metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages m284-m285

Poly[[hexa­aqua­sesqui(μ-benzene-1,2,4,5-tetra­carboxyl­ato)dicopper(II)disodium] monohydrate]

aUniversité Assane Seck de Ziguinchor, LCPM-Groupe Materiaux Inorganiques: Chimie Douce et Cristallographie, BP 523 Ziguinchor, Senegal, and bINSA, UMR 6226 "Institut des Sciences Chimiques de Rennes", F-35708 Rennes, France
*Correspondence e-mail: mcamara@univ-zig.sn

(Received 12 May 2014; accepted 23 June 2014; online 2 July 2014)

In the title compound, {[Cu2Na2(C10H2O8)1.5(H2O)6]·H2O}n, the Cu2+ ion is hexa­coordinated by five O atoms from benzene-1,2,4,5-tetra­carboxyl­ate (btec4−) ligands and one water mol­ecule. The Na+ ion is also hexa­coordinated, by four O atoms from btec4− ligands and two water mol­ecules. One of the two btec4− mol­ecules sits on a crystallographic inversion centre. CuO6 and NaO6 octa­hedra are connected, forming bi-dimensional layers. These layers, which extend parallel to the ac plane, are further inter­connected by μ10- or μ11-bridging btec4− ligands and by O—H⋯O hydrogen bonds, involving both btec4− ligands and water mol­ecules, forming a three-dimensional network.

Keywords: crystal structure.

Related literature

For related structures, see: Camara et al. (2013[Camara, M., Tine, M., Daiguebonne, C., Guillou, O. & Roisnel, T. (2013). Acta Cryst. E69, m680-m681.]); Luo et al. (2013[Luo, Y., Bernot, K., Calvez, G., Freslon, S., Daiguebonne, C., Guillou, O., Kerbellec, N. & Roisnel, T. (2013). CrystEngComm, 15, 1882-1896.]); Gong & Zhang (2011[Gong, X. Y. & Zhang, L. (2011). Acta Cryst. E67, m736.]); Liu et al. (2010[Liu, H. K., Tsao, T. H., Lin, C. H. & Zima, V. (2010). CrystEngComm, 12, 1044-1047.]); Zhang et al. (2007[Zhang, D. J., Song, T. Y., Zhang, P., Shi, J., Wang, Y., Wang, L., Ma, K. R., Yin, W. R., Zhao, J., Fan, Y. & Xu, J. N. (2007). Inorg. Chem. Commun. 10, 876-879.]). For related crystal-growth methods in gels, see: Henisch (1988[Henisch, H. K. (1988). In Crystals Growth in Gels and Liesegang Rings. Cambridge University Press.]); Henisch & Roy (1970[Henisch, H. K. & Roy, R. (1970). In Crystals Growth in Gels. The Pennsylvania State University Press.]); Daiguebonne et al. (2003[Daiguebonne, C., Deluzet, A., Camara, M., Boubekeur, K., Audebrand, N., Gerault, Y., Baux, C. & Guillou, O. (2003). Cryst. Growth Des. 3, 1015-1020.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Na2(C10H2O8)1.5(H2O)6]·H2O

  • Mr = 674.34

  • Monoclinic, P 21 /c

  • a = 8.0844 (1) Å

  • b = 16.9103 (3) Å

  • c = 15.6815 (3) Å

  • β = 98.055 (1)°

  • V = 2122.66 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.15 mm−1

  • T = 293 K

  • 0.11 × 0.08 × 0.07 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.701, Tmax = 0.848

  • 34613 measured reflections

  • 8438 independent reflections

  • 4356 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.144

  • S = 0.94

  • 8438 reflections

  • 373 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.49 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H42⋯O112i 0.81 (2) 1.93 (2) 2.737 (3) 174 (4)
O2—H22⋯O511 0.82 (2) 1.91 (2) 2.697 (3) 162 (4)
O1—H11⋯O812 0.80 (2) 1.95 (2) 2.708 (3) 159 (4)
O2—H21⋯OW1ii 0.78 (2) 1.85 (2) 2.618 (3) 167 (4)
O5—H51⋯O512iii 0.87 (2) 1.91 (2) 2.744 (3) 161 (4)
O1—H12⋯O2iv 0.81 (2) 1.99 (2) 2.794 (3) 176 (4)
O3—H32⋯O1v 0.85 (2) 2.36 (3) 2.977 (3) 130 (3)
Symmetry codes: (i) x-1, y, z; (ii) [-x-1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x+1, y, z; (v) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In recent years, much attention has been paid to coordination polymers that involve covalent bonds or supra­molecular contacts. A huge number of novel compounds with inter­esting crystal structures and topologies have been reported. As part of this research, benzene-1,2,4,5-tetra­carboxyl­ate (btec4-) can be used as a ligand to form various supra­molecular architectures through its four rigid carboxyl groups [see Camara et al. (2013), Luo et al. (2013), Gong & Zhang (2011), Liu et al. (2010), Zhang et al. (2007)]. In order to enrich this family of compounds, we recently undertook a study devoted to reactions of H4btec with metal ions in gel media. In particular, we were inter­ested in such reactions with agar-agar gel bridges in U-shaped tubes, and we have successfully synthesized a novel polymeric complex from H4btec and copper (II) chloride. We report here the synthesis and the crystal structure of the title coordination polymer. As shown in Fig. 1, the asymmetric unit of the title compound contains two Cu(II) ions, two Na(I) ions, coordinated water molecules and three btec4- ligands. One of the two crystallographically distinct btec4- ligands is located on an inversion centre. One btec4- ligand acts as a m10-bridge that links six Cu(II) ions and four Na(I) ions, while the other acts as a m11-bridge that links five Cu(II) ions and six Na(I) ions. Cu(II) ions are hexa-coordinated by five O atoms from four btec4- ligands and one O atom from a water molecule, while Na(I) ions are hexa-coordinated by four O atoms from four btec4- ligands and two O atoms from two water molecules. As shown in Fig. 2, two-dimensional Cu–O–Na layers extend parallel to the ac plane. Furthermore, these two-dimensional layers are inter­connected by m10- or m11-bridging btec4- ligands and by O—H···O hydrogen bonds, forming a three-dimensional framework.

Experimental top

All reagents were used as obtained without further purification. Copper (II) chloride was purchased from STREM Chemicals. 1,2,4,5-benzene­tetra­carb­oxy­lic acid was purchased from Acros Organics. Its sodium salt was prepared by addition of four equivalents of sodium hydroxide to a suspension of 1,2,4,5-benzene­tetra­carb­oxy­lic acid in de-ionized water until complete dissolution. Then, the solution was evaporated to dryness. The solid phase was then put in suspension in ethanol, stirred and refluxed for 1 h. After filtration and drying in a desiccator, a white powder of tetra-sodium 1,2,4,5-benzene-tetra-carboxyl­ate was obtained (yield = 90%). Single crystals of the coordination polymer were obtained by slow diffusion of dilute aqueous solutions of Cu(II) chloride (0.25 mmol in 20mL) and of the sodium salt of 1,2,4,5-benzene­tetra-carb­oxy­lic acid (0.25 mmol in 20mL) through agar-agar gel bridges in U-shaped tubes. The gel was purchased from Acros Organics and gelled according to established procedure [see for example, Henisch et al. (1988), Henisch et al. (1970), Daiguebonne et al. (2003)]. After several weeks, colorless single crystals were obtained.

Refinement top

The H-atoms from water molecules that could be found in difference maps were included with constrained coordinates. Some hydrogen atoms could not be reliably located, so these have only been taken into account in the formula (i.e. not in the model).

Related literature top

For related structures, see: Camara et al. (2013); Luo et al. (2013); Gong & Zhang (2011); Liu et al. (2010); Zhang et al. (2007). For related crystal-growth methods in gels, see: Henisch (1988); Henisch & Roy (1970); Daiguebonne et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Extended asymetric unit of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (iv) x, -y + 1/2, z - 1/2.]
[Figure 2] Fig. 2. A view of the three-dimensional network of the title compound, projected perpendicular to the bc-plane.
Poly[[hexaaquasesqui(µ-benzene-1,2,4,5-tetracarboxylato)dicopper(II)disodium] monohydrate] top
Crystal data top
[Cu2Na2(C10H2O8)1.5(H2O)6]·H2OF(000) = 1356
Mr = 674.34Dx = 2.110 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.0844 (1) ÅCell parameters from 31092 reflections
b = 16.9103 (3) Åθ = 2.9–32.0°
c = 15.6815 (3) ŵ = 2.15 mm1
β = 98.055 (1)°T = 293 K
V = 2122.66 (6) Å3Cobblestone, blue
Z = 40.11 × 0.08 × 0.07 mm
Data collection top
Bruker APEXII
diffractometer
8438 independent reflections
Radiation source: Fine-focus sealed tube4356 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
CCD rotation images, thin slices scansθmax = 34.8°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1112
Tmin = 0.701, Tmax = 0.848k = 2621
34613 measured reflectionsl = 2024
Refinement top
Refinement on F215 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0813P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.010
8438 reflectionsΔρmax = 1.49 e Å3
373 parametersΔρmin = 1.02 e Å3
Crystal data top
[Cu2Na2(C10H2O8)1.5(H2O)6]·H2OV = 2122.66 (6) Å3
Mr = 674.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0844 (1) ŵ = 2.15 mm1
b = 16.9103 (3) ÅT = 293 K
c = 15.6815 (3) Å0.11 × 0.08 × 0.07 mm
β = 98.055 (1)°
Data collection top
Bruker APEXII
diffractometer
8438 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4356 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.848Rint = 0.058
34613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04915 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 1.49 e Å3
8438 reflectionsΔρmin = 1.02 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.15805 (4)0.25569 (2)0.80720 (2)0.01609 (10)
Cu20.45959 (4)0.26469 (2)0.54858 (2)0.01697 (10)
Na10.17322 (14)0.13536 (7)0.78727 (8)0.0284 (3)
Na20.13005 (15)0.15430 (8)0.56592 (9)0.0329 (3)
O1120.2924 (2)0.17014 (11)0.76659 (13)0.0195 (4)
O2110.5911 (2)0.17609 (11)0.58371 (13)0.0215 (4)
O10.1863 (2)0.31650 (12)0.69877 (13)0.0224 (4)
O40.4112 (3)0.11473 (14)0.85120 (16)0.0316 (5)
O5110.2307 (2)0.27440 (11)0.78365 (14)0.0256 (5)
O8110.3190 (2)0.35241 (11)0.52142 (13)0.0204 (4)
O8120.0757 (2)0.29573 (12)0.57293 (14)0.0271 (5)
O1110.0408 (2)0.13710 (12)0.70094 (13)0.0230 (4)
O2120.3474 (2)0.13420 (12)0.65142 (14)0.0260 (5)
O20.4857 (2)0.31465 (12)0.66155 (14)0.0228 (4)
O4120.3727 (2)0.19907 (11)0.46253 (13)0.0215 (4)
O7110.3056 (2)0.15899 (12)0.98797 (15)0.0308 (5)
O5120.0052 (2)0.33892 (11)0.83143 (13)0.0214 (4)
O4110.3855 (2)0.31657 (12)0.87600 (15)0.0317 (5)
C80.0749 (3)0.42790 (15)0.51646 (17)0.0166 (5)
O7120.0771 (2)0.18442 (11)0.89280 (13)0.0222 (4)
C50.2469 (3)0.40780 (15)0.82911 (17)0.0172 (5)
C810.1595 (3)0.35232 (15)0.53885 (18)0.0177 (5)
C510.1527 (3)0.33362 (15)0.81388 (18)0.0165 (5)
C70.0755 (3)0.07233 (15)0.98119 (17)0.0167 (5)
C60.1850 (3)0.47968 (15)0.80321 (19)0.0191 (6)
H60.08660.48000.77880.023*
O50.1040 (3)0.13627 (18)0.50399 (18)0.0505 (7)
C40.3963 (3)0.09269 (15)0.36547 (17)0.0159 (5)
O30.1803 (4)0.00918 (16)0.7752 (2)0.0556 (8)
OW10.4788 (3)0.03675 (15)0.88423 (19)0.0526 (7)
C20.5855 (3)0.05086 (15)0.64934 (18)0.0161 (5)
C210.4989 (3)0.12554 (15)0.62866 (17)0.0160 (5)
C10.2666 (3)0.05056 (15)0.68709 (18)0.0169 (5)
C90.1473 (3)0.00066 (16)0.96511 (18)0.0185 (5)
H90.24650.00130.94140.022*
C110.1920 (3)0.12402 (15)0.71862 (17)0.0166 (5)
C30.4787 (3)0.02144 (16)0.37516 (18)0.0194 (6)
H30.57850.02190.39840.023*
C410.4697 (3)0.16482 (15)0.40121 (17)0.0159 (5)
O60.1540 (4)0.0144 (2)0.5561 (3)0.0822 (11)
C710.1614 (3)0.14565 (15)0.95356 (18)0.0179 (6)
H420.494 (3)0.133 (2)0.824 (2)0.050*
H220.425 (4)0.300 (2)0.7052 (17)0.050*
H110.122 (3)0.300 (2)0.6598 (18)0.050*
H210.481 (4)0.3594 (12)0.650 (2)0.050*
H510.088 (5)0.153 (2)0.4512 (14)0.050*
H410.396 (4)0.136 (2)0.8981 (15)0.050*
H520.104 (5)0.0878 (10)0.499 (2)0.050*
H310.176 (5)0.039 (2)0.7328 (16)0.050*
H120.282 (2)0.318 (2)0.690 (2)0.050*
H320.166 (5)0.0448 (19)0.8137 (18)0.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01508 (17)0.01221 (17)0.0216 (2)0.00191 (11)0.00483 (13)0.00013 (12)
Cu20.01881 (18)0.01265 (17)0.0207 (2)0.00348 (11)0.00713 (13)0.00177 (13)
Na10.0240 (6)0.0267 (7)0.0351 (7)0.0005 (5)0.0067 (5)0.0006 (5)
Na20.0270 (6)0.0356 (7)0.0363 (8)0.0007 (5)0.0054 (5)0.0006 (6)
O1120.0192 (9)0.0127 (9)0.0264 (11)0.0019 (7)0.0021 (8)0.0046 (8)
O2110.0209 (10)0.0132 (9)0.0307 (12)0.0032 (7)0.0047 (8)0.0029 (8)
O10.0197 (10)0.0255 (11)0.0226 (11)0.0017 (8)0.0057 (8)0.0037 (9)
O40.0267 (12)0.0390 (14)0.0286 (13)0.0027 (9)0.0022 (9)0.0038 (10)
O5110.0274 (11)0.0149 (10)0.0328 (13)0.0023 (8)0.0015 (9)0.0042 (8)
O8110.0189 (10)0.0136 (9)0.0297 (12)0.0050 (7)0.0063 (8)0.0008 (8)
O8120.0270 (11)0.0190 (11)0.0338 (13)0.0015 (8)0.0015 (9)0.0063 (9)
O1110.0161 (10)0.0230 (11)0.0296 (12)0.0032 (7)0.0020 (8)0.0030 (8)
O2120.0175 (10)0.0261 (11)0.0338 (13)0.0070 (8)0.0015 (8)0.0023 (9)
O20.0277 (11)0.0203 (10)0.0203 (12)0.0015 (8)0.0034 (8)0.0017 (9)
O4120.0198 (9)0.0197 (10)0.0255 (11)0.0020 (7)0.0050 (8)0.0092 (8)
O7110.0218 (11)0.0276 (12)0.0405 (14)0.0103 (8)0.0042 (9)0.0035 (10)
O5120.0171 (10)0.0147 (10)0.0330 (12)0.0031 (7)0.0058 (8)0.0023 (8)
O4110.0262 (11)0.0282 (12)0.0390 (14)0.0121 (9)0.0016 (9)0.0025 (10)
C80.0179 (13)0.0145 (13)0.0174 (14)0.0042 (9)0.0030 (10)0.0013 (10)
O7120.0223 (10)0.0199 (10)0.0246 (11)0.0003 (8)0.0041 (8)0.0056 (8)
C50.0199 (13)0.0132 (13)0.0193 (14)0.0023 (9)0.0054 (10)0.0002 (10)
C810.0181 (13)0.0167 (13)0.0194 (14)0.0027 (10)0.0064 (10)0.0046 (10)
C510.0186 (13)0.0138 (13)0.0179 (14)0.0020 (9)0.0054 (10)0.0009 (10)
C70.0145 (12)0.0146 (13)0.0213 (15)0.0004 (9)0.0039 (10)0.0033 (10)
C60.0184 (13)0.0157 (13)0.0251 (16)0.0001 (10)0.0096 (11)0.0026 (11)
O50.0407 (15)0.075 (2)0.0365 (16)0.0024 (15)0.0076 (12)0.0115 (15)
C40.0162 (12)0.0153 (13)0.0167 (14)0.0008 (9)0.0038 (10)0.0028 (10)
O30.0532 (16)0.0305 (15)0.087 (2)0.0089 (12)0.0230 (17)0.0051 (15)
OW10.0622 (17)0.0350 (15)0.0592 (19)0.0121 (12)0.0036 (14)0.0014 (13)
C20.0168 (12)0.0116 (12)0.0203 (14)0.0009 (9)0.0045 (10)0.0001 (10)
C210.0177 (13)0.0132 (12)0.0188 (14)0.0041 (9)0.0082 (10)0.0055 (10)
C10.0184 (13)0.0131 (12)0.0200 (14)0.0001 (9)0.0049 (10)0.0026 (10)
C90.0160 (13)0.0173 (13)0.0227 (15)0.0010 (10)0.0050 (10)0.0021 (11)
C110.0217 (14)0.0110 (12)0.0185 (14)0.0004 (10)0.0076 (10)0.0002 (10)
C30.0172 (13)0.0194 (14)0.0228 (15)0.0013 (10)0.0074 (11)0.0037 (11)
C410.0181 (13)0.0113 (12)0.0186 (14)0.0013 (9)0.0036 (10)0.0006 (10)
O60.068 (2)0.073 (2)0.106 (3)0.0037 (17)0.015 (2)0.015 (2)
C710.0219 (14)0.0115 (12)0.0217 (15)0.0003 (10)0.0077 (11)0.0000 (10)
Geometric parameters (Å, º) top
Cu1—O5121.9450 (17)O111—C111.235 (3)
Cu1—O1121.9676 (17)O212—C211.235 (3)
Cu1—O7121.9821 (19)O412—C411.290 (3)
Cu1—O12.027 (2)O711—C711.235 (3)
Cu1—O4112.247 (2)O711—Cu2ii2.380 (2)
Cu1—Na13.3431 (12)O512—C511.271 (3)
Cu2—O4121.9523 (18)O411—C41ii1.223 (3)
Cu2—O8111.9519 (17)C8—C9iii1.390 (4)
Cu2—O2111.9603 (18)C8—C7iv1.404 (3)
Cu2—O22.000 (2)C8—C811.514 (3)
Cu2—O711i2.380 (2)O712—C711.273 (3)
Cu2—Na23.2331 (13)C5—C61.396 (4)
Na1—O42.317 (2)C5—C4v1.406 (3)
Na1—O1112.342 (2)C5—C511.504 (3)
Na1—O2122.384 (2)C7—C8v1.404 (3)
Na1—O5112.396 (2)C7—C91.402 (4)
Na1—O32.452 (3)C7—C711.514 (3)
Na1—O7122.566 (2)C6—C1iii1.387 (4)
Na1—Na23.5514 (19)C4—C31.396 (4)
Na2—O52.266 (3)C4—C5iv1.406 (3)
Na2—O62.377 (4)C4—C411.499 (3)
Na2—O2122.379 (2)C2—C3vi1.403 (3)
Na2—O1112.378 (2)C2—C1vii1.407 (4)
Na2—O8122.431 (2)C2—C211.501 (3)
Na2—O4122.482 (2)C1—C6viii1.387 (4)
O112—C111.289 (3)C1—C2ix1.407 (4)
O211—C211.279 (3)C1—C111.495 (3)
O511—C511.241 (3)C9—C8viii1.390 (4)
O811—C811.280 (3)C3—C2vi1.403 (3)
O812—C811.248 (3)C41—O411i1.223 (3)
O512—Cu1—O112171.78 (8)O5—Na2—Cu2140.32 (9)
O512—Cu1—O71291.64 (8)O6—Na2—Cu2120.71 (9)
O112—Cu1—O71291.24 (8)O212—Na2—Cu257.65 (5)
O512—Cu1—O186.91 (8)O111—Na2—Cu2120.96 (6)
O112—Cu1—O188.24 (8)O812—Na2—Cu265.00 (5)
O712—Cu1—O1164.40 (8)O412—Na2—Cu237.09 (4)
O512—Cu1—O41194.25 (8)O5—Na2—Na1127.53 (9)
O112—Cu1—O41192.33 (8)O6—Na2—Na187.46 (10)
O712—Cu1—O411106.20 (8)O212—Na2—Na141.83 (6)
O1—Cu1—O41189.40 (8)O111—Na2—Na140.82 (5)
O512—Cu1—Na186.34 (6)O812—Na2—Na194.95 (6)
O112—Cu1—Na189.62 (6)O412—Na2—Na1119.28 (6)
O712—Cu1—Na149.99 (6)Cu2—Na2—Na186.65 (3)
O1—Cu1—Na1114.41 (6)C11—O112—Cu1107.64 (15)
O411—Cu1—Na1156.16 (6)C21—O211—Cu2111.63 (16)
O412—Cu2—O81190.24 (8)C51—O511—Na1134.11 (18)
O412—Cu2—O21191.24 (8)C81—O811—Cu2123.53 (17)
O811—Cu2—O211176.00 (8)C81—O812—Na2130.61 (18)
O412—Cu2—O2160.91 (9)C11—O111—Na1131.02 (19)
O811—Cu2—O290.52 (8)C11—O111—Na2130.92 (18)
O211—Cu2—O286.87 (8)Na1—O111—Na297.59 (8)
O412—Cu2—O711i112.09 (8)C21—O212—Na2129.39 (19)
O811—Cu2—O711i87.53 (8)C21—O212—Na1134.18 (18)
O211—Cu2—O711i95.34 (8)Na2—O212—Na196.43 (8)
O2—Cu2—O711i86.99 (8)C41—O412—Cu2122.04 (16)
O412—Cu2—Na250.05 (6)C41—O412—Na2133.81 (17)
O811—Cu2—Na287.65 (6)Cu2—O412—Na292.86 (8)
O211—Cu2—Na290.46 (6)C71—O711—Cu2ii157.62 (19)
O2—Cu2—Na2110.93 (6)C51—O512—Cu1123.57 (17)
O711i—Cu2—Na2161.47 (6)C41ii—O411—Cu1162.7 (2)
O4—Na1—O111167.85 (10)C9iii—C8—C7iv119.8 (2)
O4—Na1—O21287.88 (9)C9iii—C8—C81117.9 (2)
O111—Na1—O21282.84 (8)C7iv—C8—C81122.2 (2)
O4—Na1—O51189.31 (9)C71—O712—Cu1128.85 (17)
O111—Na1—O51197.50 (8)C71—O712—Na1127.40 (17)
O212—Na1—O51184.18 (8)Cu1—O712—Na193.74 (8)
O4—Na1—O382.61 (10)C6—C5—C4v119.1 (2)
O111—Na1—O388.80 (9)C6—C5—C51118.0 (2)
O212—Na1—O385.32 (11)C4v—C5—C51122.8 (2)
O511—Na1—O3166.98 (10)O812—C81—O811124.2 (2)
O4—Na1—O712113.41 (9)O812—C81—C8120.7 (2)
O111—Na1—O71277.81 (7)O811—C81—C8115.1 (2)
O212—Na1—O712153.24 (8)O511—C51—O512125.5 (2)
O511—Na1—O71280.26 (7)O511—C51—C5119.5 (2)
O3—Na1—O712112.32 (10)O512—C51—C5115.0 (2)
O4—Na1—Cu1138.94 (8)C8v—C7—C9118.1 (2)
O111—Na1—Cu153.08 (5)C8v—C7—C71124.9 (2)
O212—Na1—Cu1116.99 (6)C9—C7—C71116.8 (2)
O511—Na1—Cu163.58 (5)C1iii—C6—C5121.7 (2)
O3—Na1—Cu1128.59 (8)C3—C4—C5iv119.3 (2)
O712—Na1—Cu136.27 (4)C3—C4—C41116.2 (2)
O4—Na1—Na2129.62 (8)C5iv—C4—C41124.3 (2)
O111—Na1—Na241.59 (6)C3vi—C2—C1vii118.8 (2)
O212—Na1—Na241.74 (5)C3vi—C2—C21118.2 (2)
O511—Na1—Na286.20 (7)C1vii—C2—C21122.9 (2)
O3—Na1—Na291.09 (9)O212—C21—O211123.9 (2)
O712—Na1—Na2115.12 (6)O212—C21—C2120.7 (2)
Cu1—Na1—Na281.34 (3)O211—C21—C2115.3 (2)
O5—Na2—O684.46 (12)C6viii—C1—C2ix119.6 (2)
O5—Na2—O212161.73 (11)C6viii—C1—C11117.5 (2)
O6—Na2—O21280.49 (11)C2ix—C1—C11122.8 (2)
O5—Na2—O11187.09 (9)C8viii—C9—C7122.0 (2)
O6—Na2—O11188.17 (12)O111—C11—O112123.0 (2)
O212—Na2—O11182.16 (8)O111—C11—C1120.5 (2)
O5—Na2—O81289.73 (10)O112—C11—C1116.5 (2)
O6—Na2—O812174.00 (11)C2vi—C3—C4121.5 (2)
O212—Na2—O812104.95 (8)O411i—C41—O412125.4 (2)
O111—Na2—O81290.07 (8)O411i—C41—C4120.0 (2)
O5—Na2—O412113.10 (10)O412—C41—C4114.4 (2)
O6—Na2—O412102.21 (11)O711—C71—O712127.3 (2)
O212—Na2—O41280.39 (7)O711—C71—C7117.9 (2)
O111—Na2—O412157.86 (8)O712—C71—C7114.7 (2)
O812—Na2—O41281.41 (7)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+3/2; (iv) x, y+1/2, z1/2; (v) x, y+1/2, z+1/2; (vi) x1, y, z+1; (vii) x1, y, z; (viii) x, y1/2, z+3/2; (ix) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H42···O112vii0.81 (2)1.93 (2)2.737 (3)174 (4)
O2—H22···O5110.82 (2)1.91 (2)2.697 (3)162 (4)
O1—H11···O8120.80 (2)1.95 (2)2.708 (3)159 (4)
O2—H21···OW1x0.78 (2)1.85 (2)2.618 (3)167 (4)
O5—H51···O512iv0.87 (2)1.91 (2)2.744 (3)161 (4)
O1—H12···O2ix0.81 (2)1.99 (2)2.794 (3)176 (4)
O3—H32···O1viii0.85 (2)2.36 (3)2.977 (3)130 (3)
Symmetry codes: (iv) x, y+1/2, z1/2; (vii) x1, y, z; (viii) x, y1/2, z+3/2; (ix) x+1, y, z; (x) x1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H42···O112i0.806 (17)1.934 (18)2.737 (3)174 (4)
O2—H22···O5110.821 (17)1.91 (2)2.697 (3)162 (4)
O1—H11···O8120.796 (17)1.95 (2)2.708 (3)159 (4)
O2—H21···OW1ii0.781 (17)1.852 (18)2.618 (3)167 (4)
O5—H51···O512iii0.867 (18)1.91 (2)2.744 (3)161 (4)
O1—H12···O2iv0.807 (17)1.989 (18)2.794 (3)176 (4)
O3—H32···O1v0.849 (18)2.36 (3)2.977 (3)130 (3)
Symmetry codes: (i) x1, y, z; (ii) x1, y+1/2, z+3/2; (iii) x, y+1/2, z1/2; (iv) x+1, y, z; (v) x, y1/2, z+3/2.
 

Acknowledgements

The French Cooperation Agency in Senegal is acknowledged for financial support. The X-ray Diffraction Centre of the University of Rennes is acknowledged for the data collection.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCamara, M., Tine, M., Daiguebonne, C., Guillou, O. & Roisnel, T. (2013). Acta Cryst. E69, m680–m681.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationDaiguebonne, C., Deluzet, A., Camara, M., Boubekeur, K., Audebrand, N., Gerault, Y., Baux, C. & Guillou, O. (2003). Cryst. Growth Des. 3, 1015–1020.  Web of Science CSD CrossRef CAS Google Scholar
First citationGong, X. Y. & Zhang, L. (2011). Acta Cryst. E67, m736.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHenisch, H. K. (1988). In Crystals Growth in Gels and Liesegang Rings. Cambridge University Press.  Google Scholar
First citationHenisch, H. K. & Roy, R. (1970). In Crystals Growth in Gels. The Pennsylvania State University Press.  Google Scholar
First citationLiu, H. K., Tsao, T. H., Lin, C. H. & Zima, V. (2010). CrystEngComm, 12, 1044–1047.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, Y., Bernot, K., Calvez, G., Freslon, S., Daiguebonne, C., Guillou, O., Kerbellec, N. & Roisnel, T. (2013). CrystEngComm, 15, 1882–1896.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, D. J., Song, T. Y., Zhang, P., Shi, J., Wang, Y., Wang, L., Ma, K. R., Yin, W. R., Zhao, J., Fan, Y. & Xu, J. N. (2007). Inorg. Chem. Commun. 10, 876–879.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages m284-m285
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds