research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-4-hy­dr­oxy-N′-(3-meth­­oxy­benzyl­­idene)benzohydrazide1

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bDepartment of Basic Science and Mathematics, Faculty of Science, Thaksin University, Muang, Songkhla 90000, Thailand, cSchool of Chemical Sciences & Food Technology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, and dFuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

Edited by S. Parkin, University of Kentucky, USA (Received 1 July 2016; accepted 18 August 2016; online 26 August 2016)

The title compound, C15H14N2O3, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit that differ in the orientation of the 3-meth­oxy­phenyl group with respect to the methyl­idenebenzohydrazide unit. The dihedral angles between the two benzene rings are 24.02 (10) and 29.30 (9)° in mol­ecules A and B, respectively. In mol­ecule A, the meth­oxy group is twisted slightly relative to its bound benzene ring, with a Cmeth­yl—O—C—C torsion angle of 14.2 (3)°, whereas it is almost co-planar in mol­ecule B, where the corresponding angle is −2.4 (3)°. In the crystal, the mol­ecules are linked by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, as well as by weak C—H⋯O inter­actions, forming sheets parallel to the bc plane. The N—H⋯O hydrogen bond and weak C—H⋯O inter­action link different mol­ecules (AB) whereas both O—H⋯N and O—H⋯O hydrogen bonds link like mol­ecules (AA) and (BB). Pairs of inversion-related B mol­ecules are stacked approximately along the a axis by ππ inter­actions in which the distance between the centroids of the 3-meth­oxy­phenyl rings is 3.5388 (12) Å. The B mol­ecules also participate in weak C—H⋯π inter­actions between the 4-hy­droxy­phenyl and the 3-meth­oxy­phenyl rings.

1. Chemical context

The benzohydrazide pharmacophore, which comprises >C=O, >C=N– and >NH groups, has attracted much attention from medicinal chemists as a result of its important biological properties. Various derivatives of benzohydrazide have been reported to possess a range of biological properties, including anti­bacterial (Bhole & Bhusari, 2009[Bhole, R. P. & Bhusari, K. P. (2009). J. Korean Chem. Soc. 28, 1405-1421.]; Peng, 2011[Peng, S. J. (2011). J. Chem. Crystallogr. 41, 280-285.]), anti­fungal (Loncle et al., 2004[Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067-1071.]), anti­tubercular (Bedia et al., 2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]) and anti­malarial activities (Melnyk et al., 2006[Melnyk, P., Leroux, V., Sergheraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31-35.]). Recently, α-glucosidase inhibitory activity of benzohydrazides has been reported (Imran et al., 2015[Imran, S., Taha, M., Ismail, N. H., Kashif, S. M., Rahim, F., Jamil, W., Hariono, M., Yusuf, M. & Wahab, H. (2015). Eur. J. Med. Chem. 105, 156-170.]; Taha et al., 2015[Taha, M., Ismail, N. H., Lalani, S., Fatmi, M. Q., Atia-tul-Wahab, Siddiqui, S., Khan, K. M., Imran, S. & Choudhary, M. I. (2015). Eur. J. Med. Chem. 92, 387-400.]).

The inter­esting biological activities of benzohydrazides led us to synthesize the title compound (I)[link] and study its α-glucosidase inhibitory activity. The result indicates that (I)[link] possesses weak α-glucosidase inhibitory activity with 7.30±2.85% inhibition at a concentration of 100 µg/mL. The structure of (I)[link] was characterized by spectroscopy while its X-ray structure, Fig. 1[link], confirms the formation of the N′-benzyl­idenebenzohydrazide skeleton. In our previous studies, we reported the syntheses and crystal structures of two related compounds, (E)-4-hy­droxy-N′-(3-hy­droxy-4-meth­oxy­benzyl­idene)benzohydrazide (Fun et al., 2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]) and (E)-4-hy­droxy-N′-(3,4,5-tri­meth­oxy­benzyl­idene)benzohydrazide (Horkaew et al., 2011[Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 50% probability displacement ellipsoids and the atom-numbering scheme.

2. Structural commentary

There are two crystallographically independent mol­ecules, A and B, of the title benzohydrazide derivative, C15H14N2O3, in the asymmetric unit of (I)[link]. These differ in the orientation of the 3-meth­oxy­phenyl ring with respect to the methyl­idene­benzo­hydrazide unit. The dihedral angles between the two benzene rings are 24.02 (10) and 29.30 (9)° in mol­ecules A and B, respectively. The mol­ecules exist in the trans-conformation with respect to the C8=N2 bond [1.275 (2) Å in mol­ecule A and 1.271 (2) Å in mol­ecule B] and the torsion angle N1—N2—C8—C9 = −178.14 (16)° in mol­ecule A and −177.69 (16)° in mol­ecule B. Five atoms (O1, C7, N1, N2 and C8) of the central fragment are approximately coplanar, having r.m.s. deviations of 0.0179 (2) Å in mol­ecule A and 0.0327 (2) Å in mol­ecule B. The mean plane through this central fragment makes dihedral angles of 23.87 (11) and 0.20 (12)° with the planes of the 4-hy­droxy­phenyl and 3-meth­oxy­phenyl rings, respectively, in mol­ecule A. The corresponding values are 22.58 (11) and 11.04 (11) ° in mol­ecule B. In mol­ecule A, the meth­oxy group is slightly twisted from the attached benzene ring [C15—O3—C11—C10 = 14.2 (3)°] whereas it is essentially coplanar in mol­ecule B [where the corresponding torsion angle is −2.4 (3)°]. The bond distances agree with literature values and are comparable with those in related structures (Fun et al., 2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]; Horkaew et al., 2011[Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.]; Rassem et al., 2012[Rassem, H. H., Salhin, A., Bin Salleh, B., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, o1832.]; Shi, 2009[Shi, D.-H. (2009). Acta Cryst. E65, o2107.]).

3. Supra­molecular features

In the crystal (Fig. 2[link]), the mol­ecules are linked by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, as well as by weak C—H⋯O inter­actions (Table 1[link]), into sheets parallel to the bc plane. The N1A—H1A⋯O2Bi and N1B—H1B⋯O3Aii hydrogen bonds and C13B—H13B⋯O1Aiv inter­actions link non-equivalent mol­ecules (AB) whereas the O2A—H2A⋯N2Aiii and O2A—H2A⋯O1Aiii hydrogen bonds link equivalent A mol­ecules, and O2B—H2B⋯N2Bii and O2B—H2B⋯O1Bii hydrogen bonds link equivalent B mol­ecules. Stacking of planes of mol­ecules in the a-axis direction involves ππ inter­actions between B mol­ecules with CgCgvi distance of 3.5388 (12) Å. A weak C—H⋯π inter­action (C3B—H3BCgv) between the 4-hy­droxy­phenyl ring and the 3-meth­oxy­phenyl ring of symmetry-related B mol­ecules is also present (Fig. 3[link], Table 1[link]) [symmetry codes: (i) −x, 1 − y, 1 − z; (ii) x, [{3\over 2}] − y, −[{1\over 2}] + z; (iii) x, [{1\over 2}] − y, −[{1\over 2}] + z; (iv) x, 1 + y, z; (v) −x, −[{1\over 2}] + y, [{3\over 2}] − z; (vi) 1 − x, 2 − y, 2 − z; Cg is the centroid of the C9B–C14B ring].

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C9B–C14B ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O2Bi 0.85 2.58 3.354 (2) 153
N1B—H1B⋯O3Aii 0.87 2.32 3.178 (3) 170
O2A—H2A⋯O1Aiii 0.82 1.94 2.702 (2) 155
O2A—H2A⋯N2Aiii 0.82 2.60 3.231 (2) 135
O2B—H2B⋯O1Bii 0.82 1.92 2.696 (2) 157
O2B—H2B⋯N2Bii 0.82 2.52 3.110 (2) 129
C13B—H13B⋯O1Aiv 0.93 2.57 3.352 (3) 143
C3B—H3BCgv 0.93 2.70 3.604 (2) 165
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x, y+1, z; (v) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Mol­ecular packing of (I)[link] linked by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds drawn as dotted lines.
[Figure 3]
Figure 3
C—H⋯π and ππ contacts for (I)[link] drawn as dotted lines with the centroids of the C9B–C14B rings centroids shown as coloured spheres.

4. Database survey

A search of SciFinder (Scifinder, 2015[Scifinder (2015). Chemical Abstracts Service, Columbus, OH, RN 956-07-0 and RN 51771-18-7 (accessed Jul 11, 2016).]) reveals a total of 719 related structures with benzohydrazides, and 52 related structure with 4-hy­droxy­benzohydrazides. Specific examples by Fun et al., 2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]; Horkaew et al., 2011[Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.]; Rassem et al., 2012[Rassem, H. H., Salhin, A., Bin Salleh, B., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, o1832.]; Shi, 2009[Shi, D.-H. (2009). Acta Cryst. E65, o2107.]) have been mentioned in the Chemical context section.

5. Synthesis and crystallization

A solution of 4-hy­droxy­benzohydrazide (2 mmol, 0.30 g) in ethanol (10 ml) and 3-meth­oxy­benzaldehyde (2 mmol, 0.27 g) in ethanol (10 ml) were mixed, stirred and refluxed for 5 h. The resulting mixture was then cooled to room temperature. The white precipitate that formed was filtered. Colorless block-shaped single crystals of (I)[link] suitable for X-ray structure determination were recrystallized from methanol by slow evaporation at room temperature over a period of several days, m.p. 478–479 K.

6. Spectroscopic studies and α-glucosidase inhibitory assay

UV–Vis (CH3OH) λmax (log): 212 (5.51), 302 (5.61) nm; FT–IR (KBr) ν: 3158, 2834, 1648, 1607, 1509 cm−1; 1H NMR (300 MHz, DMSO-d6) δ: 11.65 (s, 1H, NH), 10.15 (s, 1H, Ar—OH), 8.39 (s, 1H, N=CH), 7.80 (d, J = 8.7 Hz, 2H, Ar—H), 7.27 (s, 1H, Ar—H), 7.25 (br d, J = 8.4 Hz, 1H, Ar—H), 7.37 (t, J = 8.4 Hz, 1H, Ar—H), 7.00 (br d, J = 8.4 Hz, 1H, Ar—H), 6.86 (d, J = 8.7 Hz, 2H, Ar—H), 3.81 (s, 3H, –OCH3) p.p.m.

The UV–Vis spectrum of (I)[link] shows absorption bands of a benzohydrazide (212 and 302 nm). The IR spectrum of (I)[link] shows the typical stretching of C=N and amide C=O functionalities at 1648 and 1607 cm−1, respectively, which confirm the successful synthesis of the N′-benzyl­idenebenzohydrazide skeleton. In addition, the 1H NMR spectrum of (I)[link] also supports the formation of the N′-benzyl­idenebenzohydrazide skeleton by showing the characteristic signals of an amine (N=CH) at 8.39 (s, 1H) and an amide (N—H) at 11.65 (s, 1H) p.p.m.

The α-glucosidase inhibitory assay was modified from the method of Kim et al. (2004[Kim, Y.-M., Wang, M.-H. & Rhee, H.-I. (2004). Carbohydr. Res. 339, 715-717.]). The result showed that (I)[link] possesses weak activity with 7.30±2.85% inhibition at a concentration of 100 µg/mL.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with d(N—H) = 0.85 or 0.87 Å; d(O—H) = 0.82 Å; d(C—H) = 0.93 Å for aromatic and CH; and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl and hydroxyl H atoms, and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula C15H14N2O3
Mr 270.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 300
a, b, c (Å) 9.2713 (6), 19.0235 (11), 15.6054 (9)
β (°) 105.118 (2)
V3) 2657.1 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.13 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker SMART
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.988, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 70844, 5213, 3311
Rint 0.103
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.105, 1.06
No. of reflections 5213
No. of parameters 364
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.16
Computer programs: SMART and SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

(E)-4-Hydroxy-N'-(3-methoxybenzylidene)benzohydrazide top
Crystal data top
C15H14N2O3Dx = 1.351 Mg m3
Mr = 270.28Melting point = 478–479 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.2713 (6) ÅCell parameters from 5213 reflections
b = 19.0235 (11) Åθ = 2.9–26.0°
c = 15.6054 (9) ŵ = 0.10 mm1
β = 105.118 (2)°T = 300 K
V = 2657.1 (3) Å3Block, colorless
Z = 80.13 × 0.10 × 0.10 mm
F(000) = 1136
Data collection top
Bruker SMART
diffractometer
3311 reflections with I > 2σ(I)
φ and ω scansRint = 0.103
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
θmax = 26.0°, θmin = 2.9°
Tmin = 0.988, Tmax = 0.991h = 1111
70844 measured reflectionsk = 2323
5213 independent reflectionsl = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.040P)2 + 0.602P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5213 reflectionsΔρmax = 0.14 e Å3
364 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0036 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.43409 (17)0.27645 (8)0.84360 (9)0.0583 (4)
O2A0.50983 (17)0.14048 (8)0.48887 (9)0.0572 (4)
H2A0.46580.15730.44090.086*
O3A0.25586 (17)0.54386 (7)1.08045 (9)0.0536 (4)
N1A0.26003 (19)0.33795 (8)0.74482 (10)0.0447 (4)
H1A0.21510.34610.69110.054*
N2A0.24503 (19)0.38366 (9)0.81022 (10)0.0445 (4)
C1A0.3853 (2)0.24216 (9)0.69253 (12)0.0352 (4)
C2A0.5205 (2)0.20673 (10)0.70688 (13)0.0436 (5)
H2A10.58510.20580.76360.052*
C3A0.5603 (2)0.17300 (11)0.63865 (13)0.0471 (5)
H3A0.65180.15010.64920.057*
C4A0.4647 (2)0.17309 (9)0.55460 (12)0.0386 (5)
C5A0.3262 (2)0.20502 (10)0.53997 (12)0.0416 (5)
H5A0.25940.20330.48400.050*
C6A0.2875 (2)0.23933 (10)0.60853 (12)0.0398 (5)
H6A0.19450.26090.59830.048*
C7A0.3611 (2)0.28530 (10)0.76666 (12)0.0392 (5)
C8A0.1550 (2)0.43474 (10)0.78455 (13)0.0440 (5)
H8AA0.10320.43780.72500.053*
C9A0.1313 (2)0.48859 (10)0.84627 (13)0.0421 (5)
C10A0.2082 (2)0.48732 (10)0.93602 (13)0.0432 (5)
H10A0.27690.45180.95790.052*
C11A0.1817 (2)0.53895 (10)0.99222 (13)0.0439 (5)
C12A0.0746 (3)0.58989 (11)0.96013 (16)0.0560 (6)
H12A0.05180.62280.99870.067*
C13A0.0025 (3)0.59198 (12)0.87190 (17)0.0625 (6)
H13A0.06700.62720.85050.075*
C14A0.0317 (2)0.54234 (11)0.81427 (15)0.0550 (6)
H14A0.01550.54500.75400.066*
C15A0.3876 (3)0.50331 (13)1.10988 (15)0.0653 (7)
H15A0.36140.45491.11490.098*
H15B0.44400.52021.16670.098*
H15C0.44670.50731.06800.098*
O1B0.09195 (17)0.78644 (7)0.80813 (9)0.0548 (4)
O2B0.02120 (15)0.63829 (7)0.43779 (9)0.0514 (4)
H2B0.06280.65340.40120.077*
O3B0.33565 (17)1.02397 (7)1.12977 (9)0.0571 (4)
N1B0.19818 (18)0.87025 (9)0.74304 (10)0.0455 (4)
H1B0.21490.88850.69520.055*
N2B0.22473 (18)0.91065 (9)0.81927 (10)0.0427 (4)
C1B0.1108 (2)0.76347 (10)0.66236 (11)0.0356 (4)
C2B0.0026 (2)0.71118 (10)0.64794 (12)0.0419 (5)
H2B10.05230.70420.68930.050*
C3B0.0245 (2)0.66956 (11)0.57357 (13)0.0443 (5)
H3B0.09720.63470.56500.053*
C4B0.0561 (2)0.67953 (10)0.51149 (12)0.0364 (4)
C5B0.1669 (2)0.72987 (10)0.52587 (12)0.0395 (5)
H5B0.22340.73570.48510.047*
C6B0.1938 (2)0.77149 (10)0.60057 (12)0.0391 (5)
H6B0.26850.80540.60980.047*
C7B0.1325 (2)0.80650 (10)0.74351 (12)0.0398 (5)
C8B0.2720 (2)0.97284 (11)0.81420 (13)0.0444 (5)
H8BA0.28310.98890.76000.053*
C9B0.3094 (2)1.01972 (10)0.89046 (13)0.0406 (5)
C10B0.2934 (2)0.99840 (10)0.97275 (13)0.0413 (5)
H10B0.24930.95530.97840.050*
C11B0.3427 (2)1.04106 (10)1.04576 (13)0.0432 (5)
C12B0.4064 (2)1.10571 (10)1.03710 (15)0.0487 (5)
H12B0.44151.13421.08660.058*
C13B0.4175 (2)1.12758 (11)0.95555 (16)0.0524 (6)
H13B0.45811.17150.94960.063*
C14B0.3690 (2)1.08499 (11)0.88184 (14)0.0486 (5)
H14B0.37641.10030.82660.058*
C15B0.2675 (3)0.95877 (13)1.14034 (16)0.0703 (7)
H15D0.16430.95971.10770.105*
H15E0.27460.95111.20210.105*
H15F0.31770.92141.11840.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0767 (11)0.0669 (10)0.0272 (8)0.0185 (8)0.0063 (7)0.0019 (7)
O2A0.0749 (10)0.0647 (10)0.0332 (8)0.0202 (8)0.0163 (7)0.0020 (7)
O3A0.0674 (10)0.0563 (9)0.0421 (9)0.0040 (8)0.0233 (8)0.0093 (7)
N1A0.0599 (11)0.0465 (10)0.0263 (8)0.0091 (9)0.0087 (8)0.0062 (7)
N2A0.0578 (11)0.0449 (10)0.0343 (9)0.0003 (9)0.0180 (8)0.0083 (8)
C1A0.0442 (11)0.0326 (10)0.0285 (10)0.0021 (9)0.0088 (8)0.0007 (8)
C2A0.0470 (12)0.0498 (12)0.0290 (11)0.0036 (10)0.0010 (9)0.0024 (9)
C3A0.0455 (12)0.0531 (13)0.0401 (12)0.0110 (10)0.0064 (10)0.0024 (10)
C4A0.0535 (13)0.0344 (11)0.0291 (10)0.0023 (9)0.0130 (9)0.0003 (8)
C5A0.0523 (13)0.0412 (11)0.0269 (10)0.0025 (10)0.0026 (9)0.0007 (9)
C6A0.0418 (11)0.0401 (11)0.0350 (11)0.0064 (9)0.0055 (9)0.0015 (9)
C7A0.0483 (12)0.0409 (11)0.0298 (11)0.0014 (10)0.0125 (9)0.0010 (9)
C8A0.0493 (12)0.0455 (12)0.0389 (11)0.0026 (10)0.0144 (10)0.0063 (10)
C9A0.0450 (12)0.0403 (11)0.0441 (12)0.0050 (10)0.0169 (10)0.0082 (9)
C10A0.0502 (12)0.0407 (11)0.0442 (12)0.0009 (9)0.0222 (10)0.0020 (9)
C11A0.0515 (13)0.0434 (12)0.0419 (12)0.0077 (10)0.0212 (10)0.0078 (10)
C12A0.0589 (14)0.0465 (13)0.0655 (16)0.0012 (11)0.0215 (12)0.0200 (11)
C13A0.0578 (15)0.0512 (14)0.0730 (17)0.0118 (11)0.0072 (13)0.0147 (13)
C14A0.0520 (14)0.0534 (14)0.0555 (14)0.0007 (11)0.0071 (11)0.0116 (11)
C15A0.0728 (16)0.0820 (17)0.0445 (14)0.0122 (14)0.0212 (12)0.0030 (12)
O1B0.0828 (11)0.0569 (9)0.0305 (8)0.0083 (8)0.0249 (8)0.0005 (7)
O2B0.0628 (9)0.0577 (9)0.0376 (8)0.0053 (7)0.0203 (7)0.0119 (7)
O3B0.0770 (11)0.0564 (10)0.0427 (9)0.0050 (8)0.0243 (8)0.0114 (7)
N1B0.0596 (11)0.0526 (11)0.0263 (9)0.0061 (9)0.0149 (8)0.0037 (8)
N2B0.0491 (10)0.0508 (11)0.0275 (9)0.0003 (8)0.0090 (7)0.0048 (8)
C1B0.0400 (11)0.0418 (11)0.0240 (10)0.0045 (9)0.0067 (8)0.0021 (8)
C2B0.0465 (12)0.0522 (12)0.0321 (11)0.0004 (10)0.0194 (9)0.0011 (9)
C3B0.0473 (12)0.0485 (12)0.0400 (12)0.0057 (10)0.0165 (10)0.0053 (10)
C4B0.0421 (11)0.0407 (11)0.0263 (10)0.0067 (9)0.0089 (9)0.0011 (8)
C5B0.0414 (11)0.0504 (12)0.0304 (10)0.0037 (10)0.0161 (9)0.0037 (9)
C6B0.0408 (11)0.0469 (12)0.0299 (10)0.0016 (9)0.0099 (9)0.0014 (9)
C7B0.0440 (12)0.0480 (12)0.0269 (11)0.0021 (10)0.0081 (9)0.0022 (9)
C8B0.0486 (12)0.0520 (13)0.0348 (11)0.0006 (10)0.0148 (10)0.0014 (9)
C9B0.0396 (11)0.0419 (12)0.0405 (12)0.0040 (9)0.0106 (9)0.0017 (9)
C10B0.0433 (11)0.0399 (11)0.0431 (12)0.0001 (9)0.0159 (9)0.0046 (9)
C11B0.0457 (12)0.0409 (12)0.0445 (12)0.0064 (10)0.0144 (10)0.0078 (10)
C12B0.0503 (13)0.0395 (12)0.0540 (14)0.0053 (10)0.0098 (11)0.0118 (10)
C13B0.0524 (13)0.0350 (12)0.0694 (16)0.0015 (10)0.0150 (12)0.0001 (11)
C14B0.0548 (13)0.0449 (13)0.0485 (13)0.0077 (10)0.0177 (11)0.0087 (10)
C15B0.099 (2)0.0647 (16)0.0586 (16)0.0104 (15)0.0407 (14)0.0043 (13)
Geometric parameters (Å, º) top
O1A—C7A1.226 (2)O1B—C7B1.225 (2)
O2A—C4A1.355 (2)O2B—C4B1.360 (2)
O2A—H2A0.8194O2B—H2B0.8198
O3A—C11A1.372 (2)O3B—C11B1.369 (2)
O3A—C15A1.416 (3)O3B—C15B1.421 (3)
N1A—C7A1.353 (2)N1B—C7B1.358 (2)
N1A—N2A1.375 (2)N1B—N2B1.383 (2)
N1A—H1A0.8478N1B—H1B0.8736
N2A—C8A1.275 (2)N2B—C8B1.271 (2)
C1A—C6A1.387 (2)C1B—C2B1.388 (3)
C1A—C2A1.389 (3)C1B—C6B1.390 (2)
C1A—C7A1.483 (3)C1B—C7B1.477 (3)
C2A—C3A1.373 (3)C2B—C3B1.373 (3)
C2A—H2A10.9300C2B—H2B10.9300
C3A—C4A1.378 (3)C3B—C4B1.382 (3)
C3A—H3A0.9300C3B—H3B0.9300
C4A—C5A1.385 (3)C4B—C5B1.379 (3)
C5A—C6A1.378 (3)C5B—C6B1.377 (2)
C5A—H5A0.9300C5B—H5B0.9300
C6A—H6A0.9300C6B—H6B0.9300
C8A—C9A1.461 (3)C8B—C9B1.455 (3)
C8A—H8AA0.9300C8B—H8BA0.9300
C9A—C14A1.381 (3)C9B—C14B1.380 (3)
C9A—C10A1.396 (3)C9B—C10B1.391 (3)
C10A—C11A1.381 (3)C10B—C11B1.376 (3)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.384 (3)C11B—C12B1.386 (3)
C12A—C13A1.365 (3)C12B—C13B1.368 (3)
C12A—H12A0.9300C12B—H12B0.9300
C13A—C14A1.379 (3)C13B—C14B1.383 (3)
C13A—H13A0.9300C13B—H13B0.9300
C14A—H14A0.9300C14B—H14B0.9300
C15A—H15A0.9600C15B—H15D0.9600
C15A—H15B0.9600C15B—H15E0.9600
C15A—H15C0.9600C15B—H15F0.9600
C4A—O2A—H2A109.6C4B—O2B—H2B109.5
C11A—O3A—C15A116.91 (15)C11B—O3B—C15B116.88 (16)
C7A—N1A—N2A118.59 (16)C7B—N1B—N2B118.10 (16)
C7A—N1A—H1A120.9C7B—N1B—H1B122.7
N2A—N1A—H1A120.0N2B—N1B—H1B118.9
C8A—N2A—N1A115.67 (16)C8B—N2B—N1B116.77 (16)
C6A—C1A—C2A118.28 (17)C2B—C1B—C6B118.26 (17)
C6A—C1A—C7A124.35 (17)C2B—C1B—C7B117.84 (16)
C2A—C1A—C7A117.18 (16)C6B—C1B—C7B123.90 (18)
C3A—C2A—C1A121.01 (18)C3B—C2B—C1B121.04 (17)
C3A—C2A—H2A1119.5C3B—C2B—H2B1119.5
C1A—C2A—H2A1119.5C1B—C2B—H2B1119.5
C2A—C3A—C4A120.08 (19)C2B—C3B—C4B119.98 (19)
C2A—C3A—H3A120.0C2B—C3B—H3B120.0
C4A—C3A—H3A120.0C4B—C3B—H3B120.0
O2A—C4A—C3A118.10 (18)O2B—C4B—C5B122.75 (16)
O2A—C4A—C5A122.16 (17)O2B—C4B—C3B117.43 (17)
C3A—C4A—C5A119.73 (17)C5B—C4B—C3B119.81 (17)
C6A—C5A—C4A119.84 (17)C6B—C5B—C4B120.00 (17)
C6A—C5A—H5A120.1C6B—C5B—H5B120.0
C4A—C5A—H5A120.1C4B—C5B—H5B120.0
C5A—C6A—C1A120.91 (18)C5B—C6B—C1B120.86 (18)
C5A—C6A—H6A119.5C5B—C6B—H6B119.6
C1A—C6A—H6A119.5C1B—C6B—H6B119.6
O1A—C7A—N1A121.15 (17)O1B—C7B—N1B121.12 (17)
O1A—C7A—C1A122.06 (18)O1B—C7B—C1B122.05 (18)
N1A—C7A—C1A116.69 (16)N1B—C7B—C1B116.82 (16)
N2A—C8A—C9A121.71 (19)N2B—C8B—C9B122.14 (18)
N2A—C8A—H8AA119.1N2B—C8B—H8BA118.9
C9A—C8A—H8AA119.1C9B—C8B—H8BA118.9
C14A—C9A—C10A119.58 (18)C14B—C9B—C10B119.63 (18)
C14A—C9A—C8A118.82 (19)C14B—C9B—C8B119.20 (19)
C10A—C9A—C8A121.59 (19)C10B—C9B—C8B121.09 (18)
C11A—C10A—C9A119.74 (19)C11B—C10B—C9B119.99 (19)
C11A—C10A—H10A120.1C11B—C10B—H10B120.0
C9A—C10A—H10A120.1C9B—C10B—H10B120.0
O3A—C11A—C10A124.05 (19)O3B—C11B—C10B124.36 (18)
O3A—C11A—C12A116.09 (18)O3B—C11B—C12B115.60 (18)
C10A—C11A—C12A119.9 (2)C10B—C11B—C12B120.03 (19)
C13A—C12A—C11A120.1 (2)C13B—C12B—C11B119.9 (2)
C13A—C12A—H12A119.9C13B—C12B—H12B120.1
C11A—C12A—H12A119.9C11B—C12B—H12B120.1
C12A—C13A—C14A120.7 (2)C12B—C13B—C14B120.5 (2)
C12A—C13A—H13A119.7C12B—C13B—H13B119.7
C14A—C13A—H13A119.7C14B—C13B—H13B119.7
C13A—C14A—C9A119.9 (2)C9B—C14B—C13B119.9 (2)
C13A—C14A—H14A120.1C9B—C14B—H14B120.1
C9A—C14A—H14A120.1C13B—C14B—H14B120.1
O3A—C15A—H15A109.5O3B—C15B—H15D109.5
O3A—C15A—H15B109.5O3B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
O3A—C15A—H15C109.5O3B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
C7A—N1A—N2A—C8A175.70 (18)C7B—N1B—N2B—C8B172.99 (18)
C6A—C1A—C2A—C3A3.6 (3)C6B—C1B—C2B—C3B1.6 (3)
C7A—C1A—C2A—C3A171.59 (18)C7B—C1B—C2B—C3B179.43 (18)
C1A—C2A—C3A—C4A0.9 (3)C1B—C2B—C3B—C4B0.2 (3)
C2A—C3A—C4A—O2A178.58 (18)C2B—C3B—C4B—O2B177.96 (17)
C2A—C3A—C4A—C5A2.4 (3)C2B—C3B—C4B—C5B2.0 (3)
O2A—C4A—C5A—C6A178.03 (18)O2B—C4B—C5B—C6B177.99 (17)
C3A—C4A—C5A—C6A3.0 (3)C3B—C4B—C5B—C6B2.0 (3)
C4A—C5A—C6A—C1A0.3 (3)C4B—C5B—C6B—C1B0.1 (3)
C2A—C1A—C6A—C5A3.0 (3)C2B—C1B—C6B—C5B1.6 (3)
C7A—C1A—C6A—C5A171.83 (17)C7B—C1B—C6B—C5B179.48 (17)
N2A—N1A—C7A—O1A2.8 (3)N2B—N1B—C7B—O1B3.0 (3)
N2A—N1A—C7A—C1A173.49 (16)N2B—N1B—C7B—C1B177.75 (16)
C6A—C1A—C7A—O1A165.80 (19)C2B—C1B—C7B—O1B20.7 (3)
C2A—C1A—C7A—O1A19.4 (3)C6B—C1B—C7B—O1B158.18 (19)
C6A—C1A—C7A—N1A17.9 (3)C2B—C1B—C7B—N1B158.50 (17)
C2A—C1A—C7A—N1A156.92 (17)C6B—C1B—C7B—N1B22.6 (3)
N1A—N2A—C8A—C9A178.14 (16)N1B—N2B—C8B—C9B177.69 (16)
N2A—C8A—C9A—C14A179.67 (19)N2B—C8B—C9B—C14B176.00 (19)
N2A—C8A—C9A—C10A1.2 (3)N2B—C8B—C9B—C10B0.6 (3)
C14A—C9A—C10A—C11A1.3 (3)C14B—C9B—C10B—C11B2.8 (3)
C8A—C9A—C10A—C11A179.55 (17)C8B—C9B—C10B—C11B173.83 (17)
C15A—O3A—C11A—C10A14.2 (3)C15B—O3B—C11B—C10B2.4 (3)
C15A—O3A—C11A—C12A165.74 (19)C15B—O3B—C11B—C12B178.49 (19)
C9A—C10A—C11A—O3A177.20 (18)C9B—C10B—C11B—O3B178.14 (17)
C9A—C10A—C11A—C12A2.8 (3)C9B—C10B—C11B—C12B0.9 (3)
O3A—C11A—C12A—C13A175.5 (2)O3B—C11B—C12B—C13B179.62 (18)
C10A—C11A—C12A—C13A4.4 (3)C10B—C11B—C12B—C13B1.2 (3)
C11A—C12A—C13A—C14A2.0 (4)C11B—C12B—C13B—C14B1.5 (3)
C12A—C13A—C14A—C9A2.1 (3)C10B—C9B—C14B—C13B2.5 (3)
C10A—C9A—C14A—C13A3.7 (3)C8B—C9B—C14B—C13B174.18 (18)
C8A—C9A—C14A—C13A177.1 (2)C12B—C13B—C14B—C9B0.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C9B–C14B ring.
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O2Bi0.852.583.354 (2)153
N1B—H1B···O3Aii0.872.323.178 (3)170
O2A—H2A···O1Aiii0.821.942.702 (2)155
O2A—H2A···N2Aiii0.822.603.231 (2)135
O2B—H2B···O1Bii0.821.922.696 (2)157
O2B—H2B···N2Bii0.822.523.110 (2)129
C13B—H13B···O1Aiv0.932.573.352 (3)143
C3B—H3B···Cgv0.932.703.604 (2)165
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x, y+1/2, z1/2; (iv) x, y+1, z; (v) x, y1/2, z+3/2.
 

Footnotes

1This paper is dedicated to His Majesty the late King Mongkut (King Rama IV) of Thailand, The Father of Science in Thailand, for his modernization of science and technology of the country on the occasion of `Thai National Science Day' which fell on 18 August.

Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank Prince of Songkla University for research grant (SCI590716S). PP thanks the Graduate School, Prince of Songkla University, for partial financial support. The authors extend their appreciation to the Universiti Kebangsaan Malaysia for research facility, and Assoc. Professor Dr Surat Laphookhieo, Mae Fah Luang University, for the α-glucosidase inhibitory assay.

References

First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBhole, R. P. & Bhusari, K. P. (2009). J. Korean Chem. Soc. 28, 1405–1421.  CAS Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHorkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationImran, S., Taha, M., Ismail, N. H., Kashif, S. M., Rahim, F., Jamil, W., Hariono, M., Yusuf, M. & Wahab, H. (2015). Eur. J. Med. Chem. 105, 156–170.  CrossRef CAS PubMed Google Scholar
First citationKim, Y.-M., Wang, M.-H. & Rhee, H.-I. (2004). Carbohydr. Res. 339, 715–717.  CrossRef PubMed CAS Google Scholar
First citationLoncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMelnyk, P., Leroux, V., Sergheraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31–35.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeng, S. J. (2011). J. Chem. Crystallogr. 41, 280–285.  CSD CrossRef CAS Google Scholar
First citationRassem, H. H., Salhin, A., Bin Salleh, B., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, o1832.  CSD CrossRef IUCr Journals Google Scholar
First citationScifinder (2015). Chemical Abstracts Service, Columbus, OH, RN 956-07-0 and RN 51771-18-7 (accessed Jul 11, 2016).  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D.-H. (2009). Acta Cryst. E65, o2107.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaha, M., Ismail, N. H., Lalani, S., Fatmi, M. Q., Atia-tul-Wahab, Siddiqui, S., Khan, K. M., Imran, S. & Choudhary, M. I. (2015). Eur. J. Med. Chem. 92, 387–400.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds