metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ2-chlorido-bis­­[chlorido(η5-2,3,4,5-tetra­methyl-1-propyl­cyclo­penta­dien­yl)iridium(III)]

aDepartment of Chemistry 0212, Virginia Tech, Blacksburg, VA 24061, USA
*Correspondence e-mail: jmerola@vt.edu

(Received 10 February 2013; accepted 21 February 2013; online 28 February 2013)

The asymmetric unit of the title complex, [Ir2Cl4(C12H19)2], a versatile starting material for the preparation of uniquely substituted penta­alkyl­cyclo­penta­dien­yl–iridium complexes, consists of an iridium(III) atom, a substituted cyclo­penta­dienyl ligand and two chlorine ligands. The full dimer is generated by an inversion center. In the dimer, the two IrIII atoms and two bridging Cl atoms form a perfectly planar ring. The two IrIII atoms and the two terminal Cl atoms also form a rigorous plane that is orthogonal [89.48 (3)°] to the Ir2Cl2 ring. The plane of the cyclo­penta­dienyl ligand forms a dihedral angle of 54.06 (7)° with respect to the Ir2Cl2 ring.

Related literature

For the structure of the analogous penta­methyl­cyclo­penta­dienyl compound (CCDC 508943), see: Churchill & Julius (1977[Churchill, M. R. & Julius, S. A. (1977). Inorg. Chem. 16, 1488-1494.]). For the structure of the 1-phenyl-2,3,4,5-tetra­methyl­cyclo­penta­­dienyl complex (CCDC 802289), see: Liu et al. (2011[Liu, Z., Habtemariam, A., Pizarro, A. M., Fletcher, S. A., Kisova, A., Vrana, O., Salassa, L., Bruijnincx, P. C. A., Clarkson, G. J., Brabec, V. & Sadler, P. J. (2011). J. Med. Chem. 54, 3011-3026.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir2Cl4(C12H19)2]

  • Mr = 852.74

  • Monoclinic, P 21 /c

  • a = 8.84367 (12) Å

  • b = 8.83900 (12) Å

  • c = 17.2662 (2) Å

  • β = 103.6737 (14)°

  • V = 1311.43 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 10.56 mm−1

  • T = 100 K

  • 0.26 × 0.12 × 0.05 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini ultra) diffractometer

  • Absorption correction: Gaussian (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.225, Tmax = 0.647

  • 20544 measured reflections

  • 4440 independent reflections

  • 3968 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.040

  • S = 1.06

  • 4440 reflections

  • 141 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −1.18 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Di-µ2-chlorido-bis[chlorido(η5-2,3,4,5-tetramethyl-1-propylcyclopentadienyl)iridium(III)] is a useful starting material for half-sandwich complexes of iridium. Compared with the pentamethycylopentadienyl variety, complexes of the propyl-tetramethyl complexes are more soluble in organic solvents. Structurally, the core of the title compound is superimposable with the parent pentamethylcyclopentadiene complex.

The unit-cell dimensions for the pentamethylcyclopentadienyl compound (Churchill, et al. (1977) are quite similar with the exception of the c axis being 1.5 A longer due to the longer chain on the cyclopentadienyl ligand.

Related literature top

For the structure of the analogous pentamethylcyclopentadienyl compound (CCDC 508943), see: Churchill et al. (1977). For the structure of the 1-phenyl-2,3,4,5-tetramethylcyclopentadienyl complex (CCDC 802289), see: Liu et al. (2011).

Experimental top

Iridium(III)chloride hydrate was purchased from Pressure Chemical Company. 1-Propyl-2,3,4,5-tetramethyl cyclopentadiene was purchased from Sigma-Aldrich. The iridium(III)chloride hydrate (1.00 g, 2.84 mmol) was dissolved in 100 ml methanol. 1-Propyl-2,3,4,5-tetramethyl cyclopentadiene (0.70 g,4.25 mmol) was added and the mixture refluxed under nitrogen for 48 hrs. The methanol was removed under vacuum, the solid dissolved in dichloromethane and precipitated with diethylether to yield crystals of the title material. A suitable single-crystal was chosen from those that formed.

Refinement top

Hydrogen atoms were treated with a riding model with C—H distances of 0.99 Å (methylene) and 0.98 Å (methyl). Uiso(H) values were set to either 1.2Ueq or 1.5Ueq (methyl only) of the attached atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound. Ellipsoids are displayed at the 50% probability level. The entire molecule is generated by the inversion center and atoms related by inversion [-x, 2-y, 1-z] are labelled with (') after the atom designator. Only carbon atoms for one asymmetric unit are labelled.
Di-µ2-chlorido-bis[chlorido(η5-2,3,4,5-tetramethyl-1-propylcyclopentadienyl)iridium(III)] top
Crystal data top
[Ir2Cl4(C12H19)2]F(000) = 808
Mr = 852.74Dx = 2.159 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
a = 8.84367 (12) ÅCell parameters from 11826 reflections
b = 8.83900 (12) Åθ = 3.6–32.4°
c = 17.2662 (2) ŵ = 10.56 mm1
β = 103.6737 (14)°T = 100 K
V = 1311.43 (3) Å3Irregular, red
Z = 20.26 × 0.12 × 0.05 mm
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
4440 independent reflections
Radiation source: Enhance (Mo) X-ray Source3968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 16.0122 pixels mm-1θmax = 32.5°, θmin = 3.7°
ω scansh = 1313
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2011)
k = 1313
Tmin = 0.225, Tmax = 0.647l = 2525
20544 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.040H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0107P)2 + 0.0112P]
where P = (Fo2 + 2Fc2)/3
4440 reflections(Δ/σ)max = 0.003
141 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 1.18 e Å3
Crystal data top
[Ir2Cl4(C12H19)2]V = 1311.43 (3) Å3
Mr = 852.74Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.84367 (12) ŵ = 10.56 mm1
b = 8.83900 (12) ÅT = 100 K
c = 17.2662 (2) Å0.26 × 0.12 × 0.05 mm
β = 103.6737 (14)°
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
4440 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2011)
3968 reflections with I > 2σ(I)
Tmin = 0.225, Tmax = 0.647Rint = 0.043
20544 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.040H-atom parameters constrained
S = 1.06Δρmax = 1.02 e Å3
4440 reflectionsΔρmin = 1.18 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.648925 (10)0.848148 (9)0.034000 (5)0.00818 (3)
Cl10.61998 (8)0.77491 (7)0.10212 (4)0.01940 (13)
Cl20.36739 (7)0.88743 (6)0.00829 (4)0.01276 (11)
C10.8565 (3)0.8778 (3)0.12571 (14)0.0114 (4)
C20.8698 (3)0.7453 (3)0.07978 (14)0.0107 (4)
C30.7466 (3)0.6410 (2)0.08763 (14)0.0107 (4)
C40.6597 (3)0.7121 (3)0.13820 (14)0.0111 (4)
C50.7257 (3)0.8590 (3)0.16167 (14)0.0114 (4)
C60.9915 (3)0.7111 (3)0.03555 (16)0.0169 (5)
H6A0.94260.66650.01630.025*
H6B1.06690.63970.06640.025*
H6C1.04490.80480.02740.025*
C70.7237 (3)0.4861 (3)0.05290 (15)0.0164 (5)
H7A0.62260.44680.05750.025*
H7B0.80670.41950.08180.025*
H7C0.72690.49010.00340.025*
C80.5254 (3)0.6462 (3)0.16461 (16)0.0158 (5)
H8A0.43630.71490.15030.024*
H8B0.55380.63180.22250.024*
H8C0.49780.54830.13840.024*
C90.6723 (3)0.9646 (3)0.21693 (15)0.0186 (5)
H9A0.69861.06870.20550.028*
H9B0.72370.93910.27210.028*
H9C0.55930.95560.20950.028*
C100.9598 (3)1.0150 (3)0.13630 (15)0.0162 (5)
H10A0.89511.10730.13320.019*
H10B1.01471.01920.09260.019*
C111.0796 (3)1.0121 (3)0.21638 (16)0.0202 (5)
H11A1.13921.10790.22310.024*
H11B1.02441.00540.25990.024*
C121.1919 (3)0.8801 (3)0.22310 (19)0.0268 (6)
H12A1.24630.88560.17990.040*
H12B1.13400.78480.21920.040*
H12C1.26790.88470.27450.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.00843 (5)0.00775 (5)0.00831 (4)0.00059 (3)0.00184 (3)0.00011 (3)
Cl10.0274 (3)0.0203 (3)0.0095 (3)0.0054 (3)0.0024 (2)0.0022 (2)
Cl20.0094 (2)0.0104 (2)0.0176 (3)0.00074 (19)0.0014 (2)0.0035 (2)
C10.0090 (10)0.0135 (11)0.0104 (10)0.0028 (8)0.0002 (8)0.0016 (9)
C20.0084 (10)0.0128 (11)0.0103 (10)0.0033 (8)0.0011 (8)0.0022 (9)
C30.0118 (11)0.0103 (10)0.0099 (10)0.0025 (8)0.0024 (9)0.0019 (9)
C40.0132 (11)0.0097 (10)0.0100 (10)0.0026 (9)0.0018 (9)0.0028 (9)
C50.0129 (11)0.0125 (11)0.0083 (10)0.0014 (9)0.0013 (9)0.0003 (9)
C60.0133 (12)0.0180 (12)0.0203 (13)0.0026 (10)0.0060 (10)0.0000 (10)
C70.0189 (13)0.0112 (11)0.0186 (12)0.0007 (10)0.0031 (10)0.0027 (10)
C80.0161 (12)0.0173 (12)0.0156 (12)0.0009 (10)0.0067 (10)0.0040 (10)
C90.0239 (14)0.0199 (13)0.0119 (11)0.0052 (11)0.0042 (10)0.0027 (10)
C100.0156 (12)0.0126 (11)0.0184 (12)0.0018 (9)0.0002 (10)0.0015 (10)
C110.0184 (13)0.0193 (13)0.0198 (13)0.0030 (10)0.0016 (10)0.0023 (11)
C120.0211 (14)0.0257 (15)0.0280 (16)0.0005 (12)0.0053 (12)0.0009 (12)
Geometric parameters (Å, º) top
Ir1—Cl12.3924 (6)C6—H6B0.9800
Ir1—Cl22.4483 (6)C6—H6C0.9800
Ir1—Cl2i2.4427 (6)C7—H7A0.9800
Ir1—C12.138 (2)C7—H7B0.9800
Ir1—C22.130 (2)C7—H7C0.9800
Ir1—C32.139 (2)C8—H8A0.9800
Ir1—C42.148 (2)C8—H8B0.9800
Ir1—C52.150 (2)C8—H8C0.9800
Cl2—Ir1i2.4427 (6)C9—H9A0.9800
C1—C21.434 (3)C9—H9B0.9800
C1—C51.446 (3)C9—H9C0.9800
C1—C101.504 (3)C10—H10A0.9900
C2—C31.458 (3)C10—H10B0.9900
C2—C61.490 (3)C10—C111.530 (4)
C3—C41.437 (3)C11—H11A0.9900
C3—C71.489 (3)C11—H11B0.9900
C4—C51.442 (3)C11—C121.519 (4)
C4—C81.488 (3)C12—H12A0.9800
C5—C91.490 (3)C12—H12B0.9800
C6—H6A0.9800C12—H12C0.9800
Cl1—Ir1—Cl2i88.87 (2)C5—C4—C8124.5 (2)
Cl1—Ir1—Cl289.55 (2)C8—C4—Ir1126.53 (17)
Cl2i—Ir1—Cl279.89 (2)C1—C5—Ir169.86 (13)
C1—Ir1—Cl1129.38 (7)C1—C5—C9127.6 (2)
C1—Ir1—Cl2i94.81 (6)C4—C5—Ir170.30 (13)
C1—Ir1—Cl2140.82 (6)C4—C5—C1107.1 (2)
C1—Ir1—C366.19 (9)C4—C5—C9125.2 (2)
C1—Ir1—C465.65 (9)C9—C5—Ir1127.85 (17)
C1—Ir1—C539.40 (9)C2—C6—H6A109.5
C2—Ir1—Cl197.18 (6)C2—C6—H6B109.5
C2—Ir1—Cl2i120.22 (6)C2—C6—H6C109.5
C2—Ir1—Cl2158.74 (6)H6A—C6—H6B109.5
C2—Ir1—C139.28 (9)H6A—C6—H6C109.5
C2—Ir1—C339.94 (9)H6B—C6—H6C109.5
C2—Ir1—C466.10 (9)C3—C7—H7A109.5
C2—Ir1—C566.35 (9)C3—C7—H7B109.5
C3—Ir1—Cl197.59 (6)C3—C7—H7C109.5
C3—Ir1—Cl2i159.63 (7)H7A—C7—H7B109.5
C3—Ir1—Cl2119.28 (7)H7A—C7—H7C109.5
C3—Ir1—C439.16 (8)H7B—C7—H7C109.5
C3—Ir1—C566.24 (9)C4—C8—H8A109.5
C4—Ir1—Cl1130.14 (6)C4—C8—H8B109.5
C4—Ir1—Cl294.21 (6)C4—C8—H8C109.5
C4—Ir1—Cl2i140.73 (6)H8A—C8—H8B109.5
C4—Ir1—C539.22 (9)H8A—C8—H8C109.5
C5—Ir1—Cl1162.53 (6)H8B—C8—H8C109.5
C5—Ir1—Cl2103.93 (7)C5—C9—H9A109.5
C5—Ir1—Cl2i104.23 (6)C5—C9—H9B109.5
Ir1i—Cl2—Ir1100.11 (2)C5—C9—H9C109.5
C2—C1—Ir170.05 (13)H9A—C9—H9B109.5
C2—C1—C5108.8 (2)H9A—C9—H9C109.5
C2—C1—C10126.8 (2)H9B—C9—H9C109.5
C5—C1—Ir170.74 (13)C1—C10—H10A109.3
C5—C1—C10124.4 (2)C1—C10—H10B109.3
C10—C1—Ir1125.42 (17)C1—C10—C11111.5 (2)
C1—C2—Ir170.67 (13)H10A—C10—H10B108.0
C1—C2—C3107.7 (2)C11—C10—H10A109.3
C1—C2—C6127.8 (2)C11—C10—H10B109.3
C3—C2—Ir170.38 (13)C10—C11—H11A109.1
C3—C2—C6124.4 (2)C10—C11—H11B109.1
C6—C2—Ir1127.32 (17)H11A—C11—H11B107.8
C2—C3—Ir169.68 (12)C12—C11—C10112.5 (2)
C2—C3—C7125.3 (2)C12—C11—H11A109.1
C4—C3—Ir170.73 (13)C12—C11—H11B109.1
C4—C3—C2107.4 (2)C11—C12—H12A109.5
C4—C3—C7127.3 (2)C11—C12—H12B109.5
C7—C3—Ir1127.59 (17)C11—C12—H12C109.5
C3—C4—Ir170.12 (13)H12A—C12—H12B109.5
C3—C4—C5109.0 (2)H12A—C12—H12C109.5
C3—C4—C8126.5 (2)H12B—C12—H12C109.5
C5—C4—Ir170.48 (13)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Ir2Cl4(C12H19)2]
Mr852.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.84367 (12), 8.83900 (12), 17.2662 (2)
β (°) 103.6737 (14)
V3)1311.43 (3)
Z2
Radiation typeMo Kα
µ (mm1)10.56
Crystal size (mm)0.26 × 0.12 × 0.05
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini ultra)
diffractometer
Absorption correctionGaussian
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.225, 0.647
No. of measured, independent and
observed [I > 2σ(I)] reflections
20544, 4440, 3968
Rint0.043
(sin θ/λ)max1)0.755
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.040, 1.06
No. of reflections4440
No. of parameters141
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 1.18

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

We thank the National Science Foundation for funds (grant CHE-01311288) for the purchase of the Oxford Diffraction Xcalibur2 single-crystal diffractometer.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationChurchill, M. R. & Julius, S. A. (1977). Inorg. Chem. 16, 1488–1494.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiu, Z., Habtemariam, A., Pizarro, A. M., Fletcher, S. A., Kisova, A., Vrana, O., Salassa, L., Bruijnincx, P. C. A., Clarkson, G. J., Brabec, V. & Sadler, P. J. (2011). J. Med. Chem. 54, 3011–3026.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds