metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(methyl­amino)­troponato]copper(II)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: geds12@yahoo.com

(Received 23 September 2010; accepted 25 October 2010; online 6 November 2010)

In the title compound, [Cu(C8H8NO)2], a strictly square-planar geometry about the CuII metal atom is observed. Substitution of an O atom with a methyl-functionalized N atom does not significantly alter the bond distances and angles in the copper(II) complex when compared with a similar bis­(troponato)copper(II) complex. ππ stacking is observed between the tropolone rings, with inter­planar distances of 3.5039 (16) and 3.2933 (15) Å, respectively. Additional stabilisation of the structure is accomplished through C—H⋯O hydrogen-bonding interactions.

Related literature

For related literature on values of bond lengths and angles, see: Zhang et al. (2008[Zhang, B.-Y., Yang, Q. & Nie, J.-J. (2008). Acta Cryst. E64, m7.]); Hill & Steyl (2008[Hill, T. N. & Steyl, G. (2008). Acta Cryst. E64, m1580-m1581.]); Kristiansson (2002[Kristiansson, O. (2002). Acta Cryst. E58, m130-m132.]). For similar structures, see: Liang et al. (2001[Liang, Y.-C., Hong, M.-C., Cao, R. & Shi, Q. (2001). Acta Cryst. E57, m380-m381.]). For other related structures, see: Starikova & Shugam (1969[Starikova, Z. A. & Shugam, E. A. (1969). Zh. Strukt. Khim., 10, 290-293.]); Byrn et al. (1993[Byrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480-9497.]); Park & Marshall (2005[Park, K. H. & Marshall, W. J. (2005). J. Am. Chem. Soc. 127, 9330-9331.]); Dessy & Fares (1979[Dessy, G. & Fares, V. (1979). Cryst. Struct. Commun. 8, 507-510.]); Baidina et al. (2004[Baidina, I. A., Stabnikov, P. A., Vasil'ev, A. D., Gromilov, S. A. & Igumenov, I. K. (2004). Zh. Strukt. Khim., 45, 671-677.]). For the synthesis of the title compound, see: Roesky & Burgstein (1999[Roesky, P. W. & Burgstein, M. R. (1999). Inorg. Chem. 38, 5629-5632.]); Claramunt et al. (2004[Claramunt, R. M., Sanz, D., Perez-Torralba, M., Pinilla, E., Torres, M. R. & Elguero, J. (2004). Eur. J. Org. Chem. pp. 4452-4466.]). For background and the use of the title compound, see: Roesky (2000[Roesky, P. W. (2000). Chem. Soc. Rev. 29, 335-345.]); Nepveu et al. (1993[Nepveu, F., Jasanda, F. & Walz, L. (1993). Inorg. Chim. Acta, 211, 141-147.]); Crous et al. (2005[Crous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108-1116.]); Roodt et al. (2003[Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.]); Steyl (2005[Steyl, G. (2005). Acta Cryst. E61, m1860-m1862.]); Steyl et al. (2001[Steyl, G., Otto, S. & Roodt, A. (2001). Acta Cryst. E57, m352-m354.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H8NO)2]

  • Mr = 331.85

  • Monoclinic, P 21 /n

  • a = 6.7541 (9) Å

  • b = 9.1599 (12) Å

  • c = 22.084 (3) Å

  • β = 92.108 (5)°

  • V = 1365.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 100 K

  • 0.34 × 0.32 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.583, Tmax = 0.760

  • 21665 measured reflections

  • 2985 independent reflections

  • 2804 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.066

  • S = 1.06

  • 2985 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O2 0.98 2.47 3.1222 (18) 124
C28—H28A⋯O1 0.98 2.41 3.0715 (18) 124

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenberg & Putz, 2004[Brandenberg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Complexes containing tropolonato type derivatives have steadily increased over the last few decades (Roesky, 2000), with most of the work having involved the first and second row transition elements. This attention has been to a large extent due to the medical application of tropolone in radio-pharmaceuticals (Nepveu et al., 1993) and catalyst precursors (Crous et al., 2005; Roodt et al., 2003). Functionalization of the tropolonato backbone (seven-membered ring) has also been investigated with a range of RhI and PdII complexes reported to date (Steyl et al., 2001; Steyl, 2005).

Heteroatom substitution of the tropolonato moiety has also been reported, most notably the O atoms are replaced with functionalized amino groups, resulting in either the 2- (aminotropone) or 1,2- (aminotropoimine) compounds (Roesky & Burgstein, 1999; Claramunt et al., 2004). Thus, a host of amino and anilino derivatives of tropolone have been reported (Roesky & Burgstein, 1999; Roesky, 2000; Claramunt et al., 2004). The addition of electron-donating or -withdrawing moieties to the N atom can significantly increase the application of these compounds in coordination chemistry. The most interesting observation concerning the CuII metal centres in general is the difference in the coordination behaviour of the bidentate-O,O donor atoms compared to the N,N donor atom complexes; the geometrical conformation changes from a square planar (Starikova & Shugam, 1969; Byrn et al., 1993) to a tetrahedral geometry (Park & Marshall, 2005; Dessy & Fares, 1979), respectively. The N-methylaminoacetylacetonato derivative have been reported (Baidina et al., 2004) as a distorted tetrahedral complex.

In an effort to further investigate these types of complexes, the crystal structure of [Cu(TropNMe)2] is presented.

The copper(II) ion is coordinated by two TropNMe ligands in a square-planar geometry (Fig 1). The Cu2+ ion chelates the TropNMe ligand via N1 and O1 to form a five-membered ring. The N1—O1—Cu—N2—O2 moiety is strictly planar. The ligand planes form angles of 6.54 (1)° and 3.12 (1)°, respectively with the 5-membered ring. This compares with literature (Hill & Steyl, 2008). ππ stacking between C11–C17 and C11–C17i (-x, 1 - y, -z) as well as C11–C17 and C21–C27ii (-x, 2 - y, -z) with intercentroid distances of 4.1483 (4) Å and 3.7827 (4) Å respectively as defined by the seven-membered ring system. Cu—O1 and Cu—O2 bond distances is 1.9313 (2) Å and 1.9386 (2) Å, respectively. This correlates well with literature (Zhang et al., 2008). The Cu—N1 and Cu—N2 bond distances is 1.9276 (2) Å and 1.9291 (2) Å respectively. The O1—Cu—N1 and O2—Cu—N2 angles is 82.292 (4)° and 82.090 (4)° respectively. This correlates well with literature (Kristiansson 2002). The N1—Cu—N2 angle is 175.769 (5)° this is smaller than the O1—Cu—O2 angle, which is 179.229 (6)°. This is in accordance with literature (Liang et al., 2001). The title compound is further stabilized by weak intramolecular C15—H15A···O1 and C16—H16A···O2 hydrogen interactions.

Related literature top

For related literature on values of bond lengths and angles, see: Zhang et al. (2008); Hill & Steyl (2008); Kristiansson (2002). For similar structures, see: Liang et al. (2001). For other related structures, see: Starikova & Shugam (1969); Byrn et al. (1993); Park & Marshall (2005); Dessy & Fares (1979); Baidina et al. (2004). For the synthesis of the title compound, see: Roesky & Burgstein (1999); Claramunt et al. (2004). For relativity [Relevance?] and use of the title compound, see: Roesky (2000); Nepveu et al. (1993); Crous et al. (2005); Roodt et al. (2003); Steyl (2005); Steyl et al. (2001).

Experimental top

Synthesis of 2-(N-methylamino)tropone (HTropNMe) was done according to the literature procedure (Roesky & Burgstein, 1999; Claramunt et al., 2004), while all other starting materials were obtained from commercially available sources. Cu(NO3)2 (100 mg, 0.44 mmol) was dissolved in CHCl3 or MeOH and refluxed with HTropNMe for 30 min. The product was filtered from the cold solution and dried in air for 24 h. Rhombic dark-green crystals suitable for X-ray diffraction was obtained from a chloroform/ether (1:1, 10 ml) mixture after 2 d. (Yield: 117 mg, 70%) 1H NMR (300 MHz, CDCl3, 25°C) 7.32 (m, 2H), 7.12 (d, 1H), 6.95 (d, 1H), 6.81 (t, 1H), 1.56 (s, 3H)

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent) of the parent atom with a C—H distance of 0.93. The methyl H atoms were placed in geometrically idealized positions and constrained to ride on the parent atoms with Uiso(H) = 1.5Ueq(C) and at a distance of 0.96 Å.

Structure description top

Complexes containing tropolonato type derivatives have steadily increased over the last few decades (Roesky, 2000), with most of the work having involved the first and second row transition elements. This attention has been to a large extent due to the medical application of tropolone in radio-pharmaceuticals (Nepveu et al., 1993) and catalyst precursors (Crous et al., 2005; Roodt et al., 2003). Functionalization of the tropolonato backbone (seven-membered ring) has also been investigated with a range of RhI and PdII complexes reported to date (Steyl et al., 2001; Steyl, 2005).

Heteroatom substitution of the tropolonato moiety has also been reported, most notably the O atoms are replaced with functionalized amino groups, resulting in either the 2- (aminotropone) or 1,2- (aminotropoimine) compounds (Roesky & Burgstein, 1999; Claramunt et al., 2004). Thus, a host of amino and anilino derivatives of tropolone have been reported (Roesky & Burgstein, 1999; Roesky, 2000; Claramunt et al., 2004). The addition of electron-donating or -withdrawing moieties to the N atom can significantly increase the application of these compounds in coordination chemistry. The most interesting observation concerning the CuII metal centres in general is the difference in the coordination behaviour of the bidentate-O,O donor atoms compared to the N,N donor atom complexes; the geometrical conformation changes from a square planar (Starikova & Shugam, 1969; Byrn et al., 1993) to a tetrahedral geometry (Park & Marshall, 2005; Dessy & Fares, 1979), respectively. The N-methylaminoacetylacetonato derivative have been reported (Baidina et al., 2004) as a distorted tetrahedral complex.

In an effort to further investigate these types of complexes, the crystal structure of [Cu(TropNMe)2] is presented.

The copper(II) ion is coordinated by two TropNMe ligands in a square-planar geometry (Fig 1). The Cu2+ ion chelates the TropNMe ligand via N1 and O1 to form a five-membered ring. The N1—O1—Cu—N2—O2 moiety is strictly planar. The ligand planes form angles of 6.54 (1)° and 3.12 (1)°, respectively with the 5-membered ring. This compares with literature (Hill & Steyl, 2008). ππ stacking between C11–C17 and C11–C17i (-x, 1 - y, -z) as well as C11–C17 and C21–C27ii (-x, 2 - y, -z) with intercentroid distances of 4.1483 (4) Å and 3.7827 (4) Å respectively as defined by the seven-membered ring system. Cu—O1 and Cu—O2 bond distances is 1.9313 (2) Å and 1.9386 (2) Å, respectively. This correlates well with literature (Zhang et al., 2008). The Cu—N1 and Cu—N2 bond distances is 1.9276 (2) Å and 1.9291 (2) Å respectively. The O1—Cu—N1 and O2—Cu—N2 angles is 82.292 (4)° and 82.090 (4)° respectively. This correlates well with literature (Kristiansson 2002). The N1—Cu—N2 angle is 175.769 (5)° this is smaller than the O1—Cu—O2 angle, which is 179.229 (6)°. This is in accordance with literature (Liang et al., 2001). The title compound is further stabilized by weak intramolecular C15—H15A···O1 and C16—H16A···O2 hydrogen interactions.

For related literature on values of bond lengths and angles, see: Zhang et al. (2008); Hill & Steyl (2008); Kristiansson (2002). For similar structures, see: Liang et al. (2001). For other related structures, see: Starikova & Shugam (1969); Byrn et al. (1993); Park & Marshall (2005); Dessy & Fares (1979); Baidina et al. (2004). For the synthesis of the title compound, see: Roesky & Burgstein (1999); Claramunt et al. (2004). For relativity [Relevance?] and use of the title compound, see: Roesky (2000); Nepveu et al. (1993); Crous et al. (2005); Roodt et al. (2003); Steyl (2005); Steyl et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability).
Bis[2-(methylamino)troponato]copper(II) top
Crystal data top
[Cu(C8H8NO)2]F(000) = 684
Mr = 331.85Dx = 1.614 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6754 reflections
a = 6.7541 (9) Åθ = 2.4–28.2°
b = 9.1599 (12) ŵ = 1.61 mm1
c = 22.084 (3) ÅT = 100 K
β = 92.108 (5)°Cuboid, black
V = 1365.3 (3) Å30.34 × 0.32 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2985 independent reflections
Graphite monochromator2804 reflections with I > 2σ(I)
Detector resolution: 8.5 pixels mm-1Rint = 0.032
φ and ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.583, Tmax = 0.760k = 1011
21665 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.8483P]
where P = (Fo2 + 2Fc2)/3
2985 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cu(C8H8NO)2]V = 1365.3 (3) Å3
Mr = 331.85Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7541 (9) ŵ = 1.61 mm1
b = 9.1599 (12) ÅT = 100 K
c = 22.084 (3) Å0.34 × 0.32 × 0.17 mm
β = 92.108 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2985 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2804 reflections with I > 2σ(I)
Tmin = 0.583, Tmax = 0.760Rint = 0.032
21665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.06Δρmax = 0.36 e Å3
2985 reflectionsΔρmin = 0.38 e Å3
190 parameters
Special details top

Experimental. First 80 frames repeated after collection for monitoring possible decay.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.0756 (2)0.73761 (16)0.03802 (6)0.0123 (3)
C120.1170 (2)0.68077 (16)0.01916 (6)0.0117 (3)
C130.2292 (2)0.57152 (18)0.05113 (7)0.0152 (3)
H130.35150.54790.03360.018*
C140.1913 (2)0.49449 (18)0.10280 (7)0.0172 (3)
H140.29070.42590.11470.021*
C150.0299 (2)0.50069 (18)0.14071 (7)0.0171 (3)
H150.03260.43660.17460.02*
C160.1324 (2)0.59075 (18)0.13361 (7)0.0157 (3)
H160.22820.58130.16380.019*
C170.1773 (2)0.69413 (17)0.08858 (7)0.0141 (3)
H170.29930.74360.09340.017*
C180.3658 (2)0.70243 (17)0.05564 (6)0.0136 (3)
H18A0.38730.75930.09240.02*
H18B0.3640.59820.06560.02*
H18C0.47320.72210.02570.02*
C210.0559 (2)1.02279 (16)0.17475 (6)0.0119 (3)
C220.1447 (2)1.06912 (16)0.15765 (6)0.0113 (3)
C230.2695 (2)1.16602 (17)0.19214 (7)0.0145 (3)
H230.39881.17730.17730.017*
C240.2340 (2)1.24600 (17)0.24341 (7)0.0172 (3)
H240.34221.30420.25780.021*
C250.0645 (2)1.25541 (17)0.27773 (7)0.0176 (3)
H250.06931.32190.31080.021*
C260.1089 (2)1.17780 (18)0.26841 (7)0.0167 (3)
H260.20941.19810.29620.02*
C270.1587 (2)1.07348 (18)0.22402 (7)0.0146 (3)
H270.28481.02960.22830.018*
C280.3903 (2)1.04390 (17)0.08191 (7)0.0136 (3)
H28A0.40640.98960.04420.02*
H28B0.49661.01710.11120.02*
H28C0.39651.14890.07370.02*
N10.17729 (18)0.74362 (14)0.03074 (5)0.0117 (2)
N20.19904 (18)1.00838 (14)0.10669 (5)0.0117 (2)
O10.15352 (16)0.83831 (13)0.00342 (5)0.0158 (2)
O20.14060 (15)0.92738 (13)0.13907 (5)0.0142 (2)
Cu0.00529 (2)0.881953 (19)0.067482 (7)0.01073 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0124 (7)0.0115 (7)0.0126 (6)0.0001 (5)0.0022 (5)0.0015 (5)
C120.0118 (7)0.0108 (7)0.0122 (6)0.0004 (5)0.0013 (5)0.0018 (5)
C130.0146 (7)0.0149 (8)0.0161 (7)0.0032 (6)0.0009 (5)0.0008 (6)
C140.0190 (7)0.0146 (8)0.0178 (7)0.0037 (6)0.0027 (6)0.0030 (6)
C150.0222 (8)0.0142 (8)0.0147 (7)0.0012 (6)0.0007 (6)0.0048 (6)
C160.0183 (7)0.0160 (8)0.0128 (7)0.0034 (6)0.0016 (6)0.0005 (6)
C170.0137 (7)0.0136 (8)0.0150 (7)0.0007 (6)0.0004 (5)0.0005 (5)
C180.0122 (7)0.0146 (8)0.0142 (7)0.0020 (6)0.0019 (5)0.0006 (5)
C210.0135 (7)0.0103 (7)0.0116 (6)0.0000 (5)0.0024 (5)0.0028 (5)
C220.0120 (7)0.0094 (7)0.0123 (6)0.0013 (5)0.0016 (5)0.0024 (5)
C230.0134 (7)0.0143 (8)0.0158 (7)0.0009 (6)0.0013 (5)0.0000 (6)
C240.0210 (8)0.0134 (8)0.0166 (7)0.0028 (6)0.0048 (6)0.0014 (6)
C250.0274 (8)0.0133 (8)0.0120 (7)0.0008 (6)0.0006 (6)0.0026 (5)
C260.0224 (8)0.0162 (8)0.0118 (7)0.0015 (6)0.0030 (6)0.0001 (6)
C270.0160 (7)0.0150 (8)0.0128 (7)0.0010 (6)0.0006 (5)0.0017 (6)
C280.0106 (7)0.0151 (8)0.0152 (7)0.0013 (5)0.0006 (5)0.0007 (5)
N10.0115 (6)0.0115 (6)0.0122 (6)0.0012 (5)0.0000 (4)0.0008 (5)
N20.0114 (6)0.0110 (6)0.0127 (6)0.0007 (5)0.0011 (4)0.0003 (5)
O10.0145 (5)0.0185 (6)0.0143 (5)0.0058 (4)0.0019 (4)0.0048 (4)
O20.0137 (5)0.0167 (6)0.0123 (5)0.0035 (4)0.0008 (4)0.0027 (4)
Cu0.01051 (11)0.01176 (12)0.00990 (11)0.00228 (6)0.00007 (7)0.00182 (6)
Geometric parameters (Å, º) top
C11—O11.2970 (18)C21—C221.482 (2)
C11—C171.390 (2)C22—N21.3196 (19)
C11—C121.475 (2)C22—C231.425 (2)
C12—N11.3210 (19)C23—C241.377 (2)
C12—C131.426 (2)C23—H230.95
C13—C141.374 (2)C24—C251.399 (2)
C13—H130.95C24—H240.95
C14—C151.400 (2)C25—C261.379 (2)
C14—H140.95C25—H250.95
C15—C161.376 (2)C26—C271.401 (2)
C15—H150.95C26—H260.95
C16—C171.398 (2)C27—H270.95
C16—H160.95C28—N21.4582 (18)
C17—H170.95C28—H28A0.98
C18—N11.4551 (18)C28—H28B0.98
C18—H18A0.98C28—H28C0.98
C18—H18B0.98N1—Cu1.9263 (12)
C18—H18C0.98N2—Cu1.9287 (12)
C21—O21.2958 (18)O1—Cu1.9312 (11)
C21—C271.392 (2)O2—Cu1.9385 (11)
O1—C11—C17118.36 (13)C24—C23—H23114.6
O1—C11—C12115.32 (13)C22—C23—H23114.6
C17—C11—C12126.32 (14)C23—C24—C25130.46 (15)
N1—C12—C13122.96 (13)C23—C24—H24114.8
N1—C12—C11112.57 (13)C25—C24—H24114.8
C13—C12—C11124.46 (13)C26—C25—C24126.51 (15)
C14—C13—C12131.26 (14)C26—C25—H25116.7
C14—C13—H13114.4C24—C25—H25116.7
C12—C13—H13114.4C25—C26—C27129.55 (15)
C13—C14—C15130.47 (15)C25—C26—H26115.2
C13—C14—H14114.8C27—C26—H26115.2
C15—C14—H14114.8C21—C27—C26131.35 (15)
C16—C15—C14126.19 (15)C21—C27—H27114.3
C16—C15—H15116.9C26—C27—H27114.3
C14—C15—H15116.9N2—C28—H28A109.5
C15—C16—C17129.65 (15)N2—C28—H28B109.5
C15—C16—H16115.2H28A—C28—H28B109.5
C17—C16—H16115.2N2—C28—H28C109.5
C11—C17—C16131.64 (15)H28A—C28—H28C109.5
C11—C17—H17114.2H28B—C28—H28C109.5
C16—C17—H17114.2C12—N1—C18120.21 (12)
N1—C18—H18A109.5C12—N1—Cu115.20 (10)
N1—C18—H18B109.5C18—N1—Cu124.54 (10)
H18A—C18—H18B109.5C22—N2—C28120.26 (12)
N1—C18—H18C109.5C22—N2—Cu115.52 (10)
H18A—C18—H18C109.5C28—N2—Cu124.15 (10)
H18B—C18—H18C109.5C11—O1—Cu114.43 (9)
O2—C21—C27118.58 (13)C21—O2—Cu114.48 (9)
O2—C21—C22115.20 (13)N1—Cu—N2175.77 (5)
C27—C21—C22126.21 (14)N1—Cu—O182.26 (5)
N2—C22—C23122.75 (13)N2—Cu—O197.17 (5)
N2—C22—C21112.46 (13)N1—Cu—O298.51 (5)
C23—C22—C21124.78 (13)N2—Cu—O282.06 (5)
C24—C23—C22130.81 (14)O1—Cu—O2179.23 (4)
O1—C11—C12—N10.08 (18)C13—C12—N1—C180.0 (2)
C17—C11—C12—N1179.70 (14)C11—C12—N1—C18179.21 (12)
O1—C11—C12—C13179.09 (14)C13—C12—N1—Cu177.49 (11)
C17—C11—C12—C130.5 (2)C11—C12—N1—Cu3.32 (16)
N1—C12—C13—C14179.73 (16)C23—C22—N2—C282.6 (2)
C11—C12—C13—C141.2 (3)C21—C22—N2—C28178.48 (12)
C12—C13—C14—C150.7 (3)C23—C22—N2—Cu179.61 (11)
C13—C14—C15—C160.3 (3)C21—C22—N2—Cu1.49 (16)
C14—C15—C16—C170.5 (3)C17—C11—O1—Cu176.94 (11)
O1—C11—C17—C16179.83 (16)C12—C11—O1—Cu3.41 (16)
C12—C11—C17—C160.2 (3)C27—C21—O2—Cu173.51 (11)
C15—C16—C17—C110.1 (3)C22—C21—O2—Cu5.60 (16)
O2—C21—C22—N22.74 (18)C12—N1—Cu—O14.09 (10)
C27—C21—C22—N2176.28 (14)C18—N1—Cu—O1178.57 (12)
O2—C21—C22—C23176.13 (14)C12—N1—Cu—O2175.85 (10)
C27—C21—C22—C234.8 (2)C18—N1—Cu—O21.49 (12)
N2—C22—C23—C24175.20 (16)C22—N2—Cu—O1176.53 (11)
C21—C22—C23—C246.0 (3)C28—N2—Cu—O10.34 (12)
C22—C23—C24—C250.7 (3)C22—N2—Cu—O23.48 (11)
C23—C24—C25—C263.1 (3)C28—N2—Cu—O2179.66 (12)
C24—C25—C26—C270.0 (3)C11—O1—Cu—N14.09 (10)
O2—C21—C27—C26177.74 (16)C11—O1—Cu—N2171.68 (10)
C22—C21—C27—C261.3 (3)C21—O2—Cu—N1179.20 (10)
C25—C26—C27—C214.0 (3)C21—O2—Cu—N25.04 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O20.982.473.1222 (18)124
C28—H28A···O10.982.413.0715 (18)124

Experimental details

Crystal data
Chemical formula[Cu(C8H8NO)2]
Mr331.85
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)6.7541 (9), 9.1599 (12), 22.084 (3)
β (°) 92.108 (5)
V3)1365.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.34 × 0.32 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.583, 0.760
No. of measured, independent and
observed [I > 2σ(I)] reflections
21665, 2985, 2804
Rint0.032
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.066, 1.06
No. of reflections2985
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.38

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenberg & Putz, 2004), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O20.982.473.1222 (18)124
C28—H28A···O10.982.413.0715 (18)124.3
 

Acknowledgements

The University of the Free State is gratefully acknowledged for financial support, and Leo Kirsten for the data collection.

References

First citationBaidina, I. A., Stabnikov, P. A., Vasil'ev, A. D., Gromilov, S. A. & Igumenov, I. K. (2004). Zh. Strukt. Khim., 45, 671–677.  CAS Google Scholar
First citationBrandenberg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationByrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480–9497.  CSD CrossRef CAS Web of Science Google Scholar
First citationClaramunt, R. M., Sanz, D., Perez-Torralba, M., Pinilla, E., Torres, M. R. & Elguero, J. (2004). Eur. J. Org. Chem. pp. 4452–4466.  Web of Science CSD CrossRef Google Scholar
First citationCrous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108–1116.  Web of Science CSD CrossRef PubMed Google Scholar
First citationDessy, G. & Fares, V. (1979). Cryst. Struct. Commun. 8, 507–510.  CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHill, T. N. & Steyl, G. (2008). Acta Cryst. E64, m1580–m1581.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKristiansson, O. (2002). Acta Cryst. E58, m130–m132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, Y.-C., Hong, M.-C., Cao, R. & Shi, Q. (2001). Acta Cryst. E57, m380–m381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNepveu, F., Jasanda, F. & Walz, L. (1993). Inorg. Chim. Acta, 211, 141–147.  CSD CrossRef CAS Web of Science Google Scholar
First citationPark, K. H. & Marshall, W. J. (2005). J. Am. Chem. Soc. 127, 9330–9331.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRoesky, P. W. (2000). Chem. Soc. Rev. 29, 335–345.  Web of Science CrossRef CAS Google Scholar
First citationRoesky, P. W. & Burgstein, M. R. (1999). Inorg. Chem. 38, 5629–5632.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRoodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarikova, Z. A. & Shugam, E. A. (1969). Zh. Strukt. Khim., 10, 290–293.  CAS Google Scholar
First citationSteyl, G. (2005). Acta Cryst. E61, m1860–m1862.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSteyl, G., Otto, S. & Roodt, A. (2001). Acta Cryst. E57, m352–m354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, B.-Y., Yang, Q. & Nie, J.-J. (2008). Acta Cryst. E64, m7.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds