Download citation
Download citation
link to html
The title complex, [Ni2(N3)4(C14H12N2)2], is a centrosymmetric dimer in which each NiII atom is coordinated by five N atoms (two from a 2,9-dimethyl-1,10-phenanthroline ligand, two from the bridging azide group and one from the terminal azide) in a slightly distorted square-pyramidal geometry. The Ni...Ni distance is 3.2532 (9) Å. In the crystal structure, mol­ecules are linked into one-dimensional chains by C—H...N hydrogen bonds and π–π stacking inter­actions [π-π interaction distance = 3.6215 (16) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807035313/pk2037sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807035313/pk2037Isup2.hkl
Contains datablock I

CCDC reference: 657626

Key indicators

  • Single-crystal X-ray study
  • T = 153 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.033
  • wR factor = 0.083
  • Data-to-parameter ratio = 16.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for N3 - N4 .. 6.62 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N7 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C14
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 1.97
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The azide ion is a versatile ligand, it can bind metal ions in a number of coordination modes, giving rise to mononuclear, dinuclear and polynuclear complexes. In these complexes different types of bonding of the azido ligands have been observed; either simple monodentate terminal fashion or bridging end-to-end (1,3-di-µ) or end-on (1,1-di-µ) modes (Grove et al., 2001; Zhao et al., 2003; Wang et al., 2004; Li et al., 2005; You, 2005; Qian et al., 2007; Cai et al., 2007).

The title compound is centrosymmetric. In this complex, the two nickel(II) atoms are doubly bridged by two end-on azido groups (Fig 1). Each nickel atom is located in a slightly distored square-pyramidal geometry, being surrounded by five nitrogen atoms (two of a 2,9-dimethyl-1,10-phenanthroline, two of the bridging azido group and the last one of the terminal azide). A N atom of the 2,9-dimethyl-1,10-phenanthroline is located in the axial position and the ligand bond lengths and angles fall in the ranges of 1.985 (2)–2.070 (2) Å and 76.09 (9)–160.44 (9)°, respectively. The Ni···Ni distance is 3.2532 (9) Å.

ππ interactions between the phenanthroline rings (Fig. 2) is observed with a Cg(6)-Cg(6)i (ring Cg(6): C5, C6, C7, C8, C12, C13; symmetry code: (i) -x, y, 1/2 - z) distance of 3.6215 (16) Å. These π-π stacking interactions and C—H···N hydrogen bonds lead to one dimensional chains.

Related literature top

For related literature, see: Cai et al. (2007); Grove et al. (2001); Li et al. (2005); Qian et al. (2007); Wang et al. (2004); You (2005); Zhao et al. (2003).

Experimental top

The title compound was sythesized as follows: To a methanolic solution (10 ml) of nickel(II) perchlorate hexahydrate (0.183 g, 0.5 mmol), 2,9-dimethyl-1,10-phenanthroline (0.104 g, 0.5 mmol) and sodium azide (0.046 g, 0.7 mmol) were added with stirring. The resulting green solution was stirred for 0.5 h at room temperature. Slow evaporation of the solution yielded a green crystalline compound.

Refinement top

The hydrogen atoms were assigned with isotropic displacement factors and included in the final refinement cycles by use of geometrical restraints (Car–H = 0.93 Å; CMe–H = 0.96 Å).

Structure description top

The azide ion is a versatile ligand, it can bind metal ions in a number of coordination modes, giving rise to mononuclear, dinuclear and polynuclear complexes. In these complexes different types of bonding of the azido ligands have been observed; either simple monodentate terminal fashion or bridging end-to-end (1,3-di-µ) or end-on (1,1-di-µ) modes (Grove et al., 2001; Zhao et al., 2003; Wang et al., 2004; Li et al., 2005; You, 2005; Qian et al., 2007; Cai et al., 2007).

The title compound is centrosymmetric. In this complex, the two nickel(II) atoms are doubly bridged by two end-on azido groups (Fig 1). Each nickel atom is located in a slightly distored square-pyramidal geometry, being surrounded by five nitrogen atoms (two of a 2,9-dimethyl-1,10-phenanthroline, two of the bridging azido group and the last one of the terminal azide). A N atom of the 2,9-dimethyl-1,10-phenanthroline is located in the axial position and the ligand bond lengths and angles fall in the ranges of 1.985 (2)–2.070 (2) Å and 76.09 (9)–160.44 (9)°, respectively. The Ni···Ni distance is 3.2532 (9) Å.

ππ interactions between the phenanthroline rings (Fig. 2) is observed with a Cg(6)-Cg(6)i (ring Cg(6): C5, C6, C7, C8, C12, C13; symmetry code: (i) -x, y, 1/2 - z) distance of 3.6215 (16) Å. These π-π stacking interactions and C—H···N hydrogen bonds lead to one dimensional chains.

For related literature, see: Cai et al. (2007); Grove et al. (2001); Li et al. (2005); Qian et al. (2007); Wang et al. (2004); You (2005); Zhao et al. (2003).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and maXus (Mackay et al., 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The title compound, showing 30% probability displacement ellipsoids (Symmetry codes: -x + 3/2, -y + 3/2, -z + 2). Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. The intermolecular π-π stacking and C—H···N interactions.
Di-µ-azido-κ4N:N-bis[(azido-κN)(2,9-dimethyl-1,10-phenanthroline- κN,N)nickel(II)] top
Crystal data top
[Ni2(N3)4(C14H12N2)2]F(000) = 1440
Mr = 702.01Dx = 1.577 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 13380 reflections
a = 13.471 (3) Åθ = 3.4–27.5°
b = 11.226 (2) ŵ = 1.33 mm1
c = 19.605 (4) ÅT = 153 K
β = 94.36 (3)°Block, green
V = 2956.2 (10) Å30.10 × 0.10 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3396 independent reflections
Radiation source: fine-focus sealed tube1923 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 18 pixels mm-1θmax = 27.5°, θmin = 3.6°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.879, Tmax = 0.937l = 2525
6614 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0402P)2]
where P = (Fo2 + 2Fc2)/3
3396 reflections(Δ/σ)max = 0.002
210 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Ni2(N3)4(C14H12N2)2]V = 2956.2 (10) Å3
Mr = 702.01Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.471 (3) ŵ = 1.33 mm1
b = 11.226 (2) ÅT = 153 K
c = 19.605 (4) Å0.10 × 0.10 × 0.05 mm
β = 94.36 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3396 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1923 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.937Rint = 0.032
6614 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 0.93Δρmax = 0.31 e Å3
3396 reflectionsΔρmin = 0.41 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.84958 (2)0.75286 (3)0.958017 (13)0.03719 (11)
N10.86582 (14)0.8208 (2)0.86198 (10)0.0385 (5)
C120.86702 (16)0.6124 (2)0.83785 (12)0.0385 (6)
N20.86412 (14)0.59478 (19)0.90696 (10)0.0387 (5)
C130.86592 (17)0.7327 (2)0.81366 (12)0.0378 (6)
N30.69573 (14)0.7560 (2)0.94405 (9)0.0436 (5)
N40.64685 (16)0.7357 (2)0.89104 (11)0.0483 (6)
C70.8734 (2)0.5456 (3)0.71970 (13)0.0568 (8)
H70.87570.48370.68840.068*
N71.05529 (18)0.8271 (2)0.96773 (10)0.0521 (6)
C30.8736 (2)0.9632 (3)0.77282 (14)0.0535 (8)
H30.87671.04270.76000.064*
C20.87088 (18)0.9336 (2)0.84214 (13)0.0430 (6)
C50.86905 (18)0.7572 (3)0.74372 (12)0.0447 (6)
C90.8781 (2)0.4033 (3)0.81853 (15)0.0578 (8)
H90.88260.33790.78980.069*
N60.98706 (17)0.7894 (2)0.99584 (11)0.0542 (6)
C40.8717 (2)0.8767 (3)0.72427 (13)0.0526 (7)
H40.87210.89710.67830.063*
C80.87256 (19)0.5188 (3)0.79084 (14)0.0480 (7)
C110.86797 (19)0.4847 (2)0.93092 (13)0.0441 (6)
C140.8643 (2)0.4653 (3)1.00651 (13)0.0579 (8)
H14A0.85840.54081.02890.087*
H14B0.92430.42631.02420.087*
H14C0.80790.41651.01470.087*
C100.8768 (2)0.3867 (3)0.88718 (15)0.0574 (8)
H100.88180.31010.90530.069*
C60.8709 (2)0.6584 (3)0.69726 (13)0.0554 (8)
H60.87030.67310.65050.066*
C10.8750 (2)1.0281 (2)0.89582 (14)0.0564 (8)
H1A0.86710.99250.93960.085*
H1B0.82251.08460.88550.085*
H1C0.93811.06810.89690.085*
N50.6021 (2)0.7173 (3)0.84052 (13)0.0829 (10)
N81.1259 (2)0.8620 (3)0.94390 (13)0.0916 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03987 (17)0.04148 (19)0.03020 (15)0.00079 (17)0.00262 (12)0.00298 (16)
N10.0378 (12)0.0427 (14)0.0352 (11)0.0019 (10)0.0031 (9)0.0022 (10)
C120.0307 (13)0.0469 (16)0.0379 (13)0.0008 (12)0.0026 (11)0.0072 (12)
N20.0375 (11)0.0405 (13)0.0378 (11)0.0007 (9)0.0016 (9)0.0017 (10)
C130.0315 (11)0.0489 (18)0.0331 (11)0.0004 (12)0.0036 (10)0.0063 (11)
N30.0400 (11)0.0604 (14)0.0301 (10)0.0029 (12)0.0007 (8)0.0045 (11)
N40.0450 (12)0.0616 (16)0.0387 (12)0.0033 (12)0.0056 (10)0.0013 (12)
C70.0546 (18)0.074 (2)0.0422 (17)0.0017 (17)0.0045 (13)0.0214 (15)
N70.0510 (14)0.0706 (17)0.0339 (11)0.0038 (13)0.0015 (10)0.0121 (11)
C30.0541 (18)0.054 (2)0.0530 (18)0.0014 (14)0.0056 (14)0.0106 (14)
C20.0415 (15)0.0453 (17)0.0422 (15)0.0016 (12)0.0021 (12)0.0022 (12)
C50.0364 (12)0.0635 (17)0.0340 (12)0.0007 (15)0.0022 (10)0.0026 (15)
C90.0597 (18)0.051 (2)0.0619 (19)0.0039 (15)0.0001 (15)0.0226 (15)
N60.0458 (13)0.0739 (17)0.0424 (12)0.0062 (12)0.0006 (10)0.0011 (11)
C40.0489 (17)0.073 (2)0.0363 (14)0.0010 (16)0.0068 (12)0.0094 (14)
C80.0405 (16)0.0505 (19)0.0529 (16)0.0006 (13)0.0031 (13)0.0147 (14)
C110.0421 (15)0.0406 (16)0.0490 (15)0.0017 (12)0.0008 (12)0.0010 (13)
C140.070 (2)0.0483 (18)0.0554 (17)0.0037 (15)0.0061 (15)0.0074 (14)
C100.067 (2)0.0369 (17)0.0672 (19)0.0041 (14)0.0007 (16)0.0053 (14)
C60.0545 (18)0.078 (2)0.0335 (14)0.0002 (16)0.0052 (13)0.0108 (15)
C10.073 (2)0.0430 (19)0.0530 (17)0.0016 (15)0.0015 (15)0.0015 (14)
N50.078 (2)0.123 (3)0.0460 (15)0.0035 (17)0.0102 (13)0.0129 (16)
N80.077 (2)0.145 (3)0.0561 (16)0.042 (2)0.0206 (15)0.0117 (18)
Geometric parameters (Å, º) top
Ni1—N61.985 (2)C3—C41.358 (4)
Ni1—N22.054 (2)C3—C21.402 (3)
Ni1—N12.058 (2)C3—H30.9300
Ni1—N3i2.0607 (19)C2—C11.492 (4)
Ni1—N32.070 (2)C5—C41.396 (4)
N1—C21.329 (3)C5—C61.436 (4)
N1—C131.369 (3)C9—C101.360 (4)
C12—N21.373 (3)C9—C81.405 (4)
C12—C81.404 (3)C9—H90.9300
C12—C131.431 (4)C4—H40.9300
N2—C111.322 (3)C11—C101.405 (4)
C13—C51.402 (3)C11—C141.502 (3)
N3—N41.209 (3)C14—H14A0.9600
N3—Ni1i2.0607 (19)C14—H14B0.9600
N4—N51.138 (3)C14—H14C0.9600
C7—C61.340 (4)C10—H100.9300
C7—C81.428 (4)C6—H60.9300
C7—H70.9300C1—H1A0.9600
N7—N81.159 (3)C1—H1B0.9600
N7—N61.185 (3)C1—H1C0.9600
N6—Ni1—N2103.88 (9)C3—C2—C1120.9 (3)
N6—Ni1—N195.98 (9)C4—C5—C13117.3 (2)
N2—Ni1—N181.58 (8)C4—C5—C6124.5 (2)
N6—Ni1—N3i89.76 (9)C13—C5—C6118.2 (3)
N2—Ni1—N3i117.29 (8)C10—C9—C8120.3 (3)
N1—Ni1—N3i158.38 (9)C10—C9—H9119.9
N6—Ni1—N3160.44 (9)C8—C9—H9119.9
N2—Ni1—N394.69 (8)N7—N6—Ni1129.40 (19)
N1—Ni1—N392.73 (8)C3—C4—C5119.7 (2)
N3i—Ni1—N376.09 (9)C3—C4—H4120.2
C2—N1—C13118.9 (2)C5—C4—H4120.2
C2—N1—Ni1129.23 (17)C12—C8—C9116.2 (3)
C13—N1—Ni1111.79 (17)C12—C8—C7119.2 (3)
N2—C12—C8123.2 (3)C9—C8—C7124.6 (3)
N2—C12—C13117.6 (2)N2—C11—C10121.2 (2)
C8—C12—C13119.3 (2)N2—C11—C14118.9 (2)
C11—N2—C12118.8 (2)C10—C11—C14120.0 (2)
C11—N2—Ni1129.58 (17)C11—C14—H14A109.5
C12—N2—Ni1111.56 (16)C11—C14—H14B109.5
N1—C13—C5122.5 (2)H14A—C14—H14B109.5
N1—C13—C12116.9 (2)C11—C14—H14C109.5
C5—C13—C12120.6 (2)H14A—C14—H14C109.5
N4—N3—Ni1i127.69 (16)H14B—C14—H14C109.5
N4—N3—Ni1125.79 (15)C9—C10—C11120.3 (3)
Ni1i—N3—Ni1103.91 (9)C9—C10—H10119.9
N5—N4—N3178.8 (3)C11—C10—H10119.9
C6—C7—C8121.2 (3)C7—C6—C5121.5 (3)
C6—C7—H7119.4C7—C6—H6119.3
C8—C7—H7119.4C5—C6—H6119.3
N8—N7—N6175.6 (3)C2—C1—H1A109.5
C4—C3—C2120.7 (3)C2—C1—H1B109.5
C4—C3—H3119.7H1A—C1—H1B109.5
C2—C3—H3119.7C2—C1—H1C109.5
N1—C2—C3121.0 (2)H1A—C1—H1C109.5
N1—C2—C1118.1 (2)H1B—C1—H1C109.5
N6—Ni1—N1—C273.3 (2)C13—N1—C2—C31.7 (4)
N2—Ni1—N1—C2176.5 (2)Ni1—N1—C2—C3174.51 (18)
N3i—Ni1—N1—C231.3 (4)C13—N1—C2—C1177.5 (2)
N3—Ni1—N1—C289.1 (2)Ni1—N1—C2—C16.3 (3)
N6—Ni1—N1—C13110.21 (17)C4—C3—C2—N10.4 (4)
N2—Ni1—N1—C137.01 (15)C4—C3—C2—C1178.8 (3)
N3i—Ni1—N1—C13145.1 (2)N1—C13—C5—C40.3 (3)
N3—Ni1—N1—C1387.32 (16)C12—C13—C5—C4177.6 (2)
C8—C12—N2—C110.9 (3)N1—C13—C5—C6178.8 (2)
C13—C12—N2—C11178.1 (2)C12—C13—C5—C61.5 (3)
C8—C12—N2—Ni1177.34 (18)N2—Ni1—N6—N776.4 (3)
C13—C12—N2—Ni13.7 (3)N1—Ni1—N6—N76.4 (3)
N6—Ni1—N2—C1182.1 (2)N3i—Ni1—N6—N7165.5 (3)
N1—Ni1—N2—C11176.2 (2)N3—Ni1—N6—N7122.4 (3)
N3i—Ni1—N2—C1114.9 (2)C2—C3—C4—C51.3 (4)
N3—Ni1—N2—C1191.7 (2)C13—C5—C4—C31.6 (4)
N6—Ni1—N2—C1299.89 (16)C6—C5—C4—C3177.4 (3)
N1—Ni1—N2—C125.77 (15)N2—C12—C8—C91.8 (4)
N3i—Ni1—N2—C12163.06 (14)C13—C12—C8—C9177.1 (2)
N3—Ni1—N2—C1286.31 (16)N2—C12—C8—C7178.9 (2)
C2—N1—C13—C51.4 (3)C13—C12—C8—C72.2 (4)
Ni1—N1—C13—C5175.47 (17)C10—C9—C8—C120.7 (4)
C2—N1—C13—C12176.0 (2)C10—C9—C8—C7179.9 (3)
Ni1—N1—C13—C127.2 (3)C6—C7—C8—C121.3 (4)
N2—C12—C13—N12.4 (3)C6—C7—C8—C9178.0 (3)
C8—C12—C13—N1176.6 (2)C12—N2—C11—C101.2 (4)
N2—C12—C13—C5179.8 (2)Ni1—N2—C11—C10179.08 (19)
C8—C12—C13—C50.8 (3)C12—N2—C11—C14179.7 (2)
N6—Ni1—N3—N4152.5 (3)Ni1—N2—C11—C141.8 (4)
N2—Ni1—N3—N445.8 (2)C8—C9—C10—C111.3 (4)
N1—Ni1—N3—N436.0 (2)N2—C11—C10—C92.3 (4)
N3i—Ni1—N3—N4162.8 (3)C14—C11—C10—C9178.6 (3)
N6—Ni1—N3—Ni1i44.8 (3)C8—C7—C6—C51.1 (4)
N2—Ni1—N3—Ni1i116.97 (10)C4—C5—C6—C7176.5 (3)
N1—Ni1—N3—Ni1i161.26 (10)C13—C5—C6—C72.5 (4)
N3i—Ni1—N3—Ni1i0.0
Symmetry code: (i) x+3/2, y+3/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···N3i0.962.473.391 (4)162
C4—H4···N8ii0.932.433.304 (4)157
Symmetry codes: (i) x+3/2, y+3/2, z+2; (ii) x+2, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni2(N3)4(C14H12N2)2]
Mr702.01
Crystal system, space groupMonoclinic, C2/c
Temperature (K)153
a, b, c (Å)13.471 (3), 11.226 (2), 19.605 (4)
β (°) 94.36 (3)
V3)2956.2 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.10 × 0.10 × 0.05
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.879, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
6614, 3396, 1923
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 0.93
No. of reflections3396
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.41

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and maXus (Mackay et al., 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···N3i0.962.473.391 (4)162.0
C4—H4···N8ii0.932.433.304 (4)156.5
Symmetry codes: (i) x+3/2, y+3/2, z+2; (ii) x+2, y, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds