes are arranged in an irregular manner (Fig. 2[link]) There are a number of inter­molecular C—H⋯O and C—H⋯Se contacts, but for most of them the C—H⋯X (X = O, Se) angle is far from linear and the H⋯X distances are too large for any significant inter­action (Table 2[link]). Some of C—H⋯Se contacts exhibit angles larger than 150°, which might point to some inter­action (Fig. 2[link] and Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O11i 0.95 2.49 3.165 (3) 128
C15—H15⋯O31ii 0.95 2.52 3.297 (3) 139
C16—H16B⋯Se1iii 0.98 3.15 4.096 (3) 163
C22—H22⋯Se1iv 0.95 3.12 3.817 (3) 132
C26—H26A⋯Se1v 0.98 3.06 4.029 (5) 171
C36—H36B⋯Se2vi 0.98 3.13 3.952 (4) 142
C41—H41⋯O21vii 0.95 2.43 3.248 (4) 144
C45—H45⋯Se2viii 0.95 3.08 3.932 (3) 151
C46—H46A⋯Se1ii 0.98 3.15 3.885 (4) 133
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [x-1, y, z]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (v) [-x+1, -y+1, -z+1]; (vi) x+1, y, z; (vii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (viii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Crystal structure of the title compound viewed along the crystallographic a-axis direction. C—H⋯Se inter­actions are shown as pink dashed lines.

4. Thermal properties

Based on the single-crystal structural data, a powder pattern was calculated and compared with the experimental pattern, which shows that a pure crystalline phase was obtained (Fig. 3[link]). To investigate if a crystalline ligand deficient phase with the composition Co(NCS)2(4-meth­oxy­pyridine)4 can be obtained, measurements using differential thermal analysis and thermogravimetry with 8°C min−1 were performed. Upon heating, the TG curve shows two poorly resolved mass losses at about 160 and 250°C that are accompanied with endothermic events in the DTA curve (Fig. 4[link]). The DTG curve indicates that the first event consists of two different thermal events that cannot be successfully resolved. Nevertheless, the experimental mass loss was calculated for all three events, which shows that the first mass loss is in reasonable agreement with that calculated for the removal of one 4-meth­oxy­pyridine ligand (Δm = −15.5%), whereas the second mass loss points to the removal of two additional 4-meth­oxy­pyridine ligands (Fig. 4[link]). This would indicate that in the first step a compound with the composition Co(NCSe)2(4-meth­oxy­pyridine)3 is formed, which transforms into Co(NCSe)2(4-meth­oxy­pyridine) upon further heating. Compounds with such a ratio between the metal salt and neutral coligands are known for thio­cyanate coordination compounds, but are very rare for seleno­cyanates. One compound with the composition Ni(NCSe)2[N,N′-bis­(3-amino­prop­yl)methyl­amine]2 is found in which each Ni cation is octa­hedrally coordinated by three N atoms of one (3-amino­prop­yl)methyl­amine ligand plus two bridging and two terminal seleno­cyanate anions (Vicente et al., 1993[Vicente, R., Escuer, A., Ribas, J., Solans, X. & Font-Bardia, M. (1993). Inorg. Chem. 32, 6117-6118.]). Two of the Ni cations are linked by pairs of μ-1,3-bridging anionic ligands into dinculear units. At first glance, the Ni:coligand ratio seems to be different but one (3-amino­prop­yl)methyl­amine ligand replaces three monocoordinating ligands. For a ratio of 1:1 between M(NCS)2 and coligand, no examples can be found with seleno­cyanate anions but a few examples with thio­cyanate are reported in the literature, including Ni(NCS)2(4-amino­pyridine), in which Ni(NCS)2 double chains are observed (Neumann et al., 2018[Neumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018). Inorg. Chem. 57, 3305-3314.]).

[Figure 3]
Figure 3
Experimental (top) and calculated PXRD pattern (bottom) of the title compound.
[Figure 4]
Figure 4
DTG, TG and DTA curves for the title compound measured at 8°C min−1 in a nitro­gen atmosphere.

To increase the resolution, measurements at different heating rates were performed, but the TG curves look similar and are still poorly resolved (Fig. S2). However, to investigate if different crystalline phases can be prepared, the residues obtained at different temperatures were isolated and investigated by PXRD, which proved that they are amorphous, and in Fig. S3 one of these patterns is shown as a representative. We also tried to anneal samples of the title compound at constant temperatures but always obtained amorphous inter­mediates. Therefore, no more efforts were made.

5. Database survey

In the CCDC database, no seleno­cyanate compounds with 4-meth­oxy­pyridine are reported (CSD version 5.42, last update November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), but some compounds with thio­cyanate as the anionic ligand are found. They include compounds with the composition M(NCS)2(4-meth­oxy­pyridine)4 with M = Mn (Refcode COBVEX; Jochim et al., 2019[Jochim, A., Gallo, G., Dinnebier, R. E. & Näther, C. (2019). Z. Naturforsch. B, 74, 49-58.]), Fe (Refcode FISCIW; Jochim et al., 2018[Jochim, A., Ceglarska, M., Rams, M. & Näther, C. (2018). Z. Anorg. Allg. Chem. 644, 1760-1770.]), Co (Refcode KIJPUR; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]), Ni (Refcodes FISCAO and FISCES; Jochim et al., 2019[Jochim, A., Gallo, G., Dinnebier, R. E. & Näther, C. (2019). Z. Naturforsch. B, 74, 49-58.]), Cd (Refcode COBTUL and COBTUL01; Jochim et al., 2019[Jochim, A., Gallo, G., Dinnebier, R. E. & Näther, C. (2019). Z. Naturforsch. B, 74, 49-58.]) and Ru (Refcode NAGPOD; Cadranel et al., 2016[Cadranel, A., Pieslinger, G. E., Tongying, P., Kuno, M. K., Baraldo, L. M. & Hodak, J. H. (2016). Dalton Trans. 45, 5464-5475.]), which form discrete complexes with octa­hedral coordination. All of these compounds crystallize in four different structure types. There are additional discrete octa­hedral complexes with the composition Cd(NCS)2(4-meth­oxy­pyridine)2·4-meth­oxy­pyri­dine (Refcode COBVAT; Jochim et al., 2019[Jochim, A., Gallo, G., Dinnebier, R. E. & Näther, C. (2019). Z. Naturforsch. B, 74, 49-58.]) and Ni(NCS)2(4-meth­oxy­pyridine)2·aceto­nitrile (Refcode FISCOC; Jochim et al., 2018[Jochim, A., Ceglarska, M., Rams, M. & Näther, C. (2018). Z. Anorg. Allg. Chem. 644, 1760-1770.]) that form solvates and one aceto­nitrile complex with the composition Ni(NCS)2(4-meth­oxy­pyridine)2(CH3CN)2 (Refcode FISCES; Jochim et al., 2018[Jochim, A., Ceglarska, M., Rams, M. & Näther, C. (2018). Z. Anorg. Allg. Chem. 644, 1760-1770.]).

With thio­cyanate, compounds are reported with the composition M(NCS)2(4-meth­oxy­pyridine)2 with M = Cu (Refcode ABOXAT; Handy et al., 2017[Handy, J. V., Ayala, G. & Pike, R. D. (2017). Inorg. Chim. Acta, 456, 64-75.]), Co (KIJQAY, KIJPOL and KIJPOL01; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.] and Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]), Ni (FISBUH; Jochim et al., 2018[Jochim, A., Ceglarska, M., Rams, M. & Näther, C. (2018). Z. Anorg. Allg. Chem. 644, 1760-1770.]), Cd (COBTUL and COBVIB; Jochim et al., 2019[Jochim, A., Gallo, G., Dinnebier, R. E. & Näther, C. (2019). Z. Naturforsch. B, 74, 49-58.]). The Cu compound forms discrete complexes with a square-planar coordination, while the Co compounds consist of isomers forming discrete tetra­hedral complexes as well as a chain compound with an octa­hedral coordination, which is also the case for the Co and Cd compounds.

There are also discrete complexes with seleno­cyanate anions and pyridine derivatives as coligands reported in the literature that are comparable to the title compound. These include, for example, Fe(NCSe)2[4-2(phenyl­vin­yl)pyridine-N]4 (Refcodes XUKNUN, XUKNUN01, XUKPEZ and XUKPEZ01; Boillot et al., 2009[Boillot, M. L., Pillet, S., Tissot, A., Rivière, E., Claiser, N. & Lecomte, C. (2009). Inorg. Chem. 48, 4729-4736.]) and Co(NCSe)2 [Refcodes ITISOU (Boeckmann & Näther, 2011[Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.]) and TIXDOW, TIXDOW01 and TIXFAK (Neumann et al., 2019[Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652-2655.])].

6. Synthesis and crystallization

CoCl2·6H2O and KSeCN were purchased from Aldrich and 4-meth­oxy­pyridine was purchased from Alfa Aesar.

Synthesis:

Larger amounts of a microcrystalline powder were obtained by the reaction of 0.15 mmol (35.7 mg) of CoCl2·6H2O with 0.30 mmol (43.3 mg) of KSeCN and 0.60 mmol (60.8 µL) of 4-meth­oxy­pyridine in 1 ml of demineralized water. The mixture was stirred for 2 d at room temperature, the light-pink-colored precipitate was filtered off and washed with a very small amount of water. Single crystals were obtained by slow evaporation of the solvent from the filtrate. It is noted that the same compound is obtained if CoCl2·6H2O and 4-meth­oxy­pyridine are used in a 1:1 ratio.

Experimental details:

The XRPD measurements were performed with a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator using Cu Kα1 radiation (λ = 1.540598 Å). The IR spectra were measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: WINFIRST, from ATI Mattson. Thermogravimetry and differential thermoanalysis (TG–DTA) measurements were performed in a dynamic nitro­gen atmosphere in Al2O3 crucibles using a STA-PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were positioned with idealized geometry (C—H = 0.95–0.98 Å, methyl H atoms allowed to rotate but not to tip) and were refined with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model.

Table 3
Experimental details

Crystal data
Chemical formula [Co(NCSe)2(C6H7NO)4]
Mr 705.39
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 200
a, b, c (Å) 10.0531 (2), 17.3479 (4), 34.3141 (5)
V3) 5984.4 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 3.05
Crystal size (mm) 0.23 × 0.19 × 0.17
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.457, 0.738
No. of measured, independent and observed [I > 2σ(I)] reflections 56525, 5862, 5130
Rint 0.035
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.087, 1.07
No. of reflections 5862
No. of parameters 356
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.48
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(isoselenocyanato-κN)tetrakis(4-methoxypyridine-κN)cobalt(II) top
Crystal data top
[Co(NCSe)2(C6H7NO)4]Dx = 1.566 Mg m3
Mr = 705.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 56525 reflections
a = 10.0531 (2) Åθ = 1.2–26.0°
b = 17.3479 (4) ŵ = 3.05 mm1
c = 34.3141 (5) ÅT = 200 K
V = 5984.4 (2) Å3Block, light pink
Z = 80.23 × 0.19 × 0.17 mm
F(000) = 2824
Data collection top
Stoe IPDS-2
diffractometer
5130 reflections with I > 2σ(I)
ω scansRint = 0.035
Absorption correction: numerical
(X-Red and X-Shape; Stoe, 2008)
θmax = 26.0°, θmin = 1.2°
Tmin = 0.457, Tmax = 0.738h = 129
56525 measured reflectionsk = 2121
5862 independent reflectionsl = 4242
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0382P)2 + 4.2748P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.003
5862 reflectionsΔρmax = 0.34 e Å3
356 parametersΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.42296 (4)0.38984 (2)0.62207 (2)0.04280 (10)
N10.4898 (3)0.50081 (14)0.60651 (7)0.0509 (5)
C10.5320 (3)0.56297 (17)0.60594 (8)0.0479 (6)
Se10.59634 (4)0.65844 (2)0.60535 (2)0.07361 (13)
N20.3601 (2)0.27886 (13)0.63726 (7)0.0504 (5)
C20.3463 (3)0.22263 (16)0.65509 (8)0.0453 (6)
Se20.32769 (4)0.13723 (2)0.68306 (2)0.06769 (12)
N110.3567 (2)0.43341 (13)0.67705 (6)0.0426 (5)
C110.4297 (3)0.48409 (16)0.69698 (8)0.0449 (6)
H110.5089290.5027190.6851930.054*
C120.3978 (3)0.51110 (16)0.73342 (7)0.0435 (6)
H120.4545540.5463070.7465780.052*
C130.2809 (3)0.48581 (15)0.75052 (8)0.0443 (6)
C140.2031 (3)0.43319 (16)0.72997 (8)0.0482 (6)
H140.1225090.4144530.7408650.058*
C150.2436 (3)0.40891 (15)0.69422 (8)0.0449 (6)
H150.1895380.3728930.6806510.054*
O110.2361 (2)0.50833 (14)0.78569 (6)0.0613 (5)
C160.3177 (4)0.5600 (2)0.80767 (10)0.0743 (10)
H16A0.4026050.5349660.8137400.111*
H16B0.2722800.5737880.8319610.111*
H16C0.3342620.6067630.7923710.111*
N210.5040 (2)0.34562 (13)0.56789 (6)0.0469 (5)
C210.5856 (3)0.28430 (16)0.56790 (8)0.0496 (6)
H210.5871140.2523100.5903680.059*
C220.6666 (3)0.26539 (16)0.53735 (8)0.0512 (7)
H220.7223780.2212810.5387080.061*
C230.6661 (3)0.31148 (15)0.50441 (8)0.0475 (6)
C240.5771 (3)0.37243 (16)0.50266 (8)0.0523 (7)
H240.5691190.4030150.4798180.063*
C250.5007 (3)0.38721 (17)0.53511 (8)0.0510 (7)
H250.4416040.4298970.5341450.061*
O210.7538 (2)0.29286 (12)0.47615 (6)0.0593 (5)
C260.7672 (4)0.3449 (2)0.44407 (10)0.0761 (11)
H26A0.6835990.3465360.4294030.114*
H26B0.8390330.3272200.4269510.114*
H26C0.7881170.3965460.4538620.114*
N310.6165 (2)0.36451 (13)0.64936 (6)0.0441 (5)
C310.7328 (3)0.38797 (17)0.63423 (8)0.0513 (7)
H310.7306440.4220240.6125550.062*
C320.8543 (3)0.36555 (18)0.64827 (9)0.0552 (7)
H320.9337510.3842520.6366320.066*
C330.8602 (3)0.31539 (17)0.67957 (8)0.0468 (6)
C340.7418 (3)0.29132 (16)0.69587 (8)0.0478 (6)
H340.7414100.2574220.7176080.057*
C350.6246 (3)0.31725 (17)0.68008 (7)0.0463 (6)
H350.5438810.3005350.6917470.056*
O310.9822 (2)0.29425 (13)0.69180 (6)0.0613 (5)
C360.9907 (4)0.2312 (2)0.71856 (11)0.0772 (10)
H36A0.9498640.2459550.7433960.116*
H36B1.0843620.2179620.7228510.116*
H36C0.9438340.1865170.7077730.116*
N410.2300 (2)0.41270 (13)0.59591 (6)0.0471 (5)
C410.1720 (3)0.36068 (17)0.57240 (9)0.0562 (7)
H410.2141550.3120960.5691870.067*
C420.0557 (3)0.37370 (19)0.55288 (9)0.0592 (8)
H420.0191070.3351900.5363760.071*
C430.0080 (3)0.44397 (18)0.55750 (8)0.0512 (6)
C440.0467 (3)0.49680 (16)0.58295 (8)0.0505 (7)
H440.0035800.5445200.5878940.061*
C450.1652 (3)0.47896 (15)0.60105 (8)0.0476 (6)
H450.2028960.5160390.6181780.057*
O410.1208 (2)0.45430 (15)0.53667 (7)0.0696 (6)
C460.1853 (4)0.5276 (2)0.53937 (13)0.0798 (11)
H46A0.2124370.5369100.5663950.120*
H46B0.2639230.5280300.5224920.120*
H46C0.1236610.5682240.5310680.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.04374 (19)0.04212 (19)0.04252 (19)0.00171 (15)0.00192 (15)0.00372 (14)
N10.0553 (14)0.0453 (13)0.0522 (13)0.0025 (11)0.0056 (11)0.0050 (10)
C10.0508 (16)0.0524 (16)0.0405 (13)0.0026 (13)0.0043 (12)0.0047 (11)
Se10.0947 (3)0.05033 (18)0.0758 (2)0.02052 (18)0.00388 (19)0.00265 (15)
N20.0518 (14)0.0460 (13)0.0532 (13)0.0049 (11)0.0007 (11)0.0044 (11)
C20.0431 (14)0.0463 (15)0.0465 (14)0.0031 (12)0.0012 (11)0.0067 (12)
Se20.0820 (3)0.04693 (18)0.0741 (2)0.00859 (16)0.00418 (18)0.01474 (15)
N110.0373 (11)0.0470 (12)0.0435 (11)0.0019 (9)0.0011 (9)0.0020 (9)
C110.0371 (13)0.0513 (15)0.0463 (14)0.0056 (11)0.0006 (11)0.0047 (11)
C120.0393 (14)0.0477 (14)0.0436 (13)0.0030 (11)0.0023 (11)0.0031 (11)
C130.0431 (14)0.0473 (14)0.0426 (13)0.0031 (12)0.0030 (11)0.0028 (11)
C140.0386 (14)0.0539 (16)0.0523 (15)0.0053 (12)0.0053 (12)0.0034 (12)
C150.0377 (13)0.0459 (14)0.0511 (14)0.0042 (11)0.0014 (11)0.0028 (11)
O110.0571 (12)0.0760 (14)0.0509 (11)0.0092 (11)0.0127 (10)0.0123 (10)
C160.082 (2)0.082 (2)0.0585 (19)0.018 (2)0.0122 (17)0.0227 (17)
N210.0525 (14)0.0458 (12)0.0424 (11)0.0030 (10)0.0003 (10)0.0025 (9)
C210.0608 (17)0.0426 (14)0.0452 (14)0.0043 (13)0.0002 (12)0.0034 (11)
C220.0617 (18)0.0419 (14)0.0499 (15)0.0077 (13)0.0003 (13)0.0001 (12)
C230.0534 (16)0.0433 (14)0.0457 (14)0.0035 (12)0.0041 (12)0.0052 (11)
C240.0649 (18)0.0483 (15)0.0436 (14)0.0069 (13)0.0003 (13)0.0044 (12)
C250.0568 (17)0.0528 (16)0.0434 (14)0.0098 (13)0.0011 (13)0.0033 (12)
O210.0743 (14)0.0504 (11)0.0532 (11)0.0053 (10)0.0172 (10)0.0017 (9)
C260.101 (3)0.0597 (19)0.067 (2)0.0058 (19)0.035 (2)0.0068 (16)
N310.0420 (12)0.0459 (12)0.0445 (11)0.0011 (10)0.0022 (9)0.0036 (9)
C310.0481 (16)0.0540 (16)0.0520 (15)0.0062 (13)0.0044 (12)0.0114 (13)
C320.0437 (15)0.0617 (18)0.0601 (17)0.0075 (14)0.0074 (13)0.0104 (14)
C330.0404 (14)0.0499 (15)0.0501 (14)0.0031 (12)0.0030 (12)0.0017 (12)
C340.0472 (15)0.0512 (15)0.0450 (14)0.0061 (12)0.0002 (12)0.0063 (12)
C350.0415 (14)0.0542 (15)0.0432 (13)0.0051 (12)0.0035 (11)0.0063 (12)
O310.0428 (11)0.0712 (14)0.0700 (13)0.0044 (10)0.0064 (10)0.0116 (11)
C360.058 (2)0.090 (3)0.084 (2)0.0044 (19)0.0175 (18)0.027 (2)
N410.0496 (13)0.0450 (12)0.0466 (12)0.0013 (10)0.0008 (10)0.0004 (9)
C410.0558 (18)0.0505 (16)0.0623 (17)0.0076 (14)0.0092 (14)0.0121 (13)
C420.0569 (18)0.0586 (18)0.0620 (18)0.0030 (14)0.0083 (14)0.0128 (14)
C430.0437 (15)0.0586 (17)0.0513 (15)0.0013 (13)0.0005 (12)0.0066 (13)
C440.0502 (16)0.0450 (14)0.0563 (16)0.0032 (12)0.0064 (13)0.0053 (12)
C450.0524 (16)0.0408 (13)0.0494 (15)0.0002 (12)0.0019 (12)0.0016 (11)
O410.0531 (13)0.0749 (15)0.0807 (15)0.0082 (12)0.0151 (11)0.0034 (12)
C460.061 (2)0.076 (2)0.102 (3)0.0171 (18)0.013 (2)0.017 (2)
Geometric parameters (Å, º) top
Co1—N22.092 (2)C25—H250.9500
Co1—N12.108 (2)O21—C261.430 (4)
Co1—N112.139 (2)C26—H26A0.9800
Co1—N212.170 (2)C26—H26B0.9800
Co1—N412.174 (2)C26—H26C0.9800
Co1—N312.203 (2)N31—C351.338 (3)
N1—C11.159 (4)N31—C311.342 (4)
C1—Se11.778 (3)C31—C321.370 (4)
N2—C21.160 (3)C31—H310.9500
C2—Se21.775 (3)C32—C331.384 (4)
N11—C111.334 (3)C32—H320.9500
N11—C151.349 (3)C33—O311.347 (3)
C11—C121.373 (4)C33—C341.379 (4)
C11—H110.9500C34—C351.373 (4)
C12—C131.384 (4)C34—H340.9500
C12—H120.9500C35—H350.9500
C13—O111.346 (3)O31—C361.431 (4)
C13—C141.393 (4)C36—H36A0.9800
C14—C151.359 (4)C36—H36B0.9800
C14—H140.9500C36—H36C0.9800
C15—H150.9500N41—C451.333 (3)
O11—C161.431 (4)N41—C411.344 (4)
C16—H16A0.9800C41—C421.366 (4)
C16—H16B0.9800C41—H410.9500
C16—H16C0.9800C42—C431.386 (4)
N21—C251.337 (3)C42—H420.9500
N21—C211.343 (3)C43—O411.353 (3)
C21—C221.367 (4)C43—C441.380 (4)
C21—H210.9500C44—C451.379 (4)
C22—C231.384 (4)C44—H440.9500
C22—H220.9500C45—H450.9500
C23—O211.350 (3)O41—C461.431 (4)
C23—C241.386 (4)C46—H46A0.9800
C24—C251.377 (4)C46—H46B0.9800
C24—H240.9500C46—H46C0.9800
N2—Co1—N1178.93 (10)N21—C25—H25117.8
N2—Co1—N1190.65 (9)C24—C25—H25117.8
N1—Co1—N1190.00 (9)C23—O21—C26117.6 (2)
N2—Co1—N2190.08 (9)O21—C26—H26A109.5
N1—Co1—N2189.20 (9)O21—C26—H26B109.5
N11—Co1—N21176.06 (9)H26A—C26—H26B109.5
N2—Co1—N4190.07 (9)O21—C26—H26C109.5
N1—Co1—N4190.76 (9)H26A—C26—H26C109.5
N11—Co1—N4191.26 (8)H26B—C26—H26C109.5
N21—Co1—N4192.61 (9)C35—N31—C31115.9 (2)
N2—Co1—N3188.71 (9)C35—N31—Co1120.72 (18)
N1—Co1—N3190.47 (9)C31—N31—Co1122.96 (18)
N11—Co1—N3188.32 (8)N31—C31—C32123.7 (3)
N21—Co1—N3187.83 (9)N31—C31—H31118.2
N41—Co1—N31178.70 (9)C32—C31—H31118.2
C1—N1—Co1166.1 (2)C31—C32—C33119.3 (3)
N1—C1—Se1179.7 (3)C31—C32—H32120.3
C2—N2—Co1160.3 (2)C33—C32—H32120.3
N2—C2—Se2178.8 (3)O31—C33—C34125.2 (3)
C11—N11—C15116.6 (2)O31—C33—C32116.9 (3)
C11—N11—Co1120.90 (17)C34—C33—C32117.9 (3)
C15—N11—Co1122.44 (18)C35—C34—C33118.8 (2)
N11—C11—C12124.3 (2)C35—C34—H34120.6
N11—C11—H11117.9C33—C34—H34120.6
C12—C11—H11117.9N31—C35—C34124.3 (3)
C11—C12—C13118.4 (2)N31—C35—H35117.8
C11—C12—H12120.8C34—C35—H35117.8
C13—C12—H12120.8C33—O31—C36117.6 (2)
O11—C13—C12124.9 (3)O31—C36—H36A109.5
O11—C13—C14117.1 (2)O31—C36—H36B109.5
C12—C13—C14118.0 (2)H36A—C36—H36B109.5
C15—C14—C13119.4 (2)O31—C36—H36C109.5
C15—C14—H14120.3H36A—C36—H36C109.5
C13—C14—H14120.3H36B—C36—H36C109.5
N11—C15—C14123.3 (3)C45—N41—C41116.5 (2)
N11—C15—H15118.4C45—N41—Co1122.59 (19)
C14—C15—H15118.4C41—N41—Co1120.87 (19)
C13—O11—C16117.5 (2)N41—C41—C42123.7 (3)
O11—C16—H16A109.5N41—C41—H41118.1
O11—C16—H16B109.5C42—C41—H41118.1
H16A—C16—H16B109.5C41—C42—C43119.0 (3)
O11—C16—H16C109.5C41—C42—H42120.5
H16A—C16—H16C109.5C43—C42—H42120.5
H16B—C16—H16C109.5O41—C43—C44125.5 (3)
C25—N21—C21116.3 (2)O41—C43—C42116.3 (3)
C25—N21—Co1121.38 (19)C44—C43—C42118.2 (3)
C21—N21—Co1120.60 (18)C45—C44—C43118.7 (3)
N21—C21—C22123.6 (3)C45—C44—H44120.6
N21—C21—H21118.2C43—C44—H44120.6
C22—C21—H21118.2N41—C45—C44123.8 (3)
C21—C22—C23119.0 (3)N41—C45—H45118.1
C21—C22—H22120.5C44—C45—H45118.1
C23—C22—H22120.5C43—O41—C46117.6 (3)
O21—C23—C22116.5 (3)O41—C46—H46A109.5
O21—C23—C24125.0 (3)O41—C46—H46B109.5
C22—C23—C24118.6 (3)H46A—C46—H46B109.5
C25—C24—C23117.8 (3)O41—C46—H46C109.5
C25—C24—H24121.1H46A—C46—H46C109.5
C23—C24—H24121.1H46B—C46—H46C109.5
N21—C25—C24124.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O11i0.952.493.165 (3)128
C15—H15···O31ii0.952.523.297 (3)139
C16—H16B···Se1iii0.983.154.096 (3)163
C22—H22···Se1iv0.953.123.817 (3)132
C26—H26A···Se1v0.983.064.029 (5)171
C36—H36B···Se2vi0.983.133.952 (4)142
C41—H41···O21vii0.952.433.248 (4)144
C45—H45···Se2viii0.953.083.932 (3)151
C46—H46A···Se1ii0.983.153.885 (4)133
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x1, y, z; (iii) x1/2, y, z+3/2; (iv) x+3/2, y1/2, z; (v) x+1, y+1, z+1; (vi) x+1, y, z; (vii) x1/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the State of Schleswig-Holstein.

References

First citationBarasiński, A., Sobczak, P., Drzewiński, A., Kamieniarz, G., Bieńko, A., Mroziński, J. & Gatteschi, D. (2010). Polyhedron, 29, 1485–1491.  Google Scholar
First citationBarnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2002). Chem. Commun. pp. 1640–1641.  Web of Science CSD CrossRef Google Scholar
First citationBoeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104–7106.  Web of Science CSD CrossRef CAS Google Scholar
First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBöhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. & Näther, C. (2022). Inorg. Chem. 61, 16841–16855.  Web of Science PubMed Google Scholar
First citationBoillot, M. L., Pillet, S., Tissot, A., Rivière, E., Claiser, N. & Lecomte, C. (2009). Inorg. Chem. 48, 4729–4736.  CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBuckingham, D. A. (1994). Coord. Chem. Rev. 135–136, 587–621.  CrossRef Web of Science Google Scholar
First citationCadranel, A., Pieslinger, G. E., Tongying, P., Kuno, M. K., Baraldo, L. M. & Hodak, J. H. (2016). Dalton Trans. 45, 5464–5475.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDhers, S., Feltham, H. L. C. & Brooker, S. (2015). Coord. Chem. Rev. 296, 24–44.  Web of Science CrossRef CAS Google Scholar
First citationDockum, B. W., Eisman, G. A., Witten, H. & Reiff, W. M. (1983). Inorg. Chem. 22, 150–156.  CrossRef CAS Google Scholar
First citationFoltyn, M., Pinkowicz, D., Näther, C. & Rams, M. (2022). Phys. Chem. Chem. Phys. 24, 24439–24446.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuang, Y., Qian, Z., Xiang-Pei, Z., Yu, Z. & Ng, S. W. (2007). J. Chem. Res. 384–386.  Google Scholar
First citationHandy, J. V., Ayala, G. & Pike, R. D. (2017). Inorg. Chim. Acta, 456, 64–75.  Web of Science CSD CrossRef CAS Google Scholar
First citationJochim, A., Ceglarska, M., Rams, M. & Näther, C. (2018). Z. Anorg. Allg. Chem. 644, 1760–1770.  CSD CrossRef CAS Google Scholar
First citationJochim, A., Gallo, G., Dinnebier, R. E. & Näther, C. (2019). Z. Naturforsch. B, 74, 49–58.  CSD CrossRef CAS Google Scholar
First citationLescouëzec, R., Toma, L. M., Vaissermann, J., Verdaguer, M., Delgado, F. S., Ruiz-Pérez, C., Lloret, F. & Julve, M. (2005). Coord. Chem. Rev. 249, 2691–2729.  Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationMousavi, M., Duhayon, C., Bretosh, K., Béreau, V. & Sutter, J. P. (2020). Inorg. Chem. 59, 7603–7613.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNäther, C. & Jess, I. (2004). Eur. J. Inorg. Chem. 2004, 2868–2876.  Google Scholar
First citationNeumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018). Inorg. Chem. 57, 3305–3314.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNeumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652–2655.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationPrananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.  Web of Science CSD CrossRef CAS Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J. M., Chen, J., Wu, C. J. & Ma, J. P. (2007). J. Coord. Chem. 60, 2009–2013.  CSD CrossRef CAS Google Scholar
First citationShurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583–10594.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSun, H. L., Wang, Z. M. & Gao, S. (2010). Coord. Chem. Rev. 254, 1081–1100.  Web of Science CrossRef CAS Google Scholar
First citationVicente, R., Escuer, A., Ribas, J., Solans, X. & Font-Bardia, M. (1993). Inorg. Chem. 32, 6117–6118.  CSD CrossRef CAS Web of Science Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236–3245.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Ruschewitz, U. & Näther, C. (2012). Cryst. Growth Des. 12, 2715–2718.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds