research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures of tetra­kis­(μ-n-butyrato-κ2O:O′)bis­[bromidorhenium(III)] and tetra­kis­(μ-n-butyrato-κ2O:O′)bis­[chlorido­rhenium(III)] aceto­nitrile disolvate

aDepartment of Chemistry and Biochemistry, The College at Brockport, SUNY, Brockport, NY 14420, USA, and bDepartment of Chemistry, University of Rochester, Rochester, NY 14627, USA
*Correspondence e-mail: creed@brockport.edu

Edited by T. J. Prior, University of Hull, England (Received 16 October 2015; accepted 29 October 2015; online 7 November 2015)

The title complexes, [Re2Br2(O2CC3H7)4], (1), and [Re2(O2CC3H7)4Cl2]·2CH3CN, (2), both exhibit paddlewheel structures with four carboxyl­ate ligands bridging two ReIII atoms. The Re—Re distances are 2.2325 (2) and 2.2299 (3) Å, indicating quadruple bonds between the ReIII atoms in each complex. Both complexes contain an inversion center at the mid-point of the Re—Re bond. The Re—Br bond [2.6712 (3) Å] in (1) is 0.1656 (6) Å longer than the Re—Cl distance [2.5056 (5) Å] of (2). In (2), the N atom of each co-crystallized aceto­nitrile solvent mol­ecule is nearly equidistant between and in close contact with two carboxyl­ate C atoms.

1. Chemical context

The first compound discovered to contain a metal–metal quadruple bond was K2Re2Cl8·2H2O (Cotton & Harris, 1965[Cotton, F. A. & Harris, C. B. (1965). Inorg. Chem. 4, 330-333.]); since then numerous other quadruply bonded complexes have been isolated (Cotton et al., 2005[Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds Between Metal Atoms, 3rd ed. New York: Springer Science and Business Media Inc.]). Dirhenium quadruply bonded complexes are of inter­est due to their ability to act as mol­ecular building blocks for the formation of mol­ecular triangles and other multiple-metal arrays in which electronic coupling and delocalization between metal sites can be explored (Bera, Angaridis et al. 2001[Bera, J. K., Angaridis, P., Cotton, F. A., Petrukhina, M. A., Fanwick, P. E. & Walton, R. A. (2001). J. Am. Chem. Soc. 123, 1515-1516.]; Bera, Smucker et al., 2001[Bera, J. K., Smucker, B. W., Walton, R. A. & Dunbar, K. R. (2001). Chem. Commun. pp. 2562-2563.]; Vega et al., 2002[Vega, A., Calvo, V., Manzur, J., Spodine, E. & Saillard, J.-Y. (2002). Inorg. Chem. 41, 5382-5387.]). The title complexes are of the structural type classified as paddlewheel complexes, where the four carboxyl­ate ligands bridge the two metal atoms, creating a paddlewheel appearance. A variety of these dirhenium(III) tetra­carboxyl­ate complexes were synthesized by Cotton et al. (1966[Cotton, F. A., Oldham, C. & Robinson, W. R. (1966). Inorg. Chem. 5, 1798-1802.]) and in subsequent years the crystal structures of [Re2Cl2(O2CCH3)4], [Re2Cl2(O2CC6H5)4] (Bennett et al., 1968[Bennett, M. J., Bratton, W. K., Cotton, F. A. & Robinson, W. R. (1968). Inorg. Chem. 7, 1570-1575.]), [Re2(ReO4)2(O2CC3H7)4] (Calvo et al., 1970[Calvo, C., Jayadevan, N. C., Lock, C. J. L. & Restivo, R. (1970). Can. J. Chem. 48, 219-224.]), [Re2X2{O2CC(CH3)3}4], where X = Cl or Br (Collins et al., 1979[Collins, D. M., Cotton, F. A. & Gage, L. D. (1979). Inorg. Chem. 18, 1712-1715.]), [Re2Cl2(O2CCH3)4] (Koz'min et al., 1980[Koz'min, P. A., Surazhskaya, M. D., Larina, T. B., Kotel'nikova, A. S. & Misailova, T. V. (1980). Koord. Khim. 6, 1256-1258.]), and [Re2Cl2(O2CC3H7)4] (Thomson et al., 2014[Thomson, M. P., O'Rourke, N. F., Wang, R. & Aquino, M. A. S. (2014). Acta Cryst. E70, m349-m350.]) have been reported. For additional dirhenium tetra­carboxyl­ate structures, see: Shtemenko et al. (2001[Shtemenko, A. V., Golichenko, A. A. & Domasevitch, K. V. (2001). Z. Naturforsch. Teil B, 56, 381-385.]), Cotton et al. (1997[Cotton, F. A., Daniels, L. M., Lu, J. & Ren, T. (1997). Acta Cryst. C53, 714-716.]), and Vega et al. (2002[Vega, A., Calvo, V., Manzur, J., Spodine, E. & Saillard, J.-Y. (2002). Inorg. Chem. 41, 5382-5387.]). This communication reports and compares the structures of [Re2Br2(O2CC3H7)4], (1), and [Re2(O2CC3H7)4Cl2]·2CH3CN, (2).

2. Structural commentary

Both of the title dirhenium metal complexes are located on crystallographic inversion centers that coincide with the midpoint of the Re—Re bonds. The short Re—Re bond lengths of 2.2325 (2) and 2.2299 (3) Å, in (1) and (2), respectively, are indicative of quadruple bonds (Tables 1[link] and 2[link]). The four butyrate groups bridge the two ReIII metal atoms in both cases, forming the anti­cipated paddlewheel structures (Figs. 1[link] and 2[link]).

[Scheme 1]
[Scheme 2]

Table 1
Selected geometric parameters (Å, °) for (1)[link]

Re1—O4i 2.0102 (15) Re1—O3 2.0295 (14)
Re1—O2i 2.0159 (14) Re1—Re1i 2.2325 (2)
Re1—O1 2.0225 (15) Re1—Br1 2.6712 (3)
       
O4i—Re1—O2i 89.22 (6) O1—Re1—O3 89.64 (6)
O4i—Re1—O1 90.42 (6) Re1i—Re1—Br1 175.018 (7)
O2i—Re1—O3 90.72 (6)    
       
C1—C2—C3—C4 −177.54 (19) C5—C6—C7—C8 56.0 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Selected geometric parameters (Å, °) for (2)[link]

Re1—O1 2.0216 (12) Re1—O4 2.0255 (12)
Re1—O2i 2.0217 (12) Re1—Re1i 2.2299 (3)
Re1—O3i 2.0238 (12) Re1—Cl1 2.5056 (5)
       
O1—Re1—O3i 89.75 (5) O2i—Re1—O4 89.75 (5)
O2i—Re1—O3i 90.13 (5) Re1i—Re1—Cl1 178.254 (11)
O1—Re1—O4 90.37 (5)    
       
C1—C2—C3—C4 −70.2 (2) C5—C6—C7—C8 −67.9 (2)
Symmetry code: (i) -x, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of title compound (1), with displacement ellipsoids drawn at the 50% probability level. The symmetry-equivalent half is generated by operator (−x + 1, −y + 1, −z + 1).
[Figure 2]
Figure 2
The mol­ecular structure of title compound (2), with displacement ellipsoids drawn at the 50% probability level. The symmetry-equivalent half is generated by operator (−x, −y, −z + 1).

The asymmetric unit of (2) also contains one co-crystallized aceto­nitrile solvent mol­ecule in a general position, thus giving rise to twice that in the formula unit.

The X—Re—Re—X bonds in (1) and (2) are nearly linear, as can be seen in the Re—Re—Br [175.018 (7)°] and Re—Re—Cl [178.254 (11)°] bond angles, and are comparable to those observed in similar compounds (Collins et al., 1979[Collins, D. M., Cotton, F. A. & Gage, L. D. (1979). Inorg. Chem. 18, 1712-1715.]; Thomson et al., 2014[Thomson, M. P., O'Rourke, N. F., Wang, R. & Aquino, M. A. S. (2014). Acta Cryst. E70, m349-m350.]). The Re—Cl bond length [2.5056 (5) Å] of (2) is similar to those of the previously published analog without co-crystallized aceto­nitrile (Thomson et al., 2014[Thomson, M. P., O'Rourke, N. F., Wang, R. & Aquino, M. A. S. (2014). Acta Cryst. E70, m349-m350.]), [Re2Cl2(O2CC(CH3)3)4], and [Re2Cl2(O2CC6H5)4]·2CHCl3 (Bennett et al., 1968[Bennett, M. J., Bratton, W. K., Cotton, F. A. & Robinson, W. R. (1968). Inorg. Chem. 7, 1570-1575.]; Collins et al., 1979[Collins, D. M., Cotton, F. A. & Gage, L. D. (1979). Inorg. Chem. 18, 1712-1715.]). The Re—Br bond length [2.6712 (3) Å] of (1) is slightly longer than the Re—Br bond [2.603 (1) Å] found in [Re2Br2(O2CC(CH3)3)4] (Collins et al., 1979[Collins, D. M., Cotton, F. A. & Gage, L. D. (1979). Inorg. Chem. 18, 1712-1715.]). The Re—Br and Re—Cl distances of (1) and (2) differ by 0.1656 (6) Å and those of Cotton and coworkers differ by 0.126 (3), both of which are consistent with the difference in covalent radii of Cl and Br (0.15 Å).

The structure of (1) is isotypic with the chlorido analog published by Thomson et al. (2014[Thomson, M. P., O'Rourke, N. F., Wang, R. & Aquino, M. A. S. (2014). Acta Cryst. E70, m349-m350.]). Inspection of the torsion angles of the hydro­carbon chains reveals the possible effect of the co-crystallization of solvent in [Re2Cl2(O2CC3H7)4]. In compound (2), the C1—C2—C3—C4 torsion angle is −70.2 (2)°, comparable to −67.9 (2)° for C5—C6—C7—C8 (Fig. 1[link]). In the structure of [Re2Cl2(O2CC3H7)4] without co-crystallizing solvent, the torsion angles vary more [C1—C2—C3—C4 = −55.2 (5) and C5—C6—C7—C8, 179.5 (4)°] (Thomson et al., 2014[Thomson, M. P., O'Rourke, N. F., Wang, R. & Aquino, M. A. S. (2014). Acta Cryst. E70, m349-m350.]), similar to those observed in (1) (Table 1[link]).

3. Supra­molecular features

Packing arrangements are shown in Figs. 3[link] and 4[link]. In (2) nitro­gen atom N1 of the co-crystallized aceto­nitrile solvent mol­ecule is located at distances of 3.197 (3) and 3.216 (3) Å from the carboxyl­ate carbon atoms C1 and C5, respectively. This is just within the sum of the van der Waals radii of 3.25 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]), and suggests the presence of a weak electrostatic inter­action between the solvent and dirhenium species.

[Figure 3]
Figure 3
The packing arrangements of (1).
[Figure 4]
Figure 4
The packing arrangements of (2).

4. Database survey

There are 145 structures in the Cambridge Structural Database to date (CSD, Version 5.36, update No. 3, May 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) that have explicitly defined Re—Re quadruple bonds. However, this appears to be an inconsistent denotation, as many other structures that contain quadruple bonds are not presented as such. For instance only six of the eleven carboxyl­ate paddlewheel complexes in the CSD (to date) have their Re—Re bonds defined as quadruple. Thus a better way to search appears to be by bond length. There are 298 entries with Re—Re bond lengths ≤ 2.29 Å. The only examples of defined quadruple bonds greater than this (excluding obviously disordered structures) are two dirhenium structures with bridging hydride ligands (CSD refcodes BIBLED and BIBLIH; Green et al., 1982[Green, M. A., Huffman, J. C. & Caulton, K. G. (1982). J. Am. Chem. Soc. 104, 2319-2320.]) and two with bridging di-p-tolyl­formamidine ligands (CSD refcodes KOZFUA and KOZGEL; Cotton & Ren, 1992[Cotton, F. A. & Ren, T. (1992). J. Am. Chem. Soc. 114, 2495-2502.]).

5. Synthesis and crystallization

The title compounds were previously synthesized via microwave irradiation and fully characterized by elemental analysis and UV–Vis and IR spectroscopies (Reed et al., 2015[Reed, C. R., Feeney, C. & Merritt, M. A. (2015). J. Coord. Chem. 68, 3449-3456.]). For crystallization each compound was dissolved in aceto­nitrile and a few drops of diethyl ether were added to the aceto­nitrile solution which produced seed crystals. Slow evaporation of the solvent at room temperature in a glovebox produced single crystals suitable for X-ray diffraction.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed geometrically and treated as riding atoms: methyl­ene, C—H = 0.99 Å, with Uiso(H) = 1.2Ueq(C) and methyl, C—H = 0.98 Å, with Uiso(H) = 1.5Ueq(C).

Table 3
Experimental details

  (1) (2)
Crystal data
Chemical formula [Re2Br2(C4H7O2)4] [Re2(C4H7O2)4Cl2]·2C2H3N
Mr 880.60 873.79
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 6.6833 (5), 12.2817 (10), 14.6134 (12) 8.5589 (13), 17.097 (3), 10.0494 (15)
β (°) 100.5380 (16) 105.830 (3)
V3) 1179.27 (16) 1414.8 (4)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 13.68 8.78
Crystal size (mm) 0.36 × 0.16 × 0.12 0.36 × 0.34 × 0.12
 
Data collection
Diffractometer Bruker SMART APEXII CCD platform Bruker SMART APEXII CCD platform
Absorption correction Multi-scan (SADABS; Sheldrick, 2014[Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 2014[Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.161, 0.440 0.187, 0.440
No. of measured, independent and observed [I > 2σ(I)] reflections 43018, 6464, 5503 51215, 7730, 6874
Rint 0.039 0.038
(sin θ/λ)max−1) 0.875 0.876
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.047, 1.04 0.021, 0.040, 1.15
No. of reflections 6464 7730
No. of parameters 129 157
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.11, −1.56 1.42, −1.61
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(1) Tetrakis(µ-n-butyrato-κ2O:O')bis[bromidorhenium(III)] top
Crystal data top
[Re2Br2(C4H7O2)4]F(000) = 816
Mr = 880.60Dx = 2.480 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.6833 (5) ÅCell parameters from 3849 reflections
b = 12.2817 (10) Åθ = 3.3–38.2°
c = 14.6134 (12) ŵ = 13.68 mm1
β = 100.5380 (16)°T = 100 K
V = 1179.27 (16) Å3Needle, orange
Z = 20.36 × 0.16 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD platform
diffractometer
5503 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
ω scansθmax = 38.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2014)
h = 1111
Tmin = 0.161, Tmax = 0.440k = 2121
43018 measured reflectionsl = 2525
6464 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0202P)2 + 0.9723P]
where P = (Fo2 + 2Fc2)/3
6464 reflections(Δ/σ)max = 0.001
129 parametersΔρmax = 2.11 e Å3
0 restraintsΔρmin = 1.56 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.41766 (2)0.44073 (2)0.53764 (2)0.00983 (2)
Br10.19163 (3)0.30257 (2)0.61673 (2)0.01786 (4)
O10.5665 (2)0.31578 (12)0.48971 (10)0.0133 (2)
O20.7293 (2)0.43464 (12)0.41390 (10)0.0128 (2)
O30.1966 (2)0.43002 (12)0.42259 (10)0.0130 (2)
O40.3633 (2)0.54841 (12)0.34843 (10)0.0131 (2)
C10.6954 (3)0.33636 (16)0.43620 (13)0.0122 (3)
C20.8048 (3)0.24669 (16)0.39774 (14)0.0146 (3)
H2A0.95280.26110.41420.018*
H2B0.76720.24860.32900.018*
C30.7644 (4)0.13262 (17)0.43061 (16)0.0182 (4)
H3A0.61840.11470.41120.022*
H3B0.79820.12930.49940.022*
C40.8936 (4)0.05015 (19)0.38890 (18)0.0239 (5)
H4A0.86330.02340.40840.036*
H4B1.03810.06610.41070.036*
H4C0.86220.05490.32080.036*
C50.2113 (3)0.48493 (16)0.34960 (13)0.0124 (3)
C60.0567 (3)0.47160 (19)0.26301 (14)0.0165 (4)
H6A0.00770.54410.23910.020*
H6B0.06110.43020.27710.020*
C70.1485 (4)0.4111 (2)0.18869 (17)0.0251 (5)
H7A0.04140.39990.13300.030*
H7B0.25650.45660.17010.030*
C80.2376 (4)0.3019 (3)0.2226 (2)0.0373 (7)
H8A0.28490.26400.17150.056*
H8B0.13310.25790.24430.056*
H8C0.35240.31300.27400.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01032 (3)0.01015 (3)0.00965 (3)0.00067 (2)0.00351 (2)0.00002 (2)
Br10.01861 (9)0.01864 (9)0.01763 (9)0.00465 (7)0.00674 (7)0.00246 (7)
O10.0140 (6)0.0128 (6)0.0137 (6)0.0002 (5)0.0045 (5)0.0012 (5)
O20.0124 (6)0.0132 (6)0.0139 (6)0.0008 (5)0.0050 (5)0.0011 (5)
O30.0125 (6)0.0153 (6)0.0115 (6)0.0009 (5)0.0029 (4)0.0002 (5)
O40.0140 (6)0.0141 (6)0.0115 (6)0.0006 (5)0.0028 (5)0.0014 (5)
C10.0113 (7)0.0139 (8)0.0112 (7)0.0004 (6)0.0018 (6)0.0007 (6)
C20.0143 (8)0.0129 (8)0.0174 (8)0.0029 (6)0.0049 (7)0.0030 (6)
C30.0219 (10)0.0139 (8)0.0198 (9)0.0030 (7)0.0060 (7)0.0017 (7)
C40.0274 (12)0.0185 (10)0.0258 (11)0.0081 (8)0.0048 (9)0.0023 (8)
C50.0122 (8)0.0126 (8)0.0125 (7)0.0002 (6)0.0030 (6)0.0020 (6)
C60.0162 (9)0.0210 (9)0.0114 (8)0.0008 (7)0.0002 (6)0.0004 (7)
C70.0222 (11)0.0361 (13)0.0183 (9)0.0110 (10)0.0068 (8)0.0097 (9)
C80.0262 (13)0.0418 (17)0.0430 (16)0.0033 (12)0.0035 (11)0.0264 (13)
Geometric parameters (Å, º) top
Re1—O4i2.0102 (15)C3—C41.528 (3)
Re1—O2i2.0159 (14)C3—H3A0.9900
Re1—O12.0225 (15)C3—H3B0.9900
Re1—O32.0295 (14)C4—H4A0.9800
Re1—Re1i2.2325 (2)C4—H4B0.9800
Re1—Br12.6712 (3)C4—H4C0.9800
O1—C11.290 (2)C5—C61.489 (3)
O2—C11.281 (2)C6—C71.533 (3)
O2—Re1i2.0159 (14)C6—H6A0.9900
O3—C51.281 (2)C6—H6B0.9900
O4—C51.283 (2)C7—C81.514 (4)
O4—Re1i2.0102 (14)C7—H7A0.9900
C1—C21.488 (3)C7—H7B0.9900
C2—C31.521 (3)C8—H8A0.9800
C2—H2A0.9900C8—H8B0.9800
C2—H2B0.9900C8—H8C0.9800
O4i—Re1—O2i89.22 (6)C2—C3—H3B109.7
O4i—Re1—O190.42 (6)C4—C3—H3B109.7
O2i—Re1—O1179.64 (6)H3A—C3—H3B108.2
O4i—Re1—O3179.91 (6)C3—C4—H4A109.5
O2i—Re1—O390.72 (6)C3—C4—H4B109.5
O1—Re1—O389.64 (6)H4A—C4—H4B109.5
O4i—Re1—Re1i90.86 (4)C3—C4—H4C109.5
O2i—Re1—Re1i89.64 (4)H4A—C4—H4C109.5
O1—Re1—Re1i90.35 (4)H4B—C4—H4C109.5
O3—Re1—Re1i89.08 (4)O3—C5—O4120.85 (18)
O4i—Re1—Br193.87 (4)O3—C5—C6120.16 (18)
O2i—Re1—Br188.85 (4)O4—C5—C6118.92 (18)
O1—Re1—Br191.19 (4)C5—C6—C7110.48 (19)
O3—Re1—Br186.19 (4)C5—C6—H6A109.6
Re1i—Re1—Br1175.018 (7)C7—C6—H6A109.6
C1—O1—Re1119.12 (13)C5—C6—H6B109.6
C1—O2—Re1i120.39 (13)C7—C6—H6B109.6
C5—O3—Re1120.03 (13)H6A—C6—H6B108.1
C5—O4—Re1i119.18 (13)C8—C7—C6112.4 (2)
O2—C1—O1120.51 (18)C8—C7—H7A109.1
O2—C1—C2118.63 (18)C6—C7—H7A109.1
O1—C1—C2120.85 (18)C8—C7—H7B109.1
C1—C2—C3115.75 (18)C6—C7—H7B109.1
C1—C2—H2A108.3H7A—C7—H7B107.8
C3—C2—H2A108.3C7—C8—H8A109.5
C1—C2—H2B108.3C7—C8—H8B109.5
C3—C2—H2B108.3H8A—C8—H8B109.5
H2A—C2—H2B107.4C7—C8—H8C109.5
C2—C3—C4109.79 (19)H8A—C8—H8C109.5
C2—C3—H3A109.7H8B—C8—H8C109.5
C4—C3—H3A109.7
Re1i—O2—C1—O10.2 (2)Re1—O3—C5—O41.1 (3)
Re1i—O2—C1—C2179.10 (13)Re1—O3—C5—C6175.86 (14)
Re1—O1—C1—O20.2 (2)Re1i—O4—C5—O31.0 (3)
Re1—O1—C1—C2178.66 (14)Re1i—O4—C5—C6175.98 (14)
O2—C1—C2—C3177.34 (18)O3—C5—C6—C7108.8 (2)
O1—C1—C2—C33.7 (3)O4—C5—C6—C768.2 (3)
C1—C2—C3—C4177.54 (19)C5—C6—C7—C856.0 (3)
Symmetry code: (i) x+1, y+1, z+1.
(2) Tetrakis(µ-n-butyrato-κ2O:O')bis[chloridorhenium(III)] top
Crystal data top
[Re2(C4H7O2)4Cl2]·2C2H3NF(000) = 832
Mr = 873.79Dx = 2.051 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.5589 (13) ÅCell parameters from 3912 reflections
b = 17.097 (3) Åθ = 2.4–38.3°
c = 10.0494 (15) ŵ = 8.78 mm1
β = 105.830 (3)°T = 100 K
V = 1414.8 (4) Å3Plate, orange
Z = 20.36 × 0.34 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD platform
diffractometer
6874 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
ω scansθmax = 38.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2014)
h = 1414
Tmin = 0.187, Tmax = 0.440k = 2929
51215 measured reflectionsl = 1717
7730 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.040H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0071P)2 + 1.4405P]
where P = (Fo2 + 2Fc2)/3
7730 reflections(Δ/σ)max = 0.002
157 parametersΔρmax = 1.42 e Å3
0 restraintsΔρmin = 1.61 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.03406 (2)0.02939 (2)0.41289 (2)0.00845 (2)
Cl10.11816 (5)0.09708 (2)0.22230 (4)0.01465 (7)
O10.11825 (15)0.12189 (7)0.53706 (12)0.0114 (2)
O20.05072 (15)0.06310 (7)0.71113 (12)0.0116 (2)
O30.18769 (15)0.08019 (7)0.64715 (13)0.0119 (2)
O40.25576 (15)0.02169 (7)0.47284 (13)0.0125 (2)
C10.1121 (2)0.12144 (9)0.66290 (17)0.0110 (3)
C20.1786 (2)0.18996 (10)0.75268 (19)0.0155 (3)
H2A0.13910.23840.70040.019*
H2B0.29840.18940.77260.019*
C30.1342 (3)0.19286 (11)0.88930 (19)0.0190 (3)
H3A0.16060.14190.93670.023*
H3B0.20110.23330.94910.023*
C40.0440 (3)0.21089 (13)0.8716 (3)0.0272 (4)
H4A0.06500.21340.96260.041*
H4B0.11090.16970.81620.041*
H4C0.07110.26130.82440.041*
C50.2915 (2)0.06622 (10)0.57910 (18)0.0128 (3)
C60.4563 (2)0.10219 (12)0.6230 (2)0.0185 (3)
H6A0.46410.13520.70550.022*
H6B0.53850.06020.64970.022*
C70.4947 (2)0.15213 (12)0.5097 (2)0.0226 (4)
H7A0.47680.12040.42450.027*
H7B0.61090.16700.53910.027*
C80.3925 (3)0.22572 (15)0.4773 (3)0.0392 (6)
H8A0.42360.25550.40530.059*
H8B0.27750.21140.44470.059*
H8C0.41040.25770.56100.059*
N10.4670 (3)0.05726 (13)0.8138 (2)0.0299 (4)
C90.5906 (3)0.05264 (13)0.8933 (2)0.0221 (4)
C100.7485 (3)0.04674 (14)0.9950 (2)0.0255 (4)
H10A0.77270.09591.04660.038*
H10B0.83240.03650.94750.038*
H10C0.74650.00381.05910.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.00949 (2)0.00778 (2)0.00844 (2)0.00046 (2)0.00305 (2)0.00032 (2)
Cl10.01616 (16)0.01644 (16)0.01207 (15)0.00189 (13)0.00506 (13)0.00287 (13)
O10.0142 (5)0.0097 (5)0.0105 (5)0.0014 (4)0.0037 (4)0.0004 (4)
O20.0149 (5)0.0103 (5)0.0097 (5)0.0016 (4)0.0035 (4)0.0003 (4)
O30.0118 (5)0.0115 (5)0.0122 (5)0.0009 (4)0.0032 (4)0.0012 (4)
O40.0112 (5)0.0129 (5)0.0140 (5)0.0013 (4)0.0048 (4)0.0016 (4)
C10.0118 (6)0.0094 (6)0.0117 (6)0.0007 (5)0.0031 (5)0.0006 (5)
C20.0198 (8)0.0115 (6)0.0151 (7)0.0042 (6)0.0049 (6)0.0036 (6)
C30.0290 (9)0.0148 (7)0.0136 (7)0.0054 (7)0.0067 (7)0.0046 (6)
C40.0316 (11)0.0234 (9)0.0325 (11)0.0057 (8)0.0185 (9)0.0097 (8)
C50.0118 (6)0.0123 (6)0.0136 (7)0.0008 (5)0.0022 (5)0.0002 (5)
C60.0114 (7)0.0213 (8)0.0217 (8)0.0047 (6)0.0027 (6)0.0018 (7)
C70.0172 (8)0.0225 (9)0.0296 (10)0.0056 (7)0.0092 (7)0.0004 (8)
C80.0315 (12)0.0256 (11)0.0572 (18)0.0014 (9)0.0066 (12)0.0116 (11)
N10.0290 (10)0.0304 (10)0.0270 (9)0.0018 (8)0.0018 (8)0.0006 (8)
C90.0257 (9)0.0199 (8)0.0200 (8)0.0010 (7)0.0050 (7)0.0002 (7)
C100.0235 (9)0.0288 (10)0.0210 (9)0.0006 (8)0.0005 (8)0.0001 (8)
Geometric parameters (Å, º) top
Re1—O12.0216 (12)C4—H4A0.9800
Re1—O2i2.0217 (12)C4—H4B0.9800
Re1—O3i2.0238 (12)C4—H4C0.9800
Re1—O42.0255 (12)C5—C61.490 (2)
Re1—Re1i2.2299 (3)C6—C71.529 (3)
Re1—Cl12.5056 (5)C6—H6A0.9900
O1—C11.280 (2)C6—H6B0.9900
O2—C11.282 (2)C7—C81.516 (3)
O2—Re1i2.0217 (12)C7—H7A0.9900
O3—C51.283 (2)C7—H7B0.9900
O3—Re1i2.0238 (12)C8—H8A0.9800
O4—C51.279 (2)C8—H8B0.9800
C1—C21.493 (2)C8—H8C0.9800
C2—C31.522 (3)N1—C91.141 (3)
C2—H2A0.9900C9—C101.459 (3)
C2—H2B0.9900C10—H10A0.9800
C3—C41.518 (3)C10—H10B0.9800
C3—H3A0.9900C10—H10C0.9800
C3—H3B0.9900
O1—Re1—O2i179.84 (5)C3—C4—H4A109.5
O1—Re1—O3i89.75 (5)C3—C4—H4B109.5
O2i—Re1—O3i90.13 (5)H4A—C4—H4B109.5
O1—Re1—O490.37 (5)C3—C4—H4C109.5
O2i—Re1—O489.75 (5)H4A—C4—H4C109.5
O3i—Re1—O4179.87 (5)H4B—C4—H4C109.5
O1—Re1—Re1i89.63 (4)O4—C5—O3120.86 (15)
O2i—Re1—Re1i90.27 (4)O4—C5—C6118.98 (16)
O3i—Re1—Re1i90.15 (4)O3—C5—C6120.16 (16)
O4—Re1—Re1i89.80 (4)C5—C6—C7112.87 (16)
O1—Re1—Cl188.98 (4)C5—C6—H6A109.0
O2i—Re1—Cl191.13 (4)C7—C6—H6A109.0
O3i—Re1—Cl190.89 (4)C5—C6—H6B109.0
O4—Re1—Cl189.16 (4)C7—C6—H6B109.0
Re1i—Re1—Cl1178.254 (11)H6A—C6—H6B107.8
C1—O1—Re1120.09 (10)C8—C7—C6113.24 (19)
C1—O2—Re1i119.38 (11)C8—C7—H7A108.9
C5—O3—Re1i119.40 (11)C6—C7—H7A108.9
C5—O4—Re1119.78 (11)C8—C7—H7B108.9
O1—C1—O2120.63 (15)C6—C7—H7B108.9
O1—C1—C2118.72 (15)H7A—C7—H7B107.7
O2—C1—C2120.64 (15)C7—C8—H8A109.5
C1—C2—C3115.01 (15)C7—C8—H8B109.5
C1—C2—H2A108.5H8A—C8—H8B109.5
C3—C2—H2A108.5C7—C8—H8C109.5
C1—C2—H2B108.5H8A—C8—H8C109.5
C3—C2—H2B108.5H8B—C8—H8C109.5
H2A—C2—H2B107.5N1—C9—C10180.0 (3)
C4—C3—C2113.00 (17)C9—C10—H10A109.5
C4—C3—H3A109.0C9—C10—H10B109.5
C2—C3—H3A109.0H10A—C10—H10B109.5
C4—C3—H3B109.0C9—C10—H10C109.5
C2—C3—H3B109.0H10A—C10—H10C109.5
H3A—C3—H3B107.8H10B—C10—H10C109.5
Re1—O1—C1—O21.0 (2)Re1—O4—C5—O31.2 (2)
Re1—O1—C1—C2178.70 (12)Re1—O4—C5—C6178.97 (12)
Re1i—O2—C1—O10.8 (2)Re1i—O3—C5—O41.1 (2)
Re1i—O2—C1—C2178.84 (12)Re1i—O3—C5—C6179.11 (12)
O1—C1—C2—C3167.38 (16)O4—C5—C6—C758.1 (2)
O2—C1—C2—C312.9 (2)O3—C5—C6—C7121.71 (19)
C1—C2—C3—C470.2 (2)C5—C6—C7—C867.9 (2)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank The College at Brockport, SUNY, and the University of Rochester Chemistry Department for financial support as well as Marcy A. Merritt and Callen Feeney who contributed to the initial preparation of the compounds.

References

First citationBennett, M. J., Bratton, W. K., Cotton, F. A. & Robinson, W. R. (1968). Inorg. Chem. 7, 1570–1575.  CSD CrossRef CAS Web of Science Google Scholar
First citationBera, J. K., Angaridis, P., Cotton, F. A., Petrukhina, M. A., Fanwick, P. E. & Walton, R. A. (2001). J. Am. Chem. Soc. 123, 1515–1516.  Web of Science CSD CrossRef CAS Google Scholar
First citationBera, J. K., Smucker, B. W., Walton, R. A. & Dunbar, K. R. (2001). Chem. Commun. pp. 2562–2563.  Web of Science CSD CrossRef Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCalvo, C., Jayadevan, N. C., Lock, C. J. L. & Restivo, R. (1970). Can. J. Chem. 48, 219–224.  CrossRef CAS Web of Science Google Scholar
First citationCollins, D. M., Cotton, F. A. & Gage, L. D. (1979). Inorg. Chem. 18, 1712–1715.  CSD CrossRef CAS Web of Science Google Scholar
First citationCotton, F. A., Daniels, L. M., Lu, J. & Ren, T. (1997). Acta Cryst. C53, 714–716.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCotton, F. A. & Harris, C. B. (1965). Inorg. Chem. 4, 330–333.  CrossRef CAS Web of Science Google Scholar
First citationCotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds Between Metal Atoms, 3rd ed. New York: Springer Science and Business Media Inc.  Google Scholar
First citationCotton, F. A., Oldham, C. & Robinson, W. R. (1966). Inorg. Chem. 5, 1798–1802.  CrossRef CAS Web of Science Google Scholar
First citationCotton, F. A. & Ren, T. (1992). J. Am. Chem. Soc. 114, 2495–2502.  CSD CrossRef CAS Web of Science Google Scholar
First citationGreen, M. A., Huffman, J. C. & Caulton, K. G. (1982). J. Am. Chem. Soc. 104, 2319–2320.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoz'min, P. A., Surazhskaya, M. D., Larina, T. B., Kotel'nikova, A. S. & Misailova, T. V. (1980). Koord. Khim. 6, 1256–1258.  CAS Google Scholar
First citationReed, C. R., Feeney, C. & Merritt, M. A. (2015). J. Coord. Chem. 68, 3449–3456.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShtemenko, A. V., Golichenko, A. A. & Domasevitch, K. V. (2001). Z. Naturforsch. Teil B, 56, 381–385.  CAS Google Scholar
First citationThomson, M. P., O'Rourke, N. F., Wang, R. & Aquino, M. A. S. (2014). Acta Cryst. E70, m349–m350.  CSD CrossRef IUCr Journals Google Scholar
First citationVega, A., Calvo, V., Manzur, J., Spodine, E. & Saillard, J.-Y. (2002). Inorg. Chem. 41, 5382–5387.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds