metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1521-m1522

Penta­kis­(μ3-N,2-di­oxido­benzene-1-car­box­imid­ato)di-μ2-formato-penta­kis­(1H-imidazole)­methanolpenta­manganese(III)man­gan­ese(II)–methanol–water (1/3.36/0.65)

aDepartment of Chemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA, and bDepartment of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, OH 44555, USA
*Correspondence e-mail: cmzaleski@ship.edu

(Received 31 October 2012; accepted 16 November 2012; online 24 November 2012)

The title compound, [Mn6(C7H4NO3)5(CHO2)2(C3H4N2)5(CH3OH)]·3.36CH3OH·0.65H2O, or Mn(II)(O2CH)2[15-MCMn(III)N(shi)-5](Im)5(MeOH)·3.36MeOH·0.65H2O (where MC is metallacrown, shi3− is salicyl­hydroximate, Im is imidazole and MeOH is methanol), contains five MnIII ions as members of the metallacrown ring and an MnII atom bound in the central cavity. The central MnII atom is seven-coordinate with a geometry best described as between face-capped trigonal–prismatic and face-capped octa­hedral. Three MnIII ions of the metallacrown ring are six-coordinate with distorted octa­hedral geometries. Of these six-coordinate MnIII ions, two have mirror-plane configurations, while the other has a Δ absolute stereoconfiguration. The remaining two MnIII ions have a coordination number of five with a distorted square-pyramidal geometry. The five imidazole ligands are bound to five different MnIII ions. Disorder is observed for one of the coordinating imidazole ligands, as the imidazole ligand is disordered over two alternative mutually exclusive positions in a ratio of 0.672 (9) to 0.328 (9). The inter­stitial voids between the main mol­ecules that constitute the structure are mostly filled with methanol mol­ecules that form hydrogen-bonded chains. Some of the sites of the non-coordinated methanol mol­ecules are not fully occupied, with the remainder of the volume either empty or taken up by ill-defined close to amorphous content. One site was refined as being taken up by either two or one methanol mol­ecules, with an occupancy ratio of 0.628 (5) to 0.343 (5). This disorder might thus be correlated with the disorder of the imidazole ring (an N—H⋯O hydrogen bond between the major moieties of the imidazole and the methanol mol­ecules is observed). On the other side of the disordered imidazole ring the chain of partially occupied methanol mol­ecules originates that extends via O—H⋯O hydrogen bonds to the metal-coordinated methanol mol­ecule. The three partially occupied methanol mol­ecules were refined to be disordered with two water mol­ecules to take two residual electron density peaks into account (the exact nature of these weak residual electron density peaks cannot be deduced from the X-ray diffraction data alone, the assignment as water is tentative). The occupancy rate for the methanol mol­ecules refined to 0.480 (7). The occupancy rate of the two water mol­ecules refined to 0.34 (1) and 0.31 (2) for each site.

Related literature

For a general review of metallacrowns, see: Mezei et al. (2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]). For related Mn(II)[15-MCMn(III)N(shi)-5)] structures and related synthetic procedures, see: Kessissoglou et al. (1994[Kessissoglou, D. P., Kampf, J. & Pecoraro, V. L. (1994). Polyhedron, 13, 1379-1391.]); Dendrinou-Samara et al. (2001[Dendrinou-Samara, C., Psomas, G., Iordanidis, L., Tangoulis, V. & Kessissoglou, D. P. (2001). Chem. Eur. J. 7, 5041-5051.], 2002[Dendrinou-Samara, C., Alevizopoulou, L., Iordanidis, L., Samaras, E. & Kessissoglou, D. P. (2002). J. Inorg. Biochem. 89, 89-96.], 2005[Dendrinou-Samara, C., Papadopoulos, A. N., Malamatari, D. A., Tarushi, A., Raptopoulou, C. P., Terzis, A., Samaras, E. & Kessissoglou, D. P. (2005). J. Inorg. Biochem. 99, 864-875.]); Emerich et al. (2010[Emerich, B., Smith, M., Zeller, M. & Zaleski, C. M. (2010). J. Chem. Crystallogr. 40, 769-777.]); Tigyer et al. (2011[Tigyer, B. R., Zeller, M. & Zaleski, C. M. (2011). Acta Cryst. E67, m1041-m1042.]). For an explanation on how to calculate τ, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). For an explanation on how to calculate the s/h ratio, see: Stiefel & Brown (1972[Stiefel, E. I. & Brown, G. F. (1972). Inorg. Chem. 11, 434-436.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn6(C7H4NO3)5(CHO2)2(C3H4N2)5(CH4O)]·3.36CH4O·0.65H2O

  • Mr = 1662.43

  • Monoclinic, P 21 /c

  • a = 13.2053 (12) Å

  • b = 24.621 (2) Å

  • c = 21.491 (2) Å

  • β = 101.861 (1)°

  • V = 6838.0 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 100 K

  • 0.45 × 0.38 × 0.25 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.]) Tmin = 0.619, Tmax = 0.746

  • 87486 measured reflections

  • 17626 independent reflections

  • 14038 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.140

  • S = 1.05

  • 17626 reflections

  • 1006 parameters

  • 26 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.17 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C44—H44⋯O11 0.95 2.47 3.413 (4) 173
C47—H47⋯N14 0.95 2.68 3.599 (5) 162
C51—H51A⋯O18 0.98 2.50 3.360 (4) 147
N7—H7⋯O25B 0.88 1.88 2.658 (9) 147
N9—H9⋯O17i 0.88 2.07 2.898 (3) 156
N11—H11A⋯O14ii 0.88 2.00 2.869 (3) 168
N13—H13A⋯O2iii 0.88 1.99 2.827 (4) 159
N15—H15⋯O8iv 0.88 1.96 2.800 (4) 159
N7B—H7B⋯O21 0.88 2.11 2.933 (15) 155
O20—H20A⋯O22v 0.85 (2) 1.85 (2) 2.681 (5) 168 (5)
O20—H20A⋯O22Bv 0.85 (2) 1.96 (4) 2.75 (3) 155 (4)
O22—H22A⋯O24 0.84 1.97 2.746 (7) 154
O24—H24A⋯O21 0.84 2.03 2.808 (6) 154
O25B—H25A⋯O23B 0.84 1.91 2.601 (9) 138
O22B—H22C⋯O21Bvi 0.84 2.48 3.29 (4) 160
O23—H23⋯O12vii 0.84 2.19 2.828 (9) 133
O23B—H23B⋯O12vii 0.84 2.08 2.897 (6) 165
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) x-1, y, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) -x+2, -y+2, -z+1; (vii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) and CELL_NOW (Sheldrick, 2008b[Sheldrick, G. M. (2008b). CELL_NOW. University of Göttingen, Germany.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2012[Sheldrick, G. M. (2012). SHELXL2012. University of Göttingen, Germany.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 for Windows (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Metallacrowns (MCs), in particular 15-MC-5 complexes, have a variety of potential applications, spanning single-molecule magnetism, ion selectivity, and antibacterial activity (Mezei et al., 2007). The family of manganese-based 15-MC-5 complexes, which consists of a 15 membered ring with a -[Mn(III)—N—O]5– repeat unit and a central Mn(II) ion, have shown better antibacterial activity than simple manganese-herbicide complexes (Dendrinou-Samara et al., 2002, 2005). The first few Mn-based 15-MC-5 complexes were made with pyridine molecules bound to the structure (Kessissoglou et al., 1994; Dendrinou-Samara et al., 2001, 2002, 2005); however, it has recently been shown that imidazole can also be used to produce a Mn-based 15-MC-5 complex (Emerich et al., 2010; Tigyer et al. 2011).

Herein we report the synthesis, IR data, and the single-crystal X-ray structure of the title compound, [Mn6(C7H4NO3)5(C3N2H4)5(CH4O)(CHO2)2].3.36CH3OH.0.65H2O, 1, abbreviated as Mn(II)(O2CH)2[15-MCMn(III)N(shi)-5](Im)5(MeOH).3.36MeOH.0.65H2O (where MC is metallacrown, shi3- is salicylhydroximate, Im is imidazole, and MeOH is methanol). Compound 1 is a non-planar molecule, which is typical of Mn(II)[15-MCMn(III)-5] structures (Fig. 1–3; Farrugia, 1997). The structure consists of a –[Mn(III)—N—O]5– repeat unit around the MC ring, and the MC binds a Mn(II) in the central cavity (Fig. 1). The positive charge of the five Mn(III) ions and the one Mn(II) ion are counterbalanced by the five shi3- ligands and two formate anions.

Mn1 is located in the central cavity and is seven-coordinate with a geometry best described as between face-capped trigonal prismatic and face-capped octahedral (Fig. 2). The geometry is significantly distorted when compared to the ideal parameters of either geometry. One parameter that can be used to distinguish these geometries is the azimuthal angle (Φ). In a trigonal prism the ideal angle between the atoms on opposite triangular faces is Φ = 0°, while for an octahedron the ideal value is Φ = 60°. To calculate the Φ angle, the centroids of opposite triangular faces made by the donor oxygen atoms (O1, O13, and O18; O7, O10, and O16) were defined using the program Mercury (Macrae et al., 2006), and then twist angles between atoms on opposite faces through the centroids were calculated. [A similar method was used to calculate the Φ angle in a related 15-MC-5 structure (Tigyer et al., 2011).] The estimated Φ angles of 5.90°, 13.17°, and 20.93° indicate that the geometry approaches that of a face-capped trigonal prism though the angle of 20.93° is significantly large (Fig. 2). Another parameter that can be used to distinguish the two geometries is the s/h ratio (Stiefel and Brown, 1972). In an ideal octahedron the s/h ratio is 1.22, while in an ideal trigonal prism the s/h ratio is 1.00. Defining the distance between the centroids as h and defining the distances between atoms within a triangular face as s, the estimated average s/h ratio for 1 is 1.15± 0.13. When considered together, the Φ angle and the s/h ratio indicate that the geometry about Mn1 is severely distorted from both face-capped trigonal prismatic and face-capped octahedral geometry. The assignment of a 2+ oxidation state for Mn1 is supported by an average bond distance of 2.24 Å.

The ring Mn2 - Mn6 (Fig. 3) are assigned a 3+ oxidation state, which is supported by the average bond distances. The average Mn-N/O bond distances for Mn2, Mn3, Mn4, Mn5, and Mn6 are 2.03 Å, 1.96 Å, 1.98 Å, 2.03 Å, and 2.03 Å, respectively. Mn2, Mn5, and Mn6 are six-coordinate and possess a Jahn-Teller axis, which is typical for a high spin d4 cation further supporting a 3+ oxidation state (Fig. 3a-c). The average bond distances of Mn3 and Mn4 are shorter than those of the other ring Mn ions; however, Mn3 and Mn4 are only five coordinate (Fig. 3 d-e). In previous Mn(II)[15-MCMn(III)-5] structures, the coordination spheres of the Mn ions had been completed by forming bonds to the oxygen atoms of the carboxylate anions (Kessissoglou et al., 1994; Dendrinou-Samara et al., 2001, 2002, 2005; Emerich et al., 2010; and Tigyer et al., 2011); however, in 1 these bonds do not exist. The geometry about Mn2, Mn5, and Mn6 is best described as a distorted octahedron (Fig. 3a-c). The coordination about these Mn(III) ions can also be described by their configurations. Mn2 and Mn6 adopt a planar (P) configuration, where two chelate rings of different shi3- ligands are located trans to each other. Mn5 has a propeller configuration with Δ absolute stereochemistry. The geometry about Mn3 and Mn4 is best described as distorted square pyramidal (Fig. d-e). To evaluate the geometry about Mn3 and Mn4 the τ parameter was calculated for both Mn(III) ions (Addison et al., 1984). For an ideal square pyramidal geometry τ = 0, while for an ideal trigonal bipyramidal geometry τ = 1. For Mn3 and Mn4, τ equals 0.38 and 0.15, respectively. In addition, Mn2, Mn3, Mn4, Mn5, and Mn6 bind imidazole ligands, which are directed to the periphery of the molecule. The imidazole attached to Mn2 is disordered over two alternative mutually exclusive positions in a ratio of 0.672 (9) to 0.328 (9).

Related literature top

For a general review of metallacrowns, see: Mezei et al. (2007). For related Mn(II)[15-MCMn(III)N(shi)-5)] structures and related synthetic procedures, see: Kessissoglou et al. (1994); Dendrinou-Samara et al. (2001, 2002, 2005); Emerich et al. (2010); Tigyer et al. (2011). For an explanation on how to calculate τ, see: Addison et al. (1984). For an explanation on how to calculate the s/h ratio, see: Stiefel & Brown (1972).

Experimental top

Manganese(II) chloride tetrahydrate (99%), salicylhydroxamic acid (H3shi, 99%), and sodium formate (98%) were purchased from Alfa Aesar. Imidazole (ReagentPlus, 99%) was purchased from Sigma-Aldrich. Sodium methoxide was purchased from Matheson Coleman and Bell. Methanol (HPLC grade) was purchased from Pharmco-AAPer. All reagents were used as received and without further purification.

Manganese(II) chloride tetrahydrate (3.0 mmol) was dissolved in 30 ml of methanol resulting in a light pink solution. Sodium methoxide (7.5 mmol) and H3shi (2.5 mmol) were mixed in 20 ml of methanol, which resulted in a cloudy white liquid. This mixture was then added to the manganese(II) chloride solution. Initially the solution turned a yellow color, but after stirring for 1 h the solution become a dark brown-black. After 1 h of stirring, separate solutions of sodium formate (3.0 mmol in 20 ml of methanol) and imidazole (10 mmol in 30 ml of methanol) were added to the dark brown-black solution. No color change was observed. This final solution (100 ml total volume) was left for slow evaporation of the solvent at room temperature. Dark brown-black crystals suitable for X-ray diffraction analysis were collected after 1 day. The percent yield was 2.5% based on manganese(II) chloride tetrahydrate.

Elemental analysis for the dried material C56.36H60.77Mn6N15O24.02 [FW = 1662.28 g/mol] found % (calculated); C 39.58 (40.72); H 3.19 (3.69); N 12.74 (12.64).

Refinement top

Crystals of the compound were heavily intergrown. A mostly single piece was extracted from a larger cluster, but due to the dark color and fragility of the material no completely single fragment of sufficient size could be obtained. The crystal chosen for data collection thus consisted of several fragments, two of which were dominant. The orientation matrices for the two major components were identified using the program CELL_NOW (Sheldrick, 2008b), with the two components being related by no obvious twin law [18.4 degrees about reciprocal axis (-0.374 - 0.889 1.000) or real axis (-0.745 - 0.736 1.000)]. The two components were integrated using SAINT (Bruker, 2012), resulting in a total of 148319 reflections. 61126 reflections (16635 unique) involved component 1 only (mean I/σ = 10.2), 60494 reflections (16623 unique) involved component 2 only (mean I/σ = 3.1), 26606 reflections (15709 unique) involved both components (mean I/σ = 8.9). The transformation matrix identified by the integration program was found to be (0.91781 -0.10681 -0.12487, 0.46932 0.96639 0.14355, 0.28545 -0.10318 1.01409.

The data were corrected for absorption using TWINABS, and the structure was solved and refined using direct methods using only the non-overlapping reflections of component 1 with a resolution better than 0.7 Å. Overlapping reflections were ignored. The Rint value given is for all reflections and is based on agreement between observed single intensities of component 1 before the cutoff at 0.7 Å [TWINABS (Sheldrick, 2009)].

Disorder is observed for one of the coordinated imidazole ligands and for the solvate methanol and water molecules. The imidazole ligand is disordered over two alternative, mutually exclusive positions in a ratio of 0.672 (9) to 0.328 (9). The geometries of the two moieties were restrained to be similar and ADPs of partially overlapping atoms of the two moieties were constrained to be identical. The interstitial voids between the main molecules that constitute the structure are mostly filled with methanol molecules that form hydrogen bonded chains. Some of the sites of the non-coordinated methanol molecules are not fully occupied, with the remainder of the volume either empty or ill-defined. One site was refined as being taken up by either two or one methanol molecules, with an occupancy ratio of 0.628 (5) to 0.343 (5). This disorder might thus be correlated with the disorder of the imidazole ring (an N—H···O hydrogen bond between the major moieties of the imidazole and the methanol molecules is observed). On the other side of the disordered imidazole ring a chain of partially occupied methanol molecules originates that extends via O—H···O hydrogen bonds to the metal coordinated methanol molecule. The three partially occupied methanol molecules were refined to be disordered with two water molecules to take two residual electron density peaks into account (the exact nature of these weak residual electron density peaks cannot be deduced from the X-ray diffraction data alone, the assignment as water is tentative). The occupancy of the methanol molecules refined to 0.480 (7). The occupancy of the two water molecules refined to 0.34 (1) and 0.31 (2). The ADPs of the water molecules were restrained to be approximately isotropic. Acidic H atoms were set based on hydrogen bonding considerations and were restrained or constrained.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012) and CELL_NOW (Sheldrick, 2008b); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL2012 (beta 2012-4; Sheldrick, 2012), SHELXLE Rev582 (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Single-crystal X-ray structure of Mn(II)(O2CH)2[15-MCMn(III)N(shi)-5](Im)5(MeOH).3.36MeOH.0.65H2O (1). The thermal ellipsoid plot of 1 is at a 50% probability level. Hydrogen atoms and the lattice solvent molecules have been omitted for clarity. The disordered atoms of the imidazole attached to Mn2 are only shown at the higher occupancy positions. Color scheme for all figures: purple - Mn(II) and Mn(III), red - oxygen, blue - nitrogen, and gray - carbon.
[Figure 2] Fig. 2. Side (a) and top (b) views of the first coordination sphere about Mn1 (2+ oxidation state) of 1. The thermal ellipsoid plots are at a 50% probability level.
[Figure 3] Fig. 3. First coordination sphere about each Mn(III) ion of 1. a) Mn2 with planar configuration b) Mn3 with distorted square pyramidal geometry c) Mn4 with distorted square pyramidal geometry d) Mn5 with Δ configuration and e) Mn6 with planar configuration. The thermal ellipsoid plots are at a 50% probability level. Hydrogen atoms have been omitted for clarity. The disordered atoms of the imidazole attached to Mn2 are only shown at the higher occupancy positions.
Pentakis(µ3-N,2-dioxidobenzene-1-carboximidato)di-µ2-formato- methanolpentakis(1H-imidazole)pentamanganese(III)manganese(II)– methanol–water (1/3.36/0.65) top
Crystal data top
[Mn6(C7H4NO3)5(CHO2)2(C3H4N2)5(CH4O)]·3.36CH4O·0.65H2OF(000) = 3384.9
Mr = 1662.43Dx = 1.615 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.2053 (12) ÅCell parameters from 2337 reflections
b = 24.621 (2) Åθ = 2.3–24.6°
c = 21.491 (2) ŵ = 1.16 mm1
β = 101.861 (1)°T = 100 K
V = 6838.0 (11) Å3Fragment, black
Z = 40.45 × 0.38 × 0.25 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
17626 independent reflections
Radiation source: sealed tube14038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 28.8°, θmin = 1.6°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
h = 1717
Tmin = 0.619, Tmax = 0.746k = 3333
87486 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: difference Fourier map
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0719P)2 + 12.0988P]
where P = (Fo2 + 2Fc2)/3
17626 reflections(Δ/σ)max = 0.001
1006 parametersΔρmax = 2.17 e Å3
26 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Mn6(C7H4NO3)5(CHO2)2(C3H4N2)5(CH4O)]·3.36CH4O·0.65H2OV = 6838.0 (11) Å3
Mr = 1662.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2053 (12) ŵ = 1.16 mm1
b = 24.621 (2) ÅT = 100 K
c = 21.491 (2) Å0.45 × 0.38 × 0.25 mm
β = 101.861 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
17626 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
14038 reflections with I > 2σ(I)
Tmin = 0.619, Tmax = 0.746Rint = 0.044
87486 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04926 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0719P)2 + 12.0988P]
where P = (Fo2 + 2Fc2)/3
17626 reflectionsΔρmax = 2.17 e Å3
1006 parametersΔρmin = 0.59 e Å3
Special details top

Experimental. FT–IR bands (KBr pellet, cm-1): 1597(s), 1569(s), 1498(s), 1436(m), 1387(m), 1317(m), 1257(m), 1244(m), 1145(w), 1100(w), 1065(m), 1021(w), 927(m), 861(m), 756(m), 679(m), 648(m), 611(m), 576(w) and 471(w).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8891 (2)0.63065 (12)0.35278 (13)0.0229 (6)
C20.9638 (2)0.62374 (13)0.41336 (14)0.0267 (6)
C31.0536 (2)0.65587 (16)0.42408 (16)0.0350 (7)
H31.06370.68140.39270.042*
C41.1280 (3)0.65093 (18)0.47991 (17)0.0416 (9)
H41.18840.67290.48690.050*
C51.1126 (3)0.61337 (16)0.52527 (16)0.0379 (8)
H51.16400.60900.56300.045*
C61.0240 (3)0.58227 (15)0.51651 (15)0.0334 (7)
H61.01460.55730.54860.040*
C70.9473 (2)0.58698 (13)0.46063 (14)0.0266 (6)
C80.7939 (2)0.45047 (12)0.30564 (13)0.0227 (6)
C100.9389 (3)0.38975 (15)0.29828 (16)0.0327 (7)
H100.97860.40950.33280.039*
C110.9849 (3)0.34801 (15)0.27189 (18)0.0380 (8)
H111.05550.33930.28780.046*
C120.9274 (3)0.31891 (14)0.22206 (17)0.0352 (7)
H120.95890.29040.20310.042*
C130.8238 (3)0.33118 (13)0.19956 (15)0.0309 (7)
H130.78450.31040.16580.037*
C140.7766 (2)0.37371 (12)0.22588 (14)0.0257 (6)
C150.4263 (2)0.43909 (12)0.28414 (13)0.0222 (5)
C160.3500 (2)0.42548 (12)0.32361 (13)0.0248 (6)
C170.3641 (3)0.37713 (13)0.35851 (15)0.0305 (7)
H170.42210.35480.35670.037*
C180.2950 (3)0.36120 (14)0.39581 (16)0.0374 (8)
H180.30600.32860.41980.045*
C190.2100 (3)0.39356 (15)0.39743 (17)0.0378 (8)
H190.16170.38270.42230.045*
C200.1943 (3)0.44126 (14)0.36356 (16)0.0328 (7)
H200.13470.46260.36470.039*
C210.2655 (2)0.45898 (13)0.32717 (14)0.0265 (6)
C220.3082 (2)0.56798 (11)0.12815 (14)0.0223 (5)
O210.8131 (3)0.93158 (15)0.33972 (19)0.0344 (10)0.628 (5)
H210.77740.96010.33680.052*0.628 (5)
C520.9110 (5)0.9431 (3)0.3220 (3)0.0410 (15)0.628 (5)
H52A0.89820.95970.27970.061*0.628 (5)
H52B0.94970.90920.32140.061*0.628 (5)
H52C0.95120.96810.35300.061*0.628 (5)
O240.8778 (4)0.8676 (2)0.4488 (2)0.0647 (17)0.628 (5)
H24A0.86740.89440.42420.097*0.628 (5)
C550.9450 (5)0.8320 (3)0.4285 (3)0.0526 (18)0.628 (5)
H55A0.90920.81360.38970.079*0.628 (5)
H55B0.96900.80500.46170.079*0.628 (5)
H55C1.00440.85220.41950.079*0.628 (5)
O21B0.9130 (9)0.9711 (8)0.3556 (8)0.119 (7)0.343 (14)
H21A0.93830.96770.32270.179*0.343 (14)
H21B0.89990.93890.36580.179*0.343 (14)
O22B1.011 (2)0.9039 (13)0.6068 (17)0.202 (16)0.312 (18)
H22B0.95950.90970.57710.303*0.312 (18)
H22C1.02670.93380.62540.303*0.312 (18)
C230.2719 (2)0.56834 (12)0.05786 (14)0.0245 (6)
C240.1996 (3)0.52789 (13)0.03172 (16)0.0317 (7)
H240.17960.50130.05890.038*
O23B0.3617 (5)0.7457 (3)0.4810 (3)0.0413 (16)0.480 (7)
H23B0.36870.77360.50400.062*0.480 (7)
C54B0.4202 (8)0.7015 (4)0.5154 (5)0.050 (2)0.480 (7)
H54D0.49120.71350.53250.075*0.480 (7)
H54E0.42120.67080.48660.075*0.480 (7)
H54F0.38770.69030.55050.075*0.480 (7)
O25B0.4553 (6)0.7510 (3)0.3859 (4)0.065 (2)0.480 (7)
H25A0.44730.73650.41990.097*0.480 (7)
C560.3895 (7)0.7252 (3)0.3334 (4)0.048 (2)0.480 (7)
H56A0.34550.69860.34920.071*0.480 (7)
H56B0.43180.70660.30740.071*0.480 (7)
H56C0.34600.75250.30760.071*0.480 (7)
C540.4111 (13)0.7231 (5)0.4600 (9)0.116 (6)0.520 (7)
H54A0.48240.72700.45430.175*0.520 (7)
H54B0.37600.69490.43130.175*0.520 (7)
H54C0.41140.71280.50410.175*0.520 (7)
O230.3626 (16)0.7688 (4)0.4472 (5)0.169 (8)0.520 (7)
H230.34080.77930.47910.254*0.520 (7)
C250.1573 (3)0.52635 (15)0.03309 (17)0.0373 (8)
H250.11040.49830.05030.045*
C260.1837 (3)0.56553 (15)0.07169 (16)0.0359 (7)
H260.15350.56520.11580.043*
C270.2536 (3)0.60559 (15)0.04741 (16)0.0343 (7)
H270.27080.63250.07510.041*
C280.3000 (2)0.60729 (13)0.01746 (14)0.0263 (6)
C290.6614 (2)0.68927 (11)0.11018 (13)0.0208 (5)
C300.7473 (2)0.71630 (12)0.08805 (14)0.0239 (6)
C310.7312 (3)0.73208 (13)0.02375 (15)0.0306 (7)
H310.66740.72370.00400.037*
C320.8064 (3)0.75950 (15)0.00036 (16)0.0367 (8)
H320.79430.76990.04310.044*
C330.8997 (3)0.77191 (14)0.04061 (17)0.0343 (7)
H330.95180.79060.02460.041*
C340.9172 (2)0.75726 (13)0.10377 (16)0.0301 (6)
H340.98150.76610.13080.036*
C350.8418 (2)0.72948 (12)0.12913 (14)0.0248 (6)
N60.7275 (2)0.73654 (11)0.28385 (13)0.0314 (6)0.672 (9)
C360.6610 (9)0.7253 (3)0.3220 (5)0.0346 (15)0.672 (9)
H360.64320.69000.33390.042*0.672 (9)
N70.6237 (5)0.7725 (3)0.3405 (2)0.0440 (14)0.672 (9)
H70.57870.77600.36530.053*0.672 (9)
C370.6696 (7)0.8142 (3)0.3131 (4)0.051 (2)0.672 (9)
H370.65680.85190.31650.061*0.672 (9)
C380.736 (2)0.7913 (5)0.2808 (13)0.0445 (19)0.672 (9)
H380.78120.81040.25940.053*0.672 (9)
N6B0.7275 (2)0.73654 (11)0.28385 (13)0.0314 (6)0.328 (9)
C36B0.750 (5)0.7894 (9)0.272 (3)0.0445 (19)0.328 (9)
H36B0.78670.79970.24060.053*0.328 (9)
N7B0.7145 (13)0.8253 (6)0.3100 (8)0.051 (2)0.328 (9)
H7B0.72530.86060.31260.061*0.328 (9)
C37B0.6587 (13)0.7946 (6)0.3431 (7)0.0440 (14)0.328 (9)
H37B0.62190.80800.37350.053*0.328 (9)
C38B0.664 (2)0.7411 (7)0.3257 (12)0.0346 (15)0.328 (9)
H38B0.62830.71190.34070.042*0.328 (9)
C390.7138 (3)0.48765 (14)0.50398 (15)0.0328 (7)
H390.77370.50270.53050.039*
C400.5695 (3)0.4435 (2)0.47325 (18)0.0531 (12)
H400.50950.42230.47330.064*
C410.5979 (3)0.4661 (2)0.42223 (17)0.0500 (11)
H410.56070.46310.37960.060*
C420.5134 (2)0.37829 (13)0.09220 (14)0.0274 (6)
H420.57280.35560.09930.033*
C430.3672 (3)0.41483 (15)0.04707 (16)0.0378 (8)
H430.30530.42280.01720.045*
C440.4023 (3)0.44043 (14)0.10313 (16)0.0342 (7)
H440.36870.46940.11990.041*
C450.1423 (3)0.61267 (16)0.2780 (2)0.0441 (9)
H450.11610.58270.29760.053*
C460.1524 (4)0.69199 (19)0.2355 (2)0.0591 (12)
H460.13610.72770.21970.071*
C470.2395 (3)0.66375 (17)0.2345 (3)0.0563 (12)
H470.29640.67640.21780.068*
C480.4669 (3)0.76009 (13)0.17921 (16)0.0313 (7)
H480.53760.75470.19860.038*
C490.3140 (3)0.79703 (16)0.1512 (2)0.0504 (10)
H490.25740.82160.14700.060*
C500.3134 (3)0.74740 (15)0.1248 (2)0.0431 (9)
H500.25540.73100.09790.052*
C510.8901 (3)0.54796 (15)0.20866 (19)0.0395 (8)
H51A0.82700.52840.18910.059*
H51B0.90130.54480.25500.059*
H51C0.94930.53230.19400.059*
O220.9303 (4)0.8901 (2)0.5765 (2)0.0440 (12)0.628 (5)
H22A0.90270.89190.53770.066*0.628 (5)
C531.0359 (6)0.8776 (4)0.5832 (4)0.056 (2)0.628 (5)
H53A1.04680.83900.59320.084*0.628 (5)
H53B1.07640.89940.61770.084*0.628 (5)
H53C1.05800.88580.54340.084*0.628 (5)
C770.6028 (2)0.53445 (12)0.10639 (14)0.0242 (6)
H770.62320.50790.07930.029*
C790.5060 (2)0.59516 (13)0.37450 (14)0.0277 (6)
H790.52720.60600.41760.033*
N10.80399 (18)0.60208 (10)0.34002 (11)0.0217 (5)
N20.69836 (19)0.46630 (10)0.28295 (11)0.0213 (5)
N30.42489 (18)0.48870 (10)0.26086 (11)0.0207 (5)
N40.38732 (17)0.59966 (9)0.15326 (10)0.0185 (4)
N50.67536 (17)0.66868 (10)0.16729 (11)0.0200 (4)
N80.6888 (2)0.49410 (11)0.44156 (12)0.0270 (5)
N90.6439 (2)0.45729 (12)0.52472 (12)0.0331 (6)
H90.64560.44780.56440.040*
C90.8358 (2)0.40383 (12)0.27589 (14)0.0246 (6)
N100.49506 (19)0.41718 (10)0.13155 (11)0.0224 (5)
N110.4364 (2)0.37593 (12)0.04158 (12)0.0312 (6)
H11A0.43160.35280.00980.037*
N120.2325 (2)0.61383 (11)0.26148 (13)0.0288 (5)
N130.0931 (2)0.65925 (14)0.2635 (2)0.0513 (9)
H13A0.03180.66750.27090.062*
N140.4091 (2)0.72421 (10)0.14255 (13)0.0265 (5)
N150.4130 (3)0.80504 (12)0.18542 (15)0.0411 (7)
H150.43650.83430.20730.049*
O10.74153 (15)0.61515 (8)0.28045 (9)0.0213 (4)
O20.90941 (15)0.66591 (9)0.31135 (10)0.0253 (4)
O30.86226 (17)0.55681 (10)0.45636 (10)0.0300 (5)
O40.67127 (15)0.51340 (8)0.31239 (9)0.0212 (4)
O50.85109 (16)0.47592 (9)0.35204 (10)0.0268 (4)
O60.67632 (17)0.38320 (9)0.20187 (11)0.0299 (5)
O70.49745 (15)0.49752 (8)0.22320 (9)0.0201 (4)
O80.49295 (16)0.40416 (8)0.27295 (10)0.0249 (4)
O90.24548 (16)0.50657 (9)0.29765 (11)0.0290 (5)
O100.41738 (14)0.59720 (8)0.22028 (9)0.0187 (4)
O110.26424 (16)0.53760 (9)0.16274 (10)0.0263 (4)
O120.36874 (16)0.64722 (9)0.03760 (10)0.0267 (4)
O130.58379 (14)0.64878 (8)0.18359 (9)0.0179 (4)
O140.57102 (15)0.68663 (8)0.07192 (9)0.0211 (4)
O150.86388 (16)0.71894 (9)0.19178 (10)0.0290 (5)
O160.57211 (16)0.60067 (9)0.34087 (9)0.0256 (4)
O170.41548 (16)0.57726 (9)0.35890 (10)0.0266 (4)
O180.63380 (15)0.52696 (8)0.16619 (9)0.0220 (4)
O190.54934 (17)0.57240 (8)0.07982 (10)0.0256 (4)
O200.87965 (19)0.60394 (10)0.19089 (12)0.0349 (5)
H20A0.902 (3)0.6023 (19)0.1569 (14)0.052*
Mn10.58751 (3)0.57528 (2)0.24447 (2)0.01690 (9)
Mn20.79807 (3)0.67029 (2)0.23644 (2)0.02070 (10)
Mn30.76730 (3)0.53645 (2)0.38493 (2)0.02250 (10)
Mn40.58914 (3)0.43996 (2)0.21334 (2)0.01998 (10)
Mn50.33219 (3)0.55126 (2)0.26207 (2)0.02037 (10)
Mn60.47204 (3)0.64620 (2)0.11103 (2)0.01828 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0175 (13)0.0322 (15)0.0182 (13)0.0018 (11)0.0021 (10)0.0010 (11)
C20.0208 (14)0.0361 (16)0.0209 (14)0.0006 (12)0.0012 (11)0.0040 (12)
C30.0219 (15)0.052 (2)0.0289 (16)0.0081 (14)0.0004 (12)0.0002 (15)
C40.0224 (16)0.064 (2)0.0341 (18)0.0058 (15)0.0038 (14)0.0013 (17)
C50.0257 (16)0.055 (2)0.0269 (16)0.0046 (15)0.0091 (13)0.0030 (15)
C60.0318 (17)0.0432 (19)0.0213 (15)0.0053 (14)0.0040 (12)0.0016 (13)
C70.0237 (14)0.0331 (16)0.0202 (13)0.0027 (12)0.0016 (11)0.0031 (11)
C80.0254 (14)0.0254 (14)0.0170 (12)0.0012 (11)0.0034 (11)0.0068 (10)
C100.0270 (16)0.0402 (18)0.0302 (16)0.0050 (13)0.0046 (13)0.0060 (13)
C110.0273 (16)0.044 (2)0.044 (2)0.0131 (14)0.0094 (14)0.0084 (16)
C120.0368 (18)0.0318 (16)0.0402 (18)0.0115 (14)0.0153 (15)0.0069 (14)
C130.0390 (18)0.0278 (15)0.0267 (15)0.0068 (13)0.0089 (13)0.0045 (12)
C140.0279 (15)0.0251 (14)0.0243 (14)0.0050 (11)0.0056 (12)0.0084 (11)
C150.0231 (14)0.0238 (13)0.0179 (13)0.0052 (11)0.0002 (10)0.0011 (10)
C160.0289 (15)0.0268 (14)0.0189 (13)0.0088 (11)0.0053 (11)0.0019 (11)
C170.0435 (18)0.0258 (15)0.0229 (14)0.0076 (13)0.0083 (13)0.0017 (12)
C180.056 (2)0.0292 (16)0.0303 (16)0.0118 (15)0.0173 (16)0.0022 (13)
C190.048 (2)0.0385 (18)0.0325 (17)0.0156 (16)0.0212 (16)0.0041 (14)
C200.0333 (17)0.0371 (17)0.0304 (16)0.0118 (14)0.0123 (13)0.0075 (13)
C210.0283 (15)0.0285 (15)0.0228 (14)0.0107 (12)0.0055 (12)0.0037 (11)
C220.0199 (13)0.0215 (13)0.0235 (14)0.0005 (10)0.0002 (11)0.0012 (10)
O210.041 (2)0.0267 (19)0.038 (2)0.0068 (15)0.0150 (17)0.0048 (15)
C520.028 (3)0.052 (4)0.038 (3)0.012 (3)0.004 (2)0.000 (3)
O240.069 (3)0.091 (4)0.037 (3)0.039 (3)0.020 (2)0.023 (3)
C550.045 (4)0.067 (5)0.046 (4)0.003 (3)0.010 (3)0.014 (3)
O21B0.046 (7)0.190 (16)0.113 (12)0.040 (9)0.004 (7)0.046 (10)
O22B0.21 (2)0.19 (2)0.23 (2)0.015 (15)0.097 (17)0.093 (15)
C230.0221 (14)0.0261 (14)0.0217 (14)0.0014 (11)0.0039 (11)0.0025 (11)
C240.0312 (16)0.0289 (16)0.0309 (16)0.0066 (13)0.0027 (13)0.0006 (13)
O23B0.046 (3)0.039 (3)0.040 (3)0.001 (3)0.011 (3)0.013 (3)
C54B0.069 (6)0.038 (4)0.046 (5)0.009 (4)0.019 (4)0.009 (4)
O25B0.076 (5)0.058 (4)0.069 (5)0.033 (4)0.034 (4)0.021 (3)
C560.055 (5)0.037 (4)0.052 (5)0.009 (4)0.013 (4)0.000 (4)
C540.151 (14)0.059 (8)0.161 (16)0.009 (8)0.085 (13)0.047 (9)
O230.39 (2)0.051 (5)0.050 (5)0.010 (8)0.004 (8)0.007 (4)
C250.0347 (18)0.0390 (18)0.0322 (17)0.0076 (14)0.0071 (14)0.0085 (14)
C260.0322 (17)0.047 (2)0.0237 (15)0.0032 (14)0.0062 (13)0.0023 (14)
C270.0291 (16)0.046 (2)0.0249 (15)0.0046 (14)0.0018 (13)0.0058 (14)
C280.0211 (14)0.0294 (15)0.0251 (14)0.0020 (11)0.0030 (11)0.0013 (11)
C290.0248 (14)0.0171 (12)0.0199 (13)0.0029 (10)0.0029 (11)0.0028 (10)
C300.0260 (14)0.0222 (13)0.0248 (14)0.0044 (11)0.0083 (11)0.0005 (11)
C310.0357 (17)0.0317 (16)0.0240 (15)0.0088 (13)0.0053 (13)0.0007 (12)
C320.0438 (19)0.0414 (19)0.0261 (15)0.0117 (15)0.0098 (14)0.0028 (14)
C330.0352 (17)0.0315 (16)0.0399 (18)0.0098 (13)0.0164 (15)0.0018 (14)
C340.0278 (15)0.0276 (15)0.0351 (17)0.0063 (12)0.0066 (13)0.0025 (13)
C350.0263 (14)0.0223 (13)0.0260 (14)0.0034 (11)0.0063 (11)0.0014 (11)
N60.0257 (13)0.0321 (14)0.0331 (14)0.0002 (11)0.0015 (11)0.0084 (11)
C360.041 (2)0.032 (5)0.027 (2)0.011 (4)0.0014 (18)0.012 (4)
N70.054 (4)0.037 (3)0.037 (2)0.011 (2)0.001 (2)0.014 (2)
C370.065 (6)0.032 (4)0.050 (3)0.011 (4)0.001 (5)0.002 (3)
C380.058 (9)0.027 (2)0.042 (7)0.007 (3)0.003 (3)0.008 (2)
N6B0.0257 (13)0.0321 (14)0.0331 (14)0.0002 (11)0.0015 (11)0.0084 (11)
C36B0.058 (9)0.027 (2)0.042 (7)0.007 (3)0.003 (3)0.008 (2)
N7B0.065 (6)0.032 (4)0.050 (3)0.011 (4)0.001 (5)0.002 (3)
C37B0.054 (4)0.037 (3)0.037 (2)0.011 (2)0.001 (2)0.014 (2)
C38B0.041 (2)0.032 (5)0.027 (2)0.011 (4)0.0014 (18)0.012 (4)
C390.0400 (18)0.0379 (18)0.0190 (14)0.0064 (14)0.0025 (13)0.0005 (12)
C400.052 (2)0.080 (3)0.0252 (17)0.032 (2)0.0042 (16)0.0047 (18)
C410.039 (2)0.085 (3)0.0214 (16)0.029 (2)0.0032 (14)0.0083 (18)
C420.0304 (15)0.0290 (15)0.0234 (14)0.0019 (12)0.0064 (12)0.0039 (11)
C430.0412 (19)0.0419 (19)0.0253 (16)0.0053 (15)0.0050 (14)0.0024 (14)
C440.0316 (17)0.0359 (17)0.0310 (17)0.0066 (13)0.0035 (13)0.0044 (13)
C450.0267 (17)0.042 (2)0.067 (3)0.0017 (15)0.0192 (17)0.0076 (18)
C460.056 (3)0.050 (2)0.077 (3)0.028 (2)0.026 (2)0.011 (2)
C470.045 (2)0.044 (2)0.092 (4)0.0194 (18)0.041 (2)0.020 (2)
C480.0319 (16)0.0258 (15)0.0340 (17)0.0005 (12)0.0015 (13)0.0023 (12)
C490.046 (2)0.0341 (19)0.066 (3)0.0153 (17)0.002 (2)0.0056 (18)
C500.0294 (17)0.0308 (17)0.062 (2)0.0076 (14)0.0075 (16)0.0078 (16)
C510.0338 (18)0.0398 (19)0.045 (2)0.0001 (15)0.0084 (15)0.0060 (16)
O220.046 (3)0.057 (3)0.034 (2)0.007 (2)0.0199 (19)0.0097 (19)
C530.041 (4)0.063 (5)0.076 (5)0.019 (3)0.038 (4)0.020 (4)
C770.0301 (15)0.0234 (14)0.0204 (13)0.0035 (11)0.0082 (11)0.0001 (11)
C790.0269 (15)0.0352 (16)0.0217 (14)0.0004 (12)0.0064 (12)0.0051 (12)
N10.0171 (11)0.0316 (13)0.0139 (10)0.0005 (9)0.0023 (8)0.0007 (9)
N20.0238 (12)0.0218 (11)0.0174 (11)0.0017 (9)0.0025 (9)0.0013 (9)
N30.0203 (11)0.0243 (12)0.0183 (11)0.0018 (9)0.0057 (9)0.0004 (9)
N40.0182 (11)0.0195 (11)0.0157 (10)0.0008 (8)0.0016 (8)0.0005 (8)
N50.0154 (10)0.0229 (11)0.0211 (11)0.0050 (8)0.0028 (9)0.0005 (9)
N80.0295 (13)0.0316 (13)0.0184 (11)0.0020 (10)0.0017 (10)0.0015 (10)
N90.0380 (15)0.0424 (16)0.0180 (12)0.0051 (12)0.0034 (11)0.0035 (11)
C90.0261 (14)0.0266 (14)0.0215 (13)0.0057 (11)0.0057 (11)0.0077 (11)
N100.0239 (12)0.0223 (11)0.0194 (11)0.0016 (9)0.0007 (9)0.0001 (9)
N110.0385 (15)0.0346 (14)0.0198 (12)0.0057 (12)0.0046 (11)0.0054 (10)
N120.0207 (12)0.0332 (14)0.0337 (14)0.0001 (10)0.0084 (10)0.0022 (11)
N130.0242 (15)0.050 (2)0.083 (3)0.0061 (13)0.0168 (16)0.0130 (18)
N140.0245 (12)0.0215 (12)0.0317 (13)0.0007 (9)0.0019 (10)0.0014 (10)
N150.0501 (19)0.0269 (14)0.0430 (17)0.0047 (13)0.0014 (14)0.0084 (12)
O10.0176 (9)0.0290 (10)0.0148 (9)0.0039 (8)0.0023 (7)0.0028 (7)
O20.0170 (9)0.0375 (12)0.0198 (10)0.0042 (8)0.0003 (8)0.0019 (8)
O30.0309 (11)0.0394 (12)0.0158 (9)0.0061 (9)0.0042 (8)0.0013 (9)
O40.0225 (10)0.0238 (10)0.0157 (9)0.0028 (8)0.0001 (7)0.0005 (7)
O50.0219 (10)0.0329 (11)0.0227 (10)0.0036 (8)0.0024 (8)0.0013 (8)
O60.0284 (11)0.0270 (11)0.0314 (11)0.0069 (9)0.0009 (9)0.0071 (9)
O70.0190 (9)0.0207 (9)0.0211 (9)0.0005 (7)0.0052 (7)0.0014 (7)
O80.0298 (11)0.0219 (10)0.0230 (10)0.0024 (8)0.0054 (8)0.0018 (8)
O90.0233 (10)0.0305 (11)0.0355 (12)0.0039 (9)0.0114 (9)0.0047 (9)
O100.0171 (9)0.0226 (9)0.0154 (9)0.0015 (7)0.0014 (7)0.0006 (7)
O110.0244 (10)0.0285 (11)0.0240 (10)0.0084 (8)0.0003 (8)0.0005 (8)
O120.0249 (10)0.0289 (11)0.0220 (10)0.0051 (8)0.0050 (8)0.0061 (8)
O130.0149 (9)0.0218 (9)0.0165 (9)0.0030 (7)0.0022 (7)0.0023 (7)
O140.0222 (10)0.0215 (9)0.0172 (9)0.0019 (7)0.0018 (7)0.0002 (7)
O150.0242 (11)0.0332 (12)0.0280 (11)0.0114 (9)0.0014 (9)0.0019 (9)
O160.0266 (11)0.0319 (11)0.0191 (9)0.0026 (8)0.0069 (8)0.0041 (8)
O170.0226 (10)0.0353 (12)0.0220 (10)0.0030 (9)0.0047 (8)0.0005 (9)
O180.0231 (10)0.0244 (10)0.0188 (9)0.0015 (8)0.0050 (8)0.0019 (8)
O190.0325 (11)0.0230 (10)0.0206 (10)0.0019 (8)0.0038 (8)0.0012 (8)
O200.0357 (13)0.0401 (13)0.0322 (12)0.0015 (10)0.0147 (10)0.0035 (10)
Mn10.01652 (19)0.01949 (19)0.01425 (18)0.00034 (14)0.00212 (14)0.00079 (14)
Mn20.0167 (2)0.0255 (2)0.0185 (2)0.00469 (16)0.00044 (15)0.00038 (16)
Mn30.0227 (2)0.0283 (2)0.01402 (19)0.00149 (17)0.00181 (16)0.00162 (16)
Mn40.0207 (2)0.0205 (2)0.0173 (2)0.00172 (15)0.00069 (16)0.00041 (15)
Mn50.0167 (2)0.0234 (2)0.0214 (2)0.00192 (15)0.00466 (16)0.00014 (16)
Mn60.01722 (19)0.01867 (19)0.01691 (19)0.00124 (15)0.00124 (15)0.00111 (15)
Geometric parameters (Å, º) top
C1—N11.307 (4)N7—C371.383 (9)
C1—O21.310 (4)N7—H70.8800
C1—C21.473 (4)C37—C381.348 (13)
C2—C31.404 (4)C37—H370.9500
C2—C71.411 (4)C38—H380.9500
C3—C41.391 (5)C36B—N7B1.347 (19)
C3—H30.9500C36B—H36B0.9500
C4—C51.389 (5)N7B—C37B1.355 (15)
C4—H40.9500N7B—H7B0.8800
C5—C61.379 (5)C37B—C38B1.375 (16)
C5—H50.9500C37B—H37B0.9500
C6—C71.408 (4)C38B—H38B0.9500
C6—H60.9500C39—N81.324 (4)
C7—O31.333 (4)C39—N91.334 (4)
C8—O51.284 (4)C39—H390.9500
C8—N21.315 (4)C40—C411.349 (5)
C8—C91.476 (4)C40—N91.363 (5)
C10—C111.374 (5)C40—H400.9500
C10—C91.391 (4)C41—N81.373 (4)
C10—H100.9500C41—H410.9500
C11—C121.379 (5)C42—N111.329 (4)
C11—H110.9500C42—N101.332 (4)
C12—C131.387 (5)C42—H420.9500
C12—H120.9500C43—N111.346 (5)
C13—C141.396 (4)C43—C441.354 (5)
C13—H130.9500C43—H430.9500
C14—O61.340 (4)C44—N101.376 (4)
C14—C91.404 (4)C44—H440.9500
C15—O81.288 (4)C45—N121.311 (4)
C15—N31.319 (4)C45—N131.324 (5)
C15—C161.482 (4)C45—H450.9500
C16—C171.399 (4)C46—C471.348 (5)
C16—C211.403 (5)C46—N131.348 (6)
C17—C181.390 (5)C46—H460.9500
C17—H170.9500C47—N121.370 (5)
C18—C191.383 (6)C47—H470.9500
C18—H180.9500C48—N141.318 (4)
C19—C201.375 (5)C48—N151.337 (4)
C19—H190.9500C48—H480.9500
C20—C211.410 (4)C49—C501.347 (5)
C20—H200.9500C49—N151.377 (5)
C21—O91.333 (4)C49—H490.9500
C22—O111.275 (4)C50—N141.367 (4)
C22—N41.327 (4)C50—H500.9500
C22—C231.488 (4)C51—O201.429 (5)
O21—C521.449 (8)C51—H51A0.9800
O21—H210.8400C51—H51B0.9800
C52—H52A0.9800C51—H51C0.9800
C52—H52B0.9800O22—C531.405 (9)
C52—H52C0.9800O22—H22A0.8400
O24—C551.380 (8)C53—H53A0.9800
O24—H24A0.8400C53—H53B0.9800
C55—H55A0.9800C53—H53C0.9800
C55—H55B0.9800C77—O191.238 (4)
C55—H55C0.9800C77—O181.279 (3)
O21B—H21A0.8480C77—H770.9500
O21B—H21B0.8507C79—O161.249 (4)
O22B—H22B0.8389C79—O171.254 (4)
O22B—H22C0.8434C79—H790.9500
C23—C281.394 (4)N1—O11.410 (3)
C23—C241.414 (4)N1—Mn31.992 (3)
C24—C251.391 (5)N2—O41.402 (3)
C24—H240.9500N2—Mn41.963 (2)
O23B—C54B1.446 (11)N3—O71.393 (3)
O23B—H23B0.8400N3—Mn51.971 (2)
C54B—H54D0.9800N4—O101.415 (3)
C54B—H54E0.9800N4—Mn61.951 (2)
C54B—H54F0.9800N5—O131.414 (3)
O25B—C561.424 (11)N5—Mn21.961 (2)
O25B—H25A0.8400N8—Mn32.040 (3)
C56—H56A0.9800N9—H90.8800
C56—H56B0.9800N10—Mn42.012 (2)
C56—H56C0.9800N11—H11A0.8800
C54—O231.295 (18)N12—Mn52.025 (3)
C54—H54A0.9800N13—H13A0.8800
C54—H54B0.9800N14—Mn62.252 (3)
C54—H54C0.9800N15—H150.8800
O23—H230.8400O1—Mn21.894 (2)
C25—C261.363 (5)O1—Mn12.2476 (19)
C25—H250.9500O2—Mn21.947 (2)
C26—C271.379 (5)O3—Mn31.841 (2)
C26—H260.9500O4—Mn31.8837 (19)
C27—C281.403 (4)O4—Mn12.2387 (19)
C27—H270.9500O5—Mn32.066 (2)
C28—O121.348 (4)O6—Mn41.859 (2)
C29—O141.304 (3)O7—Mn41.904 (2)
C29—N51.305 (4)O7—Mn12.250 (2)
C29—C301.476 (4)O8—Mn42.168 (2)
C30—C311.409 (4)O9—Mn51.862 (2)
C30—C351.411 (4)O10—Mn51.9407 (19)
C31—C321.378 (5)O10—Mn12.2647 (19)
C31—H310.9500O11—Mn52.165 (2)
C32—C331.387 (5)O12—Mn61.862 (2)
C32—H320.9500O13—Mn61.9150 (19)
C33—C341.377 (5)O13—Mn12.2276 (19)
C33—H330.9500O14—Mn61.964 (2)
C34—C351.406 (4)O15—Mn21.858 (2)
C34—H340.9500O16—Mn12.213 (2)
C35—O151.343 (4)O17—Mn52.238 (2)
N6—C361.347 (11)O18—Mn12.245 (2)
N6—C381.355 (12)O18—Mn42.492 (2)
N6—Mn22.227 (3)O19—Mn62.253 (2)
C36—N71.355 (8)O20—Mn22.285 (2)
C36—H360.9500O20—H20A0.847 (19)
N1—C1—O2120.1 (2)C50—C49—N15106.1 (3)
N1—C1—C2120.9 (3)C50—C49—H49126.9
O2—C1—C2119.0 (3)N15—C49—H49126.9
C3—C2—C7119.6 (3)C49—C50—N14109.7 (3)
C3—C2—C1118.0 (3)C49—C50—H50125.2
C7—C2—C1122.4 (3)N14—C50—H50125.2
C4—C3—C2121.0 (3)O20—C51—H51A109.5
C4—C3—H3119.5O20—C51—H51B109.5
C2—C3—H3119.5H51A—C51—H51B109.5
C5—C4—C3119.0 (3)O20—C51—H51C109.5
C5—C4—H4120.5H51A—C51—H51C109.5
C3—C4—H4120.5H51B—C51—H51C109.5
C6—C5—C4121.1 (3)C53—O22—H22A109.5
C6—C5—H5119.4O22—C53—H53A109.5
C4—C5—H5119.4O22—C53—H53B109.5
C5—C6—C7120.8 (3)H53A—C53—H53B109.5
C5—C6—H6119.6O22—C53—H53C109.5
C7—C6—H6119.6H53A—C53—H53C109.5
O3—C7—C6117.5 (3)H53B—C53—H53C109.5
O3—C7—C2124.1 (3)O19—C77—O18127.3 (3)
C6—C7—C2118.4 (3)O19—C77—H77116.3
O5—C8—N2120.6 (3)O18—C77—H77116.3
O5—C8—C9120.2 (3)O16—C79—O17128.7 (3)
N2—C8—C9119.1 (3)O16—C79—H79115.7
C11—C10—C9121.8 (3)O17—C79—H79115.7
C11—C10—H10119.1C1—N1—O1112.7 (2)
C9—C10—H10119.1C1—N1—Mn3128.3 (2)
C10—C11—C12119.3 (3)O1—N1—Mn3118.01 (17)
C10—C11—H11120.3C8—N2—O4113.1 (2)
C12—C11—H11120.3C8—N2—Mn4133.1 (2)
C11—C12—C13120.2 (3)O4—N2—Mn4113.67 (16)
C11—C12—H12119.9C15—N3—O7114.0 (2)
C13—C12—H12119.9C15—N3—Mn5132.8 (2)
C12—C13—C14120.8 (3)O7—N3—Mn5112.90 (16)
C12—C13—H13119.6C22—N4—O10114.9 (2)
C14—C13—H13119.6C22—N4—Mn6129.45 (19)
O6—C14—C13117.6 (3)O10—N4—Mn6115.54 (15)
O6—C14—C9123.6 (3)C29—N5—O13113.9 (2)
C13—C14—C9118.8 (3)C29—N5—Mn2129.78 (19)
O8—C15—N3120.3 (3)O13—N5—Mn2115.77 (16)
O8—C15—C16121.8 (3)C39—N8—C41105.5 (3)
N3—C15—C16117.9 (3)C39—N8—Mn3127.9 (2)
C17—C16—C21119.4 (3)C41—N8—Mn3126.6 (2)
C17—C16—C15117.9 (3)C39—N9—C40107.5 (3)
C21—C16—C15122.7 (3)C39—N9—H9126.2
C18—C17—C16121.2 (3)C40—N9—H9126.2
C18—C17—H17119.4C10—C9—C14119.0 (3)
C16—C17—H17119.4C10—C9—C8118.1 (3)
C19—C18—C17119.0 (3)C14—C9—C8122.9 (3)
C19—C18—H18120.5C42—N10—C44106.2 (3)
C17—C18—H18120.5C42—N10—Mn4126.5 (2)
C20—C19—C18120.9 (3)C44—N10—Mn4127.2 (2)
C20—C19—H19119.6C42—N11—C43108.4 (3)
C18—C19—H19119.6C42—N11—H11A125.8
C19—C20—C21120.9 (3)C43—N11—H11A125.8
C19—C20—H20119.6C45—N12—C47106.1 (3)
C21—C20—H20119.6C45—N12—Mn5127.4 (3)
O9—C21—C16124.9 (3)C47—N12—Mn5125.8 (2)
O9—C21—C20116.6 (3)C45—N13—C46108.7 (3)
C16—C21—C20118.5 (3)C45—N13—H13A125.6
O11—C22—N4121.5 (3)C46—N13—H13A125.6
O11—C22—C23120.4 (3)C48—N14—C50106.0 (3)
N4—C22—C23118.1 (3)C48—N14—Mn6123.1 (2)
C52—O21—H21109.5C50—N14—Mn6130.5 (2)
O21—C52—H52A109.5C48—N15—C49107.1 (3)
O21—C52—H52B109.5C48—N15—H15126.4
H52A—C52—H52B109.5C49—N15—H15126.4
O21—C52—H52C109.5N1—O1—Mn2113.57 (15)
H52A—C52—H52C109.5N1—O1—Mn1122.13 (15)
H52B—C52—H52C109.5Mn2—O1—Mn1124.27 (9)
C55—O24—H24A109.5C1—O2—Mn2111.94 (17)
O24—C55—H55A109.5C7—O3—Mn3128.96 (19)
O24—C55—H55B109.5N2—O4—Mn3115.58 (15)
H55A—C55—H55B109.5N2—O4—Mn1113.98 (14)
O24—C55—H55C109.5Mn3—O4—Mn1119.53 (10)
H55A—C55—H55C109.5C8—O5—Mn3110.32 (18)
H55B—C55—H55C109.5C14—O6—Mn4132.1 (2)
H21A—O21B—H21B104.8N3—O7—Mn4118.54 (16)
H22B—O22B—H22C107.4N3—O7—Mn1114.37 (15)
C28—C23—C24118.8 (3)Mn4—O7—Mn1109.53 (9)
C28—C23—C22124.4 (3)C15—O8—Mn4110.17 (17)
C24—C23—C22116.7 (3)C21—O9—Mn5129.6 (2)
C25—C24—C23121.1 (3)N4—O10—Mn5115.35 (15)
C25—C24—H24119.4N4—O10—Mn1107.54 (14)
C23—C24—H24119.4Mn5—O10—Mn1113.39 (9)
C54B—O23B—H23B109.5C22—O11—Mn5109.73 (17)
O23B—C54B—H54D109.5C28—O12—Mn6126.18 (19)
O23B—C54B—H54E109.5N5—O13—Mn6111.40 (14)
H54D—C54B—H54E109.5N5—O13—Mn1120.69 (15)
O23B—C54B—H54F109.5Mn6—O13—Mn1111.82 (9)
H54D—C54B—H54F109.5C29—O14—Mn6111.01 (17)
H54E—C54B—H54F109.5C35—O15—Mn2127.91 (19)
C56—O25B—H25A109.5C79—O16—Mn1136.1 (2)
O25B—C56—H56A109.5C79—O17—Mn5127.48 (19)
O25B—C56—H56B109.5C77—O18—Mn1126.60 (18)
H56A—C56—H56B109.5C77—O18—Mn4118.62 (18)
O25B—C56—H56C109.5Mn1—O18—Mn491.56 (7)
H56A—C56—H56C109.5C77—O19—Mn6136.21 (19)
H56B—C56—H56C109.5C51—O20—Mn2127.1 (2)
O23—C54—H54A109.5C51—O20—H20A99 (3)
O23—C54—H54B109.5Mn2—O20—H20A133 (3)
H54A—C54—H54B109.5O16—Mn1—O13108.98 (8)
O23—C54—H54C109.5O16—Mn1—O473.15 (8)
H54A—C54—H54C109.5O13—Mn1—O4152.14 (7)
H54B—C54—H54C109.5O16—Mn1—O18160.49 (8)
C54—O23—H23109.5O13—Mn1—O1888.11 (7)
C26—C25—C24119.3 (3)O4—Mn1—O1887.35 (7)
C26—C25—H25120.3O16—Mn1—O178.77 (7)
C24—C25—H25120.3O13—Mn1—O175.90 (7)
C25—C26—C27120.7 (3)O4—Mn1—O177.41 (7)
C25—C26—H26119.6O18—Mn1—O197.05 (7)
C27—C26—H26119.6O16—Mn1—O7106.50 (8)
C26—C27—C28121.3 (3)O13—Mn1—O7128.67 (7)
C26—C27—H27119.4O4—Mn1—O773.93 (7)
C28—C27—H27119.4O18—Mn1—O767.10 (7)
O12—C28—C23123.3 (3)O1—Mn1—O7147.62 (7)
O12—C28—C27117.9 (3)O16—Mn1—O1082.52 (7)
C23—C28—C27118.7 (3)O13—Mn1—O1076.74 (7)
O14—C29—N5120.5 (3)O4—Mn1—O10130.22 (7)
O14—C29—C30118.9 (2)O18—Mn1—O10111.37 (7)
N5—C29—C30120.6 (3)O1—Mn1—O10139.44 (7)
C31—C30—C35119.0 (3)O7—Mn1—O1072.43 (7)
C31—C30—C29118.0 (3)O15—Mn2—O1173.87 (10)
C35—C30—C29122.8 (3)O15—Mn2—O296.26 (9)
C32—C31—C30121.2 (3)O1—Mn2—O281.69 (8)
C32—C31—H31119.4O15—Mn2—N591.32 (9)
C30—C31—H31119.4O1—Mn2—N590.85 (9)
C31—C32—C33119.7 (3)O2—Mn2—N5172.40 (9)
C31—C32—H32120.2O15—Mn2—N692.78 (11)
C33—C32—H32120.2O1—Mn2—N692.94 (10)
C34—C33—C32120.3 (3)O2—Mn2—N688.75 (10)
C34—C33—H33119.8N5—Mn2—N690.18 (10)
C32—C33—H33119.8O15—Mn2—O2085.86 (10)
C33—C34—C35121.4 (3)O1—Mn2—O2088.30 (9)
C33—C34—H34119.3O2—Mn2—O2088.41 (9)
C35—C34—H34119.3N5—Mn2—O2092.85 (10)
O15—C35—C34117.2 (3)N6—Mn2—O20176.70 (10)
O15—C35—C30124.3 (3)O3—Mn3—O4178.26 (10)
C34—C35—C30118.4 (3)O3—Mn3—N189.50 (10)
C36—N6—C38107.7 (5)O4—Mn3—N191.88 (9)
C36—N6—Mn2120.9 (3)O3—Mn3—N889.10 (10)
C38—N6—Mn2131.3 (5)O4—Mn3—N890.09 (10)
N6—C36—N7108.9 (7)N1—Mn3—N8155.17 (11)
N6—C36—H36125.5O3—Mn3—O599.25 (10)
N7—C36—H36125.5O4—Mn3—O579.41 (8)
C36—N7—C37107.1 (7)N1—Mn3—O5102.64 (10)
C36—N7—H7126.5N8—Mn3—O5102.06 (10)
C37—N7—H7126.5O6—Mn4—O7178.56 (9)
C38—C37—N7107.3 (8)O6—Mn4—N288.36 (10)
C38—C37—H37126.4O7—Mn4—N293.07 (9)
N7—C37—H37126.4O6—Mn4—N1087.87 (10)
C37—C38—N6108.8 (10)O7—Mn4—N1090.69 (9)
C37—C38—H38125.6N2—Mn4—N10169.38 (10)
N6—C38—H38125.6O6—Mn4—O8103.11 (9)
N7B—C36B—H36B123.2O7—Mn4—O876.92 (8)
C36B—N7B—C37B104.0 (15)N2—Mn4—O896.43 (9)
C36B—N7B—H7B128.0N10—Mn4—O894.10 (9)
C37B—N7B—H7B128.0O6—Mn4—O18112.80 (9)
N7B—C37B—C38B109.3 (14)O7—Mn4—O1867.32 (7)
N7B—C37B—H37B125.4N2—Mn4—O1880.07 (8)
C38B—C37B—H37B125.4N10—Mn4—O1892.27 (8)
C37B—C38B—H38B125.3O8—Mn4—O18143.72 (7)
N8—C39—N9111.1 (3)O9—Mn5—O10176.73 (9)
N8—C39—H39124.4O9—Mn5—N388.83 (10)
N9—C39—H39124.4O10—Mn5—N391.64 (9)
C41—C40—N9106.4 (3)O9—Mn5—N1289.89 (10)
C41—C40—H40126.8O10—Mn5—N1289.53 (10)
N9—C40—H40126.8N3—Mn5—N12177.84 (11)
C40—C41—N8109.4 (3)O9—Mn5—O1198.51 (9)
C40—C41—H41125.3O10—Mn5—O1178.26 (8)
N8—C41—H41125.3N3—Mn5—O1189.90 (9)
N11—C42—N10110.1 (3)N12—Mn5—O1188.56 (10)
N11—C42—H42125.0O9—Mn5—O1790.76 (9)
N10—C42—H42125.0O10—Mn5—O1792.45 (8)
N11—C43—C44107.1 (3)N3—Mn5—O1792.74 (9)
N11—C43—H43126.4N12—Mn5—O1789.02 (10)
C44—C43—H43126.4O11—Mn5—O17170.42 (8)
C43—C44—N10108.2 (3)O12—Mn6—O13175.85 (9)
C43—C44—H44125.9O12—Mn6—N490.68 (9)
N10—C44—H44125.9O13—Mn6—N493.46 (8)
N12—C45—N13110.3 (4)O12—Mn6—O1493.81 (9)
N12—C45—H45124.9O13—Mn6—O1482.09 (8)
N13—C45—H45124.9N4—Mn6—O14172.99 (9)
C47—C46—N13105.9 (4)O12—Mn6—N1489.54 (10)
C47—C46—H46127.0O13—Mn6—N1489.85 (9)
N13—C46—H46127.0N4—Mn6—N1494.50 (10)
C46—C47—N12108.9 (4)O14—Mn6—N1490.91 (9)
C46—C47—H47125.5O12—Mn6—O1993.23 (9)
N12—C47—H47125.5O13—Mn6—O1987.05 (8)
N14—C48—N15111.0 (3)N4—Mn6—O1990.17 (9)
N14—C48—H48124.5O14—Mn6—O1984.21 (8)
N15—C48—H48124.5N14—Mn6—O19174.54 (9)
N1—C1—C2—C3179.8 (3)O6—C14—C9—C10178.5 (3)
O2—C1—C2—C30.5 (4)C13—C14—C9—C101.1 (4)
N1—C1—C2—C70.8 (5)O6—C14—C9—C82.2 (5)
O2—C1—C2—C7179.4 (3)C13—C14—C9—C8178.2 (3)
C7—C2—C3—C41.8 (5)O5—C8—C9—C102.0 (4)
C1—C2—C3—C4179.2 (3)N2—C8—C9—C10176.4 (3)
C2—C3—C4—C50.3 (6)O5—C8—C9—C14178.7 (3)
C3—C4—C5—C61.8 (6)N2—C8—C9—C142.9 (4)
C4—C5—C6—C71.2 (6)N11—C42—N10—C440.7 (4)
C5—C6—C7—O3178.0 (3)N11—C42—N10—Mn4177.3 (2)
C5—C6—C7—C20.9 (5)C43—C44—N10—C420.1 (4)
C3—C2—C7—O3176.4 (3)C43—C44—N10—Mn4176.4 (2)
C1—C2—C7—O32.5 (5)N10—C42—N11—C431.3 (4)
C3—C2—C7—C62.4 (5)C44—C43—N11—C421.4 (4)
C1—C2—C7—C6178.7 (3)N13—C45—N12—C470.7 (5)
C9—C10—C11—C120.4 (5)N13—C45—N12—Mn5171.7 (3)
C10—C11—C12—C131.0 (5)C46—C47—N12—C450.1 (6)
C11—C12—C13—C141.4 (5)C46—C47—N12—Mn5171.4 (3)
C12—C13—C14—O6179.9 (3)N12—C45—N13—C460.9 (5)
C12—C13—C14—C90.3 (5)C47—C46—N13—C450.8 (6)
O8—C15—C16—C1711.9 (4)N15—C48—N14—C500.3 (4)
N3—C15—C16—C17167.5 (3)N15—C48—N14—Mn6173.6 (2)
O8—C15—C16—C21168.2 (3)C49—C50—N14—C480.4 (5)
N3—C15—C16—C2112.4 (4)C49—C50—N14—Mn6173.7 (3)
C21—C16—C17—C181.1 (5)N14—C48—N15—C490.8 (4)
C15—C16—C17—C18179.0 (3)C50—C49—N15—C481.0 (5)
C16—C17—C18—C191.0 (5)C1—N1—O1—Mn20.3 (3)
C17—C18—C19—C201.0 (5)Mn3—N1—O1—Mn2169.55 (11)
C18—C19—C20—C211.1 (5)C1—N1—O1—Mn1178.42 (18)
C17—C16—C21—O9178.0 (3)Mn3—N1—O1—Mn112.4 (3)
C15—C16—C21—O91.9 (5)N1—C1—O2—Mn22.5 (3)
C17—C16—C21—C203.1 (4)C2—C1—O2—Mn2177.8 (2)
C15—C16—C21—C20176.9 (3)C6—C7—O3—Mn3159.5 (2)
C19—C20—C21—O9177.9 (3)C2—C7—O3—Mn321.7 (5)
C19—C20—C21—C163.2 (5)C8—N2—O4—Mn39.4 (3)
O11—C22—C23—C28166.5 (3)Mn4—N2—O4—Mn3173.86 (10)
N4—C22—C23—C2814.0 (4)C8—N2—O4—Mn1134.77 (19)
O11—C22—C23—C249.8 (4)Mn4—N2—O4—Mn141.9 (2)
N4—C22—C23—C24169.7 (3)N2—C8—O5—Mn34.1 (3)
C28—C23—C24—C250.4 (5)C9—C8—O5—Mn3177.5 (2)
C22—C23—C24—C25176.9 (3)C13—C14—O6—Mn4169.7 (2)
C23—C24—C25—C262.0 (6)C9—C14—O6—Mn410.7 (4)
C24—C25—C26—C271.7 (6)C15—N3—O7—Mn42.3 (3)
C25—C26—C27—C280.2 (6)Mn5—N3—O7—Mn4177.05 (10)
C24—C23—C28—O12179.5 (3)C15—N3—O7—Mn1133.94 (19)
C22—C23—C28—O124.4 (5)Mn5—N3—O7—Mn151.33 (19)
C24—C23—C28—C271.4 (5)N3—C15—O8—Mn40.9 (3)
C22—C23—C28—C27174.8 (3)C16—C15—O8—Mn4179.8 (2)
C26—C27—C28—O12179.1 (3)C16—C21—O9—Mn517.3 (4)
C26—C27—C28—C231.7 (5)C20—C21—O9—Mn5163.9 (2)
O14—C29—C30—C317.8 (4)C22—N4—O10—Mn53.3 (3)
N5—C29—C30—C31172.7 (3)Mn6—N4—O10—Mn5179.56 (10)
O14—C29—C30—C35168.7 (3)C22—N4—O10—Mn1124.3 (2)
N5—C29—C30—C3510.8 (4)Mn6—N4—O10—Mn152.82 (17)
C35—C30—C31—C320.7 (5)N4—C22—O11—Mn53.6 (3)
C29—C30—C31—C32177.3 (3)C23—C22—O11—Mn5176.9 (2)
C30—C31—C32—C330.0 (5)C23—C28—O12—Mn623.3 (4)
C31—C32—C33—C340.4 (6)C27—C28—O12—Mn6157.5 (2)
C32—C33—C34—C350.1 (5)C29—N5—O13—Mn610.7 (3)
C33—C34—C35—O15177.2 (3)Mn2—N5—O13—Mn6177.26 (10)
C33—C34—C35—C300.6 (5)C29—N5—O13—Mn1144.84 (19)
C31—C30—C35—O15176.6 (3)Mn2—N5—O13—Mn143.1 (2)
C29—C30—C35—O150.2 (5)N5—C29—O14—Mn62.9 (3)
C31—C30—C35—C341.0 (4)C30—C29—O14—Mn6177.6 (2)
C29—C30—C35—C34177.4 (3)C34—C35—O15—Mn2164.4 (2)
C38—N6—C36—N72.9 (19)C30—C35—O15—Mn218.0 (4)
Mn2—N6—C36—N7175.3 (5)O17—C79—O16—Mn110.1 (6)
N6—C36—N7—C370.5 (11)O16—C79—O17—Mn53.2 (5)
C36—N7—C37—C382.2 (18)O19—C77—O18—Mn17.2 (5)
N7—C37—C38—N64 (3)O19—C77—O18—Mn4123.5 (3)
C36—N6—C38—C374 (3)O18—C77—O19—Mn61.8 (5)
Mn2—N6—C38—C37173.7 (9)C35—O15—Mn2—O2161.5 (3)
C36B—N7B—C37B—C38B1 (4)C35—O15—Mn2—N519.2 (3)
N9—C40—C41—N80.5 (6)C35—O15—Mn2—N6109.5 (3)
N11—C43—C44—N100.9 (4)C35—O15—Mn2—O2073.5 (3)
N13—C46—C47—N120.4 (6)N1—O1—Mn2—O21.25 (17)
N15—C49—C50—N140.9 (5)Mn1—O1—Mn2—O2179.29 (13)
O2—C1—N1—O11.5 (4)N1—O1—Mn2—N5177.28 (18)
C2—C1—N1—O1178.8 (2)Mn1—O1—Mn2—N50.76 (13)
O2—C1—N1—Mn3166.4 (2)N1—O1—Mn2—N687.06 (18)
C2—C1—N1—Mn313.3 (4)Mn1—O1—Mn2—N690.98 (13)
O5—C8—N2—O42.9 (4)N1—O1—Mn2—O2089.89 (17)
C9—C8—N2—O4175.4 (2)Mn1—O1—Mn2—O2092.07 (13)
O5—C8—N2—Mn4178.8 (2)C7—O3—Mn3—N126.1 (3)
C9—C8—N2—Mn40.5 (4)C7—O3—Mn3—N8178.7 (3)
O8—C15—N3—O72.0 (4)C7—O3—Mn3—O576.6 (3)
C16—C15—N3—O7178.6 (2)N2—O4—Mn3—N1111.33 (18)
O8—C15—N3—Mn5175.40 (19)Mn1—O4—Mn3—N130.76 (12)
C16—C15—N3—Mn55.2 (4)N2—O4—Mn3—N893.42 (18)
O11—C22—N4—O100.5 (4)Mn1—O4—Mn3—N8124.48 (12)
C23—C22—N4—O10180.0 (2)N2—O4—Mn3—O58.83 (17)
O11—C22—N4—Mn6176.1 (2)Mn1—O4—Mn3—O5133.26 (12)
C23—C22—N4—Mn63.4 (4)C14—O6—Mn4—N210.1 (3)
O14—C29—N5—O135.1 (4)C14—O6—Mn4—N10160.0 (3)
C30—C29—N5—O13174.4 (2)C14—O6—Mn4—O8106.3 (3)
O14—C29—N5—Mn2175.84 (19)C14—O6—Mn4—O1868.5 (3)
C30—C29—N5—Mn23.7 (4)C21—O9—Mn5—N318.6 (3)
N9—C39—N8—C410.0 (4)C21—O9—Mn5—N12163.1 (3)
N9—C39—N8—Mn3180.0 (2)C21—O9—Mn5—O11108.3 (3)
C40—C41—N8—C390.3 (5)C21—O9—Mn5—O1774.1 (3)
C40—C41—N8—Mn3179.7 (3)C28—O12—Mn6—N430.0 (3)
N8—C39—N9—C400.3 (5)C28—O12—Mn6—O14144.6 (2)
C41—C40—N9—C390.5 (5)C28—O12—Mn6—N14124.5 (3)
C11—C10—C9—C141.5 (5)C28—O12—Mn6—O1960.2 (2)
C11—C10—C9—C8177.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C44—H44···O110.952.473.413 (4)173
C47—H47···N140.952.683.599 (5)162
C51—H51A···O180.982.503.360 (4)147
N7—H7···O25B0.881.882.658 (9)147
N9—H9···O17i0.882.072.898 (3)156
N11—H11A···O14ii0.882.002.869 (3)168
N13—H13A···O2iii0.881.992.827 (4)159
N15—H15···O8iv0.881.962.800 (4)159
N7B—H7B···O210.882.112.933 (15)155
O20—H20A···O22v0.85 (2)1.85 (2)2.681 (5)168 (5)
O20—H20A···O22Bv0.85 (2)1.96 (4)2.75 (3)155 (4)
O22—H22A···O240.841.972.746 (7)154
O24—H24A···O210.842.032.808 (6)154
O25B—H25A···O23B0.841.912.601 (9)138
O22B—H22C···O21Bvi0.842.483.29 (4)160
O23—H23···O12vii0.842.192.828 (9)133
O23B—H23B···O12vii0.842.082.897 (6)165
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x+1, y+1/2, z+1/2; (v) x, y+3/2, z1/2; (vi) x+2, y+2, z+1; (vii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn6(C7H4NO3)5(CHO2)2(C3H4N2)5(CH4O)]·3.36CH4O·0.65H2O
Mr1662.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.2053 (12), 24.621 (2), 21.491 (2)
β (°) 101.861 (1)
V3)6838.0 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.45 × 0.38 × 0.25
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(TWINABS; Sheldrick, 2009)
Tmin, Tmax0.619, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
87486, 17626, 14038
Rint0.044
(sin θ/λ)max1)0.678
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.140, 1.05
No. of reflections17626
No. of parameters1006
No. of restraints26
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0719P)2 + 12.0988P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.17, 0.59

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012) and CELL_NOW (Sheldrick, 2008b), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008a), SHELXL2012 (beta 2012-4; Sheldrick, 2012), SHELXLE Rev582 (Hübschle et al., 2011), Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C44—H44···O110.952.473.413 (4)173.4
C47—H47···N140.952.683.599 (5)162.1
C51—H51A···O180.982.503.360 (4)146.7
N7—H7···O25B0.881.882.658 (9)146.8
N9—H9···O17i0.882.072.898 (3)156.0
N11—H11A···O14ii0.882.002.869 (3)168.3
N13—H13A···O2iii0.881.992.827 (4)159.3
N15—H15···O8iv0.881.962.800 (4)158.8
N7B—H7B···O210.882.112.933 (15)155.0
O20—H20A···O22v0.847 (19)1.85 (2)2.681 (5)168 (5)
O20—H20A···O22Bv0.847 (19)1.96 (4)2.75 (3)155 (4)
O22—H22A···O240.841.972.746 (7)154.3
O24—H24A···O210.842.032.808 (6)154.2
O25B—H25A···O23B0.841.912.601 (9)138.1
O22B—H22C···O21Bvi0.842.483.29 (4)160.4
O23—H23···O12vii0.842.192.828 (9)132.8
O23B—H23B···O12vii0.842.082.897 (6)164.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x+1, y+1/2, z+1/2; (v) x, y+3/2, z1/2; (vi) x+2, y+2, z+1; (vii) x, y+3/2, z+1/2.
 

Acknowledgements

This work was funded by the Shippensburg University Foundation (grant No. UGR2012/13–08 to BRT and CMZ). The diffractometer was funded by NSF grant No. 0087210, by Ohio Board of Regents grant No. CAP-491, and by YSU. The authors would like to thank George M. Sheldrick for providing access to the beta version of SHELXL2012 prior to its official release.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDendrinou-Samara, C., Alevizopoulou, L., Iordanidis, L., Samaras, E. & Kessissoglou, D. P. (2002). J. Inorg. Biochem. 89, 89–96.  Web of Science PubMed CAS Google Scholar
First citationDendrinou-Samara, C., Papadopoulos, A. N., Malamatari, D. A., Tarushi, A., Raptopoulou, C. P., Terzis, A., Samaras, E. & Kessissoglou, D. P. (2005). J. Inorg. Biochem. 99, 864–875.  Web of Science PubMed CAS Google Scholar
First citationDendrinou-Samara, C., Psomas, G., Iordanidis, L., Tangoulis, V. & Kessissoglou, D. P. (2001). Chem. Eur. J. 7, 5041–5051.  CrossRef PubMed CAS Google Scholar
First citationEmerich, B., Smith, M., Zeller, M. & Zaleski, C. M. (2010). J. Chem. Crystallogr. 40, 769–777.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKessissoglou, D. P., Kampf, J. & Pecoraro, V. L. (1994). Polyhedron, 13, 1379–1391.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). CELL_NOW. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2012). SHELXL2012. University of Göttingen, Germany.  Google Scholar
First citationStiefel, E. I. & Brown, G. F. (1972). Inorg. Chem. 11, 434–436.  CrossRef CAS Web of Science Google Scholar
First citationTigyer, B. R., Zeller, M. & Zaleski, C. M. (2011). Acta Cryst. E67, m1041–m1042.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1521-m1522
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds