metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-4,4′,6,6′-tetra-tert-butyl-2,2′-[N-(2-oxidoeth­yl)imino­di­methyl­ene]diphenolato}dialuminium(III)

aDepartments of Chemistry & Biochemistry, Kenyon College, Gambier, OH 43214-9623, USA, and bDepartment of Chemistry, Vassar College, 124 Raymond Ave., Box 406, Poughkeepsie, NY 12604-0744, USA
*Correspondence e-mail: getzlery@kenyon.edu

(Received 22 June 2010; accepted 8 July 2010; online 17 July 2010)

The title compound, [Al2(C32H48NO3)2], exists as a dimer with bridging ethoxide groups. It was isolated from a reaction mixture of the parent ligand and trimethyl­aluminium in tetra­hydro­furan. The geometry around the AlIII atom is a slightly distorted trigonal-bipyramid, typical of atrane derivatives.

Related literature

For background to atranes, see: Voronkov & Baryshok (1982[Voronkov, M. G. & Baryshok, V. P. (1982). J. Organomet. Chem. 239, 199-249.]). For recent alumatrane work, see: Su et al. (2006[Su, W., Kim, Y., Ellern, A., Guzei, I. A. & Verkade, J. G. (2006). J. Am. Chem. Soc. 128, 13727-13735.]) and references therein. For related structures and their activity in lactide polymerization, see: Johnson et al. (2009[Johnson, A. L., Davidson, M. G., Pérez, Y., Jones, M. D., Merle, N., Raithby, P. R. & Richards, S. P. (2009). Dalton Trans. pp. 5551-5558.]).

[Scheme 1]

Experimental

Crystal data
  • [Al2(C32H48NO3)2]

  • Mr = 1043.39

  • Monoclinic, P 21 /n

  • a = 13.385 (2) Å

  • b = 16.352 (3) Å

  • c = 14.141 (2) Å

  • β = 90.063 (2)°

  • V = 3095.1 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 125 K

  • 0.26 × 0.16 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.991

  • 42614 measured reflections

  • 8485 independent reflections

  • 5258 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.124

  • S = 1.02

  • 8485 reflections

  • 346 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Atranes are trigonal bipyramidal metal complexes featuring symmetric tripodal tetradentate ligands and a dative bond between the transannular chelated metal and the ligand nitrogen (Voronkov and Baryshok, 1982). They have been prepared with a range of metals and substantial recent work has been devoted to the potential catalytic activity of both atranes (Su et al., 2006, and references therein) and their unsymmetric derivatives. In particular, previous work has shown that the monomeric alumatrane of tris(2-hydroxy-3,5-dimethylbenzyl)amine [N(CH2C6H2Me2OH)3] in the presence of 2-propanol shows activity for the melt polyermization of lactide (Johnson et al., 2009). Replacing one hydroxybenzyl arm with a hydroxyethyl yields a dimeric complex which is inactive for polymerization. We surmised, erroneously, that perhaps increasing the bulk of the hydroxybenzyl substituent from methyl to tert-butyl would yield a compound capable of lactide polymerization. Reported here is the synthesis and characterization of the title compound.

The title compound (Fig. 1), exists as a dimer with bridging ethoxides. The molecule and its core {Al2O2} ring are centered on a point of crystallographic inversion. Aluminium has a slightly distorted trigonal-bipyramidal coordination geometry around the metal with equitorial O—Al—O angles ranging from 118.60 (6)° to 124.49 (5)° and an axial N—Al—O angle of 159.06 (5)°. Other bond lengths and angles are unremarkable. The Al—Al distance of 2.9022 (10) Å in the tert-butyl substituted title complex is barely distinguishable from the 2.8991 (7) Å A l—Al distance of the related methyl substituted compound (Johnson et al., 2009). The dimer is crowded, as evidence by the proximity of the tert-butyl H atoms of one side of the dimer to the ethyloxy H atoms of the other side of the dimer (Fig. 2), which range from 2.523 (H2A—H17B) to 2.844 (H2B—H28C).

Attempts at melt polymerization of racemic lactide using the title compound proved fruitless, returning only starting materials. Indeed, variable temperature 1H NMR (-10 to 100 °C) of the title compound in toluene-d8 showed no evidence of the dimer breaking apart, a presumed necessity for polymerization activity. At high temperatures, however, the broad singlet at 2.441 resolves into a triplet (J=5.2 Hz) and the broad singlet at 3.302 resolves into two doublets (J=13 Hz). These dynamics are consistent with a sterically congested molecule in which rapid conformational equilibrium is achieved at elevated temperatures.

Related literature top

For background to atranes, see: Voronkov & Baryshok (1982). For recent alumatrane work, see Su et al. (2006) and references therein. For related structures and their activity in lactide polymerization, see: Johnson et al. (2009).

Experimental top

Ligand Synthesis: In a 250 ml round-bottom flask equipped with a magnetic stir-bar and a reflux condenser, 2,4-di-tert-butylphenol (Acros - 97%, 13.126 g, 63.62 mmol, 2.26 eq.) was dissolved in toluene. Formaldehyde (Fisher - 37% w/w in water, 5.2 ml, 64.1 mmol 2.27 eq) and ethanolamine (1.75 ml, 28.2 mmol, 1.00 eq.) were added and the reaction was refluxed overnight. The separated brown oil observed in the morning was isolated by rotary evaporator, further dried under high vacuum, and redissolved in 35 ml of 4:1 EtOH:H2O at 80 °C. Over several days, the temperature was gradually lowered to 51 °C at a rate no faster then 1 °C/min with the first crystals appearing after sitting at 63 °C overnight. The highly crystalline solid was isolated by vacuum filtration and washed with copious amounts of cold 4:1 EtOH:H2O. A residual yellow color in the product was removed by boiling the solid in 1:1 EtOH:MeOH yielding fine white crystals of the desired product (2.492 g, 5.01 mmol, 17.8% yield). 1H NMR (CDCl3, 300 MHz) δ: 1.297 (s, 18H, t-Bu), 1.423 (s, 18H, t-Bu), 2.754 (t, J=5.2 Hz, 2H, NCH2), 3.783 (s, 4H, ArCH2N), 3.891 (t, J=5.2 Hz, 2H, HOCH2), 6.926 (d, J=2.3 Hz, 2H, ArH), 7.240 (d, J=2.3 Hz, 2H, ArH); 13C NMR (CDCl3, 75 MHz) δ: 29.77, 31.80, 34.26, 35.03, 53.55, 57.83, 61.09, 121.75, 123.64, 125.14, 136.14, 141.22, 152.74.

Complex Synthesis: The complex may be synthesized by either the Johnson method (Johnson et al., 2009) or as follows. Using standard Schlenk techniques, the free ligand was dissolved in THF and AlMe3 (Aldrich - 2.0 M in heptane, 1 equivalent) was added dropwise via syringe. Upon reaction completion, solvent was removed under high vacuum, quantitatively yielding a white powder which was pure by 1H NMR. Clear, colorless X-ray quality crystals may be obtained by layering hexanes on a concentrated THF solution of the complex or by cooling a concentrated solution of the complex in toluene. 1H NMR (C6D6, 300 MHz) δ: 1.417 (s, 18H, t-Bu), 1.523 (s, 18H,t-Bu), 2.441 (br s, 2H, NCH2), 3.302 (br s, 4H, ArCH2N), 3.580 (t, J=5.8 Hz, 2H, OCH2), 6.782 (s, 2H, ArH), 7.509 (d, J=2.1 Hz, 2H, ArH); 13C NMR (C6D6, 75 MHz) δ: 29.83, 32.12, 34.36, 35.31, 53.08, 56.40, 57.63, 121.51, 124.33, 124.55, 138.09, 139.47, 155.95.

Refinement top

Hydrogen atoms on carbon were added geometrically and refined using a riding model. Uiso values for hydrogen atoms were assigned to be 1.20 times the Ueq value of the atom to which they are attached, except for hydrogen atoms on methyl carbon atoms, which were assigned a Uiso of 1.50 times the Ueq of the methyl carbon atom to which they are attached.

Structure description top

Atranes are trigonal bipyramidal metal complexes featuring symmetric tripodal tetradentate ligands and a dative bond between the transannular chelated metal and the ligand nitrogen (Voronkov and Baryshok, 1982). They have been prepared with a range of metals and substantial recent work has been devoted to the potential catalytic activity of both atranes (Su et al., 2006, and references therein) and their unsymmetric derivatives. In particular, previous work has shown that the monomeric alumatrane of tris(2-hydroxy-3,5-dimethylbenzyl)amine [N(CH2C6H2Me2OH)3] in the presence of 2-propanol shows activity for the melt polyermization of lactide (Johnson et al., 2009). Replacing one hydroxybenzyl arm with a hydroxyethyl yields a dimeric complex which is inactive for polymerization. We surmised, erroneously, that perhaps increasing the bulk of the hydroxybenzyl substituent from methyl to tert-butyl would yield a compound capable of lactide polymerization. Reported here is the synthesis and characterization of the title compound.

The title compound (Fig. 1), exists as a dimer with bridging ethoxides. The molecule and its core {Al2O2} ring are centered on a point of crystallographic inversion. Aluminium has a slightly distorted trigonal-bipyramidal coordination geometry around the metal with equitorial O—Al—O angles ranging from 118.60 (6)° to 124.49 (5)° and an axial N—Al—O angle of 159.06 (5)°. Other bond lengths and angles are unremarkable. The Al—Al distance of 2.9022 (10) Å in the tert-butyl substituted title complex is barely distinguishable from the 2.8991 (7) Å A l—Al distance of the related methyl substituted compound (Johnson et al., 2009). The dimer is crowded, as evidence by the proximity of the tert-butyl H atoms of one side of the dimer to the ethyloxy H atoms of the other side of the dimer (Fig. 2), which range from 2.523 (H2A—H17B) to 2.844 (H2B—H28C).

Attempts at melt polymerization of racemic lactide using the title compound proved fruitless, returning only starting materials. Indeed, variable temperature 1H NMR (-10 to 100 °C) of the title compound in toluene-d8 showed no evidence of the dimer breaking apart, a presumed necessity for polymerization activity. At high temperatures, however, the broad singlet at 2.441 resolves into a triplet (J=5.2 Hz) and the broad singlet at 3.302 resolves into two doublets (J=13 Hz). These dynamics are consistent with a sterically congested molecule in which rapid conformational equilibrium is achieved at elevated temperatures.

For background to atranes, see: Voronkov & Baryshok (1982). For recent alumatrane work, see Su et al. (2006) and references therein. For related structures and their activity in lactide polymerization, see: Johnson et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids for non-H atoms. Unlabelled atoms are related to their labelled counterparts through an inversion operation (1-x, -y, 1-z).
[Figure 2] Fig. 2. The molecular structure of the title compound, showing the crowded steric environment of the dimer. Atoms are drawn at their van der Waals radii with selected atoms removed to enhance clarity.
Bis{µ-4,4',6,6'-tetra-tert-butyl-2,2'-[N-(2- oxidoethyl)iminodimethylene]diphenolato}dialuminium(III) top
Crystal data top
[Al2(C32H48NO3)2]F(000) = 1136
Mr = 1043.39Dx = 1.120 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9619 reflections
a = 13.385 (2) Åθ = 2.4–29.0°
b = 16.352 (3) ŵ = 0.10 mm1
c = 14.141 (2) ÅT = 125 K
β = 90.063 (2)°Block, colorless
V = 3095.1 (8) Å30.26 × 0.16 × 0.09 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
8485 independent reflections
Radiation source: fine-focus sealed tube5258 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
φ and ω scansθmax = 29.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1818
Tmin = 0.975, Tmax = 0.991k = 2222
42614 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.054P)2 + 0.1736P]
where P = (Fo2 + 2Fc2)/3
8485 reflections(Δ/σ)max = 0.001
346 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Al2(C32H48NO3)2]V = 3095.1 (8) Å3
Mr = 1043.39Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.385 (2) ŵ = 0.10 mm1
b = 16.352 (3) ÅT = 125 K
c = 14.141 (2) Å0.26 × 0.16 × 0.09 mm
β = 90.063 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
8485 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
5258 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.991Rint = 0.076
42614 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.02Δρmax = 0.28 e Å3
8485 reflectionsΔρmin = 0.30 e Å3
346 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

An extinction parameter (EXTI in SHELXL-97) refined to zero and was removed from the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al0.48567 (3)0.00620 (3)0.60145 (3)0.01834 (12)
N0.45295 (9)0.11682 (8)0.66499 (9)0.0186 (3)
O10.48322 (8)0.06840 (6)0.49393 (7)0.0207 (2)
O20.59510 (8)0.01009 (6)0.66678 (7)0.0210 (2)
O30.37507 (8)0.03952 (6)0.63921 (7)0.0211 (2)
C10.40568 (12)0.16764 (9)0.59021 (11)0.0216 (3)
H1A0.40950.22620.60780.026*
H1B0.33440.15260.58340.026*
C20.46004 (12)0.15345 (9)0.49708 (11)0.0217 (3)
H2A0.41690.16880.44300.026*
H2B0.52190.18650.49440.026*
C30.54955 (11)0.15462 (9)0.69665 (11)0.0201 (3)
H3A0.53610.20980.72250.024*
H3B0.59430.16090.64140.024*
C40.62348 (11)0.02194 (10)0.75104 (11)0.0198 (3)
C50.60123 (11)0.10398 (9)0.77066 (11)0.0194 (3)
C60.62328 (11)0.13734 (10)0.85915 (11)0.0210 (3)
H6A0.60720.19290.87140.025*
C70.66820 (11)0.09106 (10)0.92947 (11)0.0212 (3)
C80.69347 (11)0.01025 (10)0.90613 (11)0.0223 (3)
H8A0.72600.02180.95300.027*
C90.67405 (11)0.02613 (9)0.81904 (11)0.0202 (3)
C100.68331 (12)0.12239 (10)1.03076 (11)0.0253 (4)
C110.65734 (15)0.21287 (11)1.04082 (13)0.0375 (5)
H11A0.58690.22131.02440.056*
H11B0.69960.24510.99830.056*
H11C0.66880.23021.10630.056*
C120.61407 (15)0.07270 (13)1.09584 (13)0.0392 (5)
H12A0.54460.07971.07530.059*
H12B0.62130.09211.16110.059*
H12C0.63220.01471.09250.059*
C130.79151 (13)0.10983 (13)1.06342 (13)0.0380 (5)
H13A0.79880.12921.12860.057*
H13B0.83660.14071.02210.057*
H13C0.80830.05161.06040.057*
C140.70394 (12)0.11522 (10)0.79799 (12)0.0247 (4)
C150.76285 (14)0.15419 (11)0.87969 (13)0.0345 (4)
H15A0.78030.21060.86320.052*
H15B0.72180.15400.93700.052*
H15C0.82410.12280.89100.052*
C160.77086 (13)0.11864 (11)0.70923 (12)0.0302 (4)
H16A0.78920.17550.69610.045*
H16B0.83150.08640.72020.045*
H16C0.73440.09610.65500.045*
C170.61021 (13)0.16820 (10)0.78223 (13)0.0316 (4)
H17A0.63040.22340.76310.047*
H17B0.56890.14370.73250.047*
H17C0.57180.17120.84110.047*
C180.38553 (11)0.10632 (9)0.74813 (11)0.0205 (3)
H18A0.37060.16080.77510.025*
H18B0.42100.07430.79720.025*
C190.28857 (11)0.06402 (9)0.72497 (11)0.0202 (3)
C200.28792 (11)0.00799 (9)0.67177 (11)0.0197 (3)
C210.19640 (12)0.04808 (9)0.65258 (11)0.0206 (3)
C220.11042 (12)0.01534 (10)0.69270 (11)0.0227 (3)
H22A0.04880.04240.68100.027*
C230.10895 (12)0.05482 (10)0.74907 (11)0.0218 (3)
C240.19948 (12)0.09479 (10)0.76260 (11)0.0223 (3)
H24A0.20090.14410.79820.027*
C250.19244 (12)0.12450 (10)0.58915 (12)0.0248 (4)
C260.25483 (14)0.19357 (10)0.63343 (13)0.0317 (4)
H26A0.22790.20720.69590.047*
H26B0.32440.17560.63990.047*
H26C0.25200.24200.59270.047*
C270.08587 (13)0.15707 (11)0.57662 (15)0.0380 (5)
H27A0.04400.11460.54800.057*
H27B0.05850.17220.63840.057*
H27C0.08700.20530.53540.057*
C280.23320 (14)0.10343 (11)0.49074 (12)0.0317 (4)
H28A0.19480.05790.46400.048*
H28B0.22720.15130.44940.048*
H28C0.30360.08760.49600.048*
C290.01071 (12)0.08307 (10)0.79368 (12)0.0259 (4)
C300.06841 (13)0.09706 (11)0.71690 (13)0.0346 (4)
H30A0.04670.14130.67490.052*
H30B0.13200.11200.74660.052*
H30C0.07720.04680.68010.052*
C310.02621 (13)0.01629 (11)0.86174 (13)0.0336 (4)
H31A0.02190.00970.91350.050*
H31B0.03280.03550.82750.050*
H31C0.09130.03210.88770.050*
C320.02250 (13)0.16235 (11)0.85008 (14)0.0354 (4)
H32A0.04700.20570.80830.053*
H32B0.07030.15380.90170.053*
H32C0.04230.17830.87640.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al0.0206 (2)0.0179 (2)0.0165 (2)0.00029 (19)0.00106 (18)0.00016 (19)
N0.0186 (7)0.0212 (7)0.0160 (6)0.0004 (5)0.0006 (5)0.0005 (5)
O10.0273 (6)0.0164 (5)0.0183 (5)0.0026 (4)0.0024 (5)0.0002 (4)
O20.0211 (6)0.0213 (6)0.0205 (6)0.0009 (4)0.0022 (4)0.0023 (4)
O30.0205 (6)0.0198 (6)0.0229 (6)0.0009 (4)0.0035 (5)0.0022 (5)
C10.0251 (8)0.0189 (8)0.0208 (8)0.0044 (6)0.0022 (7)0.0012 (6)
C20.0288 (9)0.0154 (8)0.0207 (8)0.0025 (6)0.0012 (7)0.0018 (6)
C30.0213 (8)0.0179 (8)0.0211 (8)0.0025 (6)0.0009 (6)0.0000 (6)
C40.0177 (8)0.0235 (8)0.0183 (8)0.0030 (6)0.0022 (6)0.0002 (6)
C50.0178 (8)0.0203 (8)0.0202 (8)0.0017 (6)0.0016 (6)0.0018 (6)
C60.0190 (8)0.0210 (8)0.0229 (8)0.0023 (6)0.0025 (6)0.0012 (7)
C70.0183 (8)0.0254 (8)0.0201 (8)0.0022 (6)0.0013 (6)0.0005 (6)
C80.0184 (8)0.0257 (9)0.0227 (8)0.0005 (6)0.0009 (6)0.0041 (7)
C90.0161 (8)0.0209 (8)0.0235 (8)0.0006 (6)0.0013 (6)0.0031 (6)
C100.0254 (9)0.0310 (9)0.0195 (8)0.0011 (7)0.0007 (7)0.0023 (7)
C110.0502 (12)0.0365 (11)0.0258 (10)0.0045 (9)0.0069 (9)0.0102 (8)
C120.0445 (12)0.0489 (12)0.0241 (10)0.0020 (9)0.0067 (8)0.0020 (9)
C130.0316 (10)0.0525 (12)0.0300 (10)0.0046 (9)0.0082 (8)0.0122 (9)
C140.0265 (9)0.0211 (8)0.0265 (9)0.0017 (7)0.0007 (7)0.0013 (7)
C150.0380 (11)0.0272 (10)0.0383 (11)0.0064 (8)0.0041 (8)0.0023 (8)
C160.0274 (9)0.0282 (9)0.0351 (10)0.0058 (7)0.0016 (8)0.0031 (8)
C170.0342 (10)0.0220 (9)0.0385 (11)0.0040 (7)0.0006 (8)0.0008 (8)
C180.0232 (8)0.0207 (8)0.0176 (8)0.0006 (6)0.0021 (6)0.0034 (6)
C190.0212 (8)0.0206 (8)0.0188 (8)0.0014 (6)0.0007 (6)0.0004 (6)
C200.0205 (8)0.0208 (8)0.0178 (8)0.0006 (6)0.0012 (6)0.0025 (6)
C210.0226 (8)0.0203 (8)0.0188 (8)0.0011 (6)0.0001 (6)0.0003 (6)
C220.0196 (8)0.0236 (8)0.0250 (8)0.0019 (6)0.0012 (6)0.0004 (7)
C230.0207 (8)0.0242 (8)0.0206 (8)0.0018 (6)0.0000 (6)0.0012 (6)
C240.0256 (9)0.0212 (8)0.0200 (8)0.0019 (7)0.0001 (7)0.0028 (6)
C250.0241 (9)0.0222 (8)0.0280 (9)0.0028 (7)0.0004 (7)0.0054 (7)
C260.0380 (10)0.0193 (9)0.0377 (10)0.0025 (7)0.0008 (8)0.0019 (7)
C270.0314 (10)0.0326 (10)0.0500 (12)0.0071 (8)0.0028 (9)0.0169 (9)
C280.0367 (10)0.0339 (10)0.0245 (9)0.0014 (8)0.0023 (8)0.0077 (8)
C290.0195 (8)0.0284 (9)0.0299 (9)0.0021 (7)0.0009 (7)0.0049 (7)
C300.0273 (10)0.0335 (10)0.0430 (11)0.0067 (8)0.0050 (8)0.0038 (8)
C310.0231 (9)0.0435 (11)0.0340 (10)0.0028 (8)0.0071 (8)0.0005 (8)
C320.0260 (9)0.0383 (11)0.0418 (11)0.0033 (8)0.0035 (8)0.0141 (9)
Geometric parameters (Å, º) top
Al—O31.7428 (11)C15—H15A0.9800
Al—O21.7513 (11)C15—H15B0.9800
Al—O11.8295 (11)C15—H15C0.9800
Al—O1i1.8661 (11)C16—H16A0.9800
Al—N2.0668 (14)C16—H16B0.9800
Al—Ali2.9022 (10)C16—H16C0.9800
N—C11.4858 (19)C17—H17A0.9800
N—C181.4928 (19)C17—H17B0.9800
N—C31.5011 (19)C17—H17C0.9800
O1—C21.4255 (18)C18—C191.506 (2)
O1—Ali1.8661 (11)C18—H18A0.9900
O2—C41.3554 (18)C18—H18B0.9900
O3—C201.3564 (18)C19—C201.397 (2)
C1—C21.523 (2)C19—C241.400 (2)
C1—H1A0.9900C20—C211.415 (2)
C1—H1B0.9900C21—C221.391 (2)
C2—H2A0.9900C21—C251.539 (2)
C2—H2B0.9900C22—C231.397 (2)
C3—C51.503 (2)C22—H22A0.9500
C3—H3A0.9900C23—C241.390 (2)
C3—H3B0.9900C23—C291.530 (2)
C4—C51.402 (2)C24—H24A0.9500
C4—C91.414 (2)C25—C271.533 (2)
C5—C61.396 (2)C25—C281.534 (2)
C6—C71.386 (2)C25—C261.538 (2)
C6—H6A0.9500C26—H26A0.9800
C7—C81.404 (2)C26—H26B0.9800
C7—C101.534 (2)C26—H26C0.9800
C8—C91.392 (2)C27—H27A0.9800
C8—H8A0.9500C27—H27B0.9800
C9—C141.540 (2)C27—H27C0.9800
C10—C111.527 (2)C28—H28A0.9800
C10—C131.533 (2)C28—H28B0.9800
C10—C121.539 (2)C28—H28C0.9800
C11—H11A0.9800C29—C321.530 (2)
C11—H11B0.9800C29—C301.533 (2)
C11—H11C0.9800C29—C311.538 (2)
C12—H12A0.9800C30—H30A0.9800
C12—H12B0.9800C30—H30B0.9800
C12—H12C0.9800C30—H30C0.9800
C13—H13A0.9800C31—H31A0.9800
C13—H13B0.9800C31—H31B0.9800
C13—H13C0.9800C31—H31C0.9800
C14—C151.536 (2)C32—H32A0.9800
C14—C171.541 (2)C32—H32B0.9800
C14—C161.544 (2)C32—H32C0.9800
O3—Al—O2118.90 (6)C17—C14—C16109.57 (14)
O3—Al—O1118.60 (6)C14—C15—H15A109.5
O2—Al—O1122.49 (5)C14—C15—H15B109.5
O3—Al—O1i97.54 (5)H15A—C15—H15B109.5
O2—Al—O1i95.43 (5)C14—C15—H15C109.5
O1—Al—O1i76.51 (5)H15A—C15—H15C109.5
O3—Al—N93.55 (5)H15B—C15—H15C109.5
O2—Al—N94.67 (5)C14—C16—H16A109.5
O1—Al—N82.59 (5)C14—C16—H16B109.5
O1i—Al—N159.06 (5)H16A—C16—H16B109.5
O3—Al—Ali112.72 (4)C14—C16—H16C109.5
O2—Al—Ali113.54 (4)H16A—C16—H16C109.5
O1—Al—Ali38.70 (3)H16B—C16—H16C109.5
O1i—Al—Ali37.81 (3)C14—C17—H17A109.5
N—Al—Ali121.28 (4)C14—C17—H17B109.5
C1—N—C18111.57 (12)H17A—C17—H17B109.5
C1—N—C3110.36 (12)C14—C17—H17C109.5
C18—N—C3109.49 (11)H17A—C17—H17C109.5
C1—N—Al105.68 (9)H17B—C17—H17C109.5
C18—N—Al111.73 (9)N—C18—C19113.77 (12)
C3—N—Al107.89 (9)N—C18—H18A108.8
C2—O1—Al121.34 (9)C19—C18—H18A108.8
C2—O1—Ali135.16 (9)N—C18—H18B108.8
Al—O1—Ali103.50 (5)C19—C18—H18B108.8
C4—O2—Al129.66 (10)H18A—C18—H18B107.7
C20—O3—Al132.22 (10)C20—C19—C24120.18 (14)
N—C1—C2109.07 (12)C20—C19—C18120.58 (13)
N—C1—H1A109.9C24—C19—C18119.11 (14)
C2—C1—H1A109.9O3—C20—C19119.88 (13)
N—C1—H1B109.9O3—C20—C21120.22 (14)
C2—C1—H1B109.9C19—C20—C21119.89 (14)
H1A—C1—H1B108.3C22—C21—C20117.38 (14)
O1—C2—C1106.25 (12)C22—C21—C25121.49 (14)
O1—C2—H2A110.5C20—C21—C25121.13 (14)
C1—C2—H2A110.5C21—C22—C23124.13 (15)
O1—C2—H2B110.5C21—C22—H22A117.9
C1—C2—H2B110.5C23—C22—H22A117.9
H2A—C2—H2B108.7C24—C23—C22116.86 (14)
N—C3—C5112.12 (12)C24—C23—C29123.41 (14)
N—C3—H3A109.2C22—C23—C29119.72 (14)
C5—C3—H3A109.2C23—C24—C19121.44 (15)
N—C3—H3B109.2C23—C24—H24A119.3
C5—C3—H3B109.2C19—C24—H24A119.3
H3A—C3—H3B107.9C27—C25—C28107.76 (15)
O2—C4—C5118.98 (14)C27—C25—C26107.27 (14)
O2—C4—C9121.10 (14)C28—C25—C26109.92 (14)
C5—C4—C9119.93 (14)C27—C25—C21112.39 (13)
C6—C5—C4120.43 (14)C28—C25—C21109.52 (13)
C6—C5—C3120.36 (14)C26—C25—C21109.93 (14)
C4—C5—C3119.16 (14)C25—C26—H26A109.5
C7—C6—C5121.37 (15)C25—C26—H26B109.5
C7—C6—H6A119.3H26A—C26—H26B109.5
C5—C6—H6A119.3C25—C26—H26C109.5
C6—C7—C8116.73 (14)H26A—C26—H26C109.5
C6—C7—C10122.96 (14)H26B—C26—H26C109.5
C8—C7—C10120.15 (14)C25—C27—H27A109.5
C9—C8—C7124.44 (15)C25—C27—H27B109.5
C9—C8—H8A117.8H27A—C27—H27B109.5
C7—C8—H8A117.8C25—C27—H27C109.5
C8—C9—C4116.94 (14)H27A—C27—H27C109.5
C8—C9—C14121.81 (14)H27B—C27—H27C109.5
C4—C9—C14121.25 (14)C25—C28—H28A109.5
C11—C10—C13108.47 (15)C25—C28—H28B109.5
C11—C10—C7112.38 (14)H28A—C28—H28B109.5
C13—C10—C7111.10 (13)C25—C28—H28C109.5
C11—C10—C12108.58 (15)H28A—C28—H28C109.5
C13—C10—C12108.57 (15)H28B—C28—H28C109.5
C7—C10—C12107.64 (14)C32—C29—C23112.48 (14)
C10—C11—H11A109.5C32—C29—C30108.27 (14)
C10—C11—H11B109.5C23—C29—C30110.26 (14)
H11A—C11—H11B109.5C32—C29—C31107.96 (14)
C10—C11—H11C109.5C23—C29—C31108.69 (13)
H11A—C11—H11C109.5C30—C29—C31109.09 (14)
H11B—C11—H11C109.5C29—C30—H30A109.5
C10—C12—H12A109.5C29—C30—H30B109.5
C10—C12—H12B109.5H30A—C30—H30B109.5
H12A—C12—H12B109.5C29—C30—H30C109.5
C10—C12—H12C109.5H30A—C30—H30C109.5
H12A—C12—H12C109.5H30B—C30—H30C109.5
H12B—C12—H12C109.5C29—C31—H31A109.5
C10—C13—H13A109.5C29—C31—H31B109.5
C10—C13—H13B109.5H31A—C31—H31B109.5
H13A—C13—H13B109.5C29—C31—H31C109.5
C10—C13—H13C109.5H31A—C31—H31C109.5
H13A—C13—H13C109.5H31B—C31—H31C109.5
H13B—C13—H13C109.5C29—C32—H32A109.5
C15—C14—C9112.35 (14)C29—C32—H32B109.5
C15—C14—C17107.02 (14)H32A—C32—H32B109.5
C9—C14—C17110.38 (13)C29—C32—H32C109.5
C15—C14—C16107.38 (14)H32A—C32—H32C109.5
C9—C14—C16110.03 (13)H32B—C32—H32C109.5
O3—Al—N—C194.79 (10)C6—C7—C8—C91.8 (2)
O2—Al—N—C1145.82 (9)C10—C7—C8—C9173.74 (15)
O1—Al—N—C123.61 (9)C7—C8—C9—C41.4 (2)
O1i—Al—N—C127.2 (2)C7—C8—C9—C14179.92 (14)
Ali—Al—N—C124.58 (11)O2—C4—C9—C8175.28 (13)
O3—Al—N—C1826.74 (10)C5—C4—C9—C84.2 (2)
O2—Al—N—C1892.66 (10)O2—C4—C9—C143.4 (2)
O1—Al—N—C18145.14 (10)C5—C4—C9—C14177.13 (14)
O1i—Al—N—C18148.75 (14)C6—C7—C10—C118.1 (2)
Ali—Al—N—C18146.11 (8)C8—C7—C10—C11176.65 (15)
O3—Al—N—C3147.15 (9)C6—C7—C10—C13129.89 (17)
O2—Al—N—C327.76 (10)C8—C7—C10—C1354.9 (2)
O1—Al—N—C394.45 (9)C6—C7—C10—C12111.36 (17)
O1i—Al—N—C390.84 (17)C8—C7—C10—C1263.84 (19)
Ali—Al—N—C393.48 (9)C8—C9—C14—C154.4 (2)
O3—Al—O1—C288.09 (12)C4—C9—C14—C15176.98 (15)
O2—Al—O1—C292.74 (12)C8—C9—C14—C17114.95 (16)
O1i—Al—O1—C2179.41 (14)C4—C9—C14—C1763.65 (19)
N—Al—O1—C21.91 (11)C8—C9—C14—C16124.00 (16)
Ali—Al—O1—C2179.41 (14)C4—C9—C14—C1657.40 (19)
O3—Al—O1—Ali91.31 (6)C1—N—C18—C1961.03 (17)
O2—Al—O1—Ali87.85 (7)C3—N—C18—C19176.50 (12)
O1i—Al—O1—Ali0.0Al—N—C18—C1957.03 (15)
N—Al—O1—Ali178.68 (6)N—C18—C19—C2047.9 (2)
O3—Al—O2—C474.98 (13)N—C18—C19—C24136.28 (14)
O1—Al—O2—C4105.86 (13)Al—O3—C20—C1933.4 (2)
O1i—Al—O2—C4176.69 (12)Al—O3—C20—C21147.05 (12)
N—Al—O2—C421.68 (13)C24—C19—C20—O3176.94 (14)
Ali—Al—O2—C4148.83 (11)C18—C19—C20—O31.1 (2)
O2—Al—O3—C20114.92 (13)C24—C19—C20—C212.6 (2)
O1—Al—O3—C2065.88 (14)C18—C19—C20—C21178.45 (14)
O1i—Al—O3—C20144.59 (13)O3—C20—C21—C22176.23 (14)
N—Al—O3—C2017.61 (14)C19—C20—C21—C223.3 (2)
Ali—Al—O3—C20108.54 (13)O3—C20—C21—C254.2 (2)
C18—N—C1—C2161.42 (12)C19—C20—C21—C25176.21 (14)
C3—N—C1—C276.61 (15)C20—C21—C22—C231.0 (2)
Al—N—C1—C239.79 (14)C25—C21—C22—C23178.53 (15)
Al—O1—C2—C119.85 (16)C21—C22—C23—C242.0 (2)
Ali—O1—C2—C1159.33 (11)C21—C22—C23—C29176.98 (15)
N—C1—C2—O138.79 (17)C22—C23—C24—C192.8 (2)
C1—N—C3—C5178.55 (12)C29—C23—C24—C19176.16 (15)
C18—N—C3—C558.27 (16)C20—C19—C24—C230.5 (2)
Al—N—C3—C563.54 (13)C18—C19—C24—C23175.34 (14)
Al—O2—C4—C538.36 (19)C22—C21—C25—C270.5 (2)
Al—O2—C4—C9141.13 (12)C20—C21—C25—C27179.07 (15)
O2—C4—C5—C6175.61 (13)C22—C21—C25—C28120.19 (16)
C9—C4—C5—C63.9 (2)C20—C21—C25—C2859.34 (19)
O2—C4—C5—C31.9 (2)C22—C21—C25—C26118.94 (17)
C9—C4—C5—C3178.61 (14)C20—C21—C25—C2661.53 (19)
N—C3—C5—C6121.61 (15)C24—C23—C29—C323.1 (2)
N—C3—C5—C455.91 (18)C22—C23—C29—C32178.02 (15)
C4—C5—C6—C70.6 (2)C24—C23—C29—C30124.02 (17)
C3—C5—C6—C7178.04 (14)C22—C23—C29—C3057.1 (2)
C5—C6—C7—C82.2 (2)C24—C23—C29—C31116.44 (17)
C5—C6—C7—C10173.17 (14)C22—C23—C29—C3162.5 (2)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Al2(C32H48NO3)2]
Mr1043.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)125
a, b, c (Å)13.385 (2), 16.352 (3), 14.141 (2)
β (°) 90.063 (2)
V3)3095.1 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.16 × 0.09
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.975, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
42614, 8485, 5258
Rint0.076
(sin θ/λ)max1)0.690
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.124, 1.02
No. of reflections8485
No. of parameters346
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.30

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004).

 

Acknowledgements

This work was generously supported by Kenyon College Startup Funds, Kenyon College Summer Science Scholars Program (SLH), the American Chemical Society's Petroleum Research Fund (42880-GB 7) (YDYLG) and the National Science Foundation (CHE-0521237) (JMT).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, A. L., Davidson, M. G., Pérez, Y., Jones, M. D., Merle, N., Raithby, P. R. & Richards, S. P. (2009). Dalton Trans. pp. 5551–5558.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, W., Kim, Y., Ellern, A., Guzei, I. A. & Verkade, J. G. (2006). J. Am. Chem. Soc. 128, 13727–13735.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVoronkov, M. G. & Baryshok, V. P. (1982). J. Organomet. Chem. 239, 199–249.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds