metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di-μ-acetato-di­acetatobis­(μ-6,6′-dimeth­­oxy-2,2′-{[(propane-1,3-diylbis(aza­nylyl­­idene)]bis­­(methanylyl­­idene)}diphenolato)tetra­zinc

aDepartment of Chemistry, Mudanjiang Normal University, Mudanjiang 157011, People's Republic of China
*Correspondence e-mail: xuecai@mail.sdu.edu.cn

Edited by T. J. Prior, University of Hull, England (Received 9 October 2015; accepted 29 October 2015; online 11 November 2015)

The tetra­nuclear title complex, [Zn4(C19H20N2O4)2(CH3COO)4], is formed from two dinuclear motifs related by an inversion centre. The two crystallographically independent ZnII ions in the asymmetric unit are in different coordination environments. One is square-based pyramidal with one O atom of an acetate group occupying the axial position and two N and O atoms of one bmspd [H2bmspd = N,N′-bis­(3-meth­oxy­salicyl­idene)propyl­ene-1,3-di­amine] Schiff base ligand forming the basal plane. The other ZnII atom is six-coordinated by four O atoms of the bmspd ligand forming the equatoral plane and two O atoms of different acetate groups located in the axial positions. As a result, the two phenolic planes of the bicompartmental Schiff base ligand are distorted slightly. However, the planes of the two Schiff base ligands are parallel. In addition, the Zn—N and Zn—O bond lengths span the reasonable ranges 2.062 (2)–2.073 (2) and 1.9261 (15)–2.4356 (16) Å, respectively. The Zn⋯Zn distances separated by phenolic O atoms are 3.2466 (4) Å while the Zn⋯Zn distances bridged by acetate groups are 5.9835 (6) Å. The tetra­nuclear moieties are connected by van der Waals interactions, and form a chain along c axis.

1. Related literature

Metal-organic coordination complexes of N,N′-bis­(salicyl­idene)ethyl­enedi­amine (salen) Schiff-base derivatives have been studied extensively within the fields of homogeneous catalysis (Wezenberg & Kleij, 2008[Wezenberg, S. J. & Kleij, A. W. (2008). Angew. Chem. Int. Ed. 47, 2354-2364.]), non-linear optics (Rigamonti et al., 2006[Rigamonti, L., Demartin, F., Forni, A., Righetto, S. & Pasini, A. (2006). Inorg. Chem. 45, 10976-10989.]), magnetics (Yuan et al., 2007[Yuan, M., Zhao, F., Zhang, W., Wang, Z.-M. & Gao, S. (2007). Inorg. Chem. 46, 11235-11242.]) and biological metalloenzyme mimics (Laskin et al., 2008[Laskin, J., Yang, Z. & Chu, I. K. (2008). J. Am. Chem. Soc. 130, 3218-3230.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Zn4(C19H20N2O4)2(C2H3O2)4]

  • Mr = 1178.48

  • Triclinic, [P \overline 1]

  • a = 10.4894 (9) Å

  • b = 10.7917 (9) Å

  • c = 11.9550 (11) Å

  • α = 103.425 (2)°

  • β = 94.323 (1)°

  • γ = 115.677 (1)°

  • V = 1162.17 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.12 mm−1

  • T = 298 K

  • 0.15 × 0.10 × 0.08 mm

2.2. Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.742, Tmax = 0.849

  • 6281 measured reflections

  • 4497 independent reflections

  • 3969 reflections with I > 2σ(I)

  • Rint = 0.013

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.071

  • S = 1.05

  • 4497 reflections

  • 318 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The metal-organic coordination complexes of N,N'-bis(salicylidene)ethylenediamine (salen) Schiff-base derivatives were extensively studied within the field of homogeneous catalysis (Wezenberg et al., 2008), nonlinear optic (Rigamonti et al., 2006), magnetics (Yuan et al., 2007), and biological metalloenzymes mimic (Laskin et al., 2008). Recently, the compartmental salen ligands derived from the 2:1 condensation between 3-methoxysalicylaldehyde and corresponding diamines allowing for two metal ions located in dissimilar N2O2 and O4 cavities bridged by phenolic oxygen atoms, which bring interesting magnetic phenomena and intriguing optical properties. Herein, a novel heterometallic tetranuclear (Zn)4 compound has been obtained by step-by-step method and its structure is described.

The compound is composed of two [Zn2(bmspd)(OAc))]+ ions bridged by two acetate ions. There are two kinds of symmetry-independent zinc ions in this compound. One zinc ion (Zn1) is located in a five-coordinated environment, as shown in Figure 1. The other kind of zinc ion (Zn2) is coordinated by the O4 cavity in bmspd ligand and two oxygen atoms of acetate ions in pseudo-octahedral geometry. The neighbouring tetranuclear molecules form a two-dimensional supramolecular network by virtue of intermolecular π-π interactions. (Figure 2)

Related literature top

For related literature, see: Laskin et al. (2008); Metal-organic coordination complexes of N,N'-bis(salicylidene)ethylenediamine (salen) Schiff-base derivatives have been studied extensively within the fields of homogeneous catalysis (Wezenberg & Kleij, 2008), non-linear optics (Rigamonti et al., 2006), magnetics (Yuan et al., 2007) and biological metalloenzyme mimics (Laskin et al., 2008).

Experimental top

A mixture of metal-free Schiff-base ligand H2bmspd (0.4 mmol 0.1368 g) and Zn(OAc)2·2H2O (0.4 mmol 0.0878 g) in methanol (20 ml) was stirred for 30 min at room temperature. Then, a solution of Zn(OAc)2·2H2O (0.4 mmol 0.0878 g) in methanol was added dropwise and the mixture was kept stirring for another 30 min at room temperature. Pale yellow block-shaped crystals for suitable for X-ray diffraction were obtained by slowly diffusing diethyl ether into the filtrate. The final mass of product was 0.0966 g.

Refinement top

The coordinates of the difference H atoms bound to C atoms were placed using the HFIX commands in SHELXL-97, with C—H distances of 0.93–0.97 Å. All H atoms were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). The orientation of hydrogen atoms of methyl groups of acetate was allowed to refine subject to geometric restraints.

Structure description top

The metal-organic coordination complexes of N,N'-bis(salicylidene)ethylenediamine (salen) Schiff-base derivatives were extensively studied within the field of homogeneous catalysis (Wezenberg et al., 2008), nonlinear optic (Rigamonti et al., 2006), magnetics (Yuan et al., 2007), and biological metalloenzymes mimic (Laskin et al., 2008). Recently, the compartmental salen ligands derived from the 2:1 condensation between 3-methoxysalicylaldehyde and corresponding diamines allowing for two metal ions located in dissimilar N2O2 and O4 cavities bridged by phenolic oxygen atoms, which bring interesting magnetic phenomena and intriguing optical properties. Herein, a novel heterometallic tetranuclear (Zn)4 compound has been obtained by step-by-step method and its structure is described.

The compound is composed of two [Zn2(bmspd)(OAc))]+ ions bridged by two acetate ions. There are two kinds of symmetry-independent zinc ions in this compound. One zinc ion (Zn1) is located in a five-coordinated environment, as shown in Figure 1. The other kind of zinc ion (Zn2) is coordinated by the O4 cavity in bmspd ligand and two oxygen atoms of acetate ions in pseudo-octahedral geometry. The neighbouring tetranuclear molecules form a two-dimensional supramolecular network by virtue of intermolecular π-π interactions. (Figure 2)

For related literature, see: Laskin et al. (2008); Metal-organic coordination complexes of N,N'-bis(salicylidene)ethylenediamine (salen) Schiff-base derivatives have been studied extensively within the fields of homogeneous catalysis (Wezenberg & Kleij, 2008), non-linear optics (Rigamonti et al., 2006), magnetics (Yuan et al., 2007) and biological metalloenzyme mimics (Laskin et al., 2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of molecular structure for complex [Zn4(bmspd)2(OAc)4] with atoms drawn as 50% probability ellipsoids.
[Figure 2] Fig. 2. The perspective drawing of complex [Zn4(bmspd)2(OAc)4] packing in ac plane.
Di-µ-acetato-diacetatobis(µ-6,6'-dimethoxy-2,2'-{[(propane-1,3-diylbis(azanylylidene)]bis(methanylylidene)}diphenolato)tetrazinc top
Crystal data top
[Zn4(C19H20N2O4)2(C2H3O2)4]Z = 1
Mr = 1178.48F(000) = 604
Triclinic, P1Dx = 1.684 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4894 (9) ÅCell parameters from 4019 reflections
b = 10.7917 (9) Åθ = 2.2–27.5°
c = 11.9550 (11) ŵ = 2.12 mm1
α = 103.425 (2)°T = 298 K
β = 94.323 (1)°Block, yellow
γ = 115.677 (1)°0.15 × 0.10 × 0.08 mm
V = 1162.17 (18) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4497 independent reflections
Radiation source: fine-focus sealed tube3969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 0 pixels mm-1θmax = 26.0°, θmin = 1.8°
phi and ω scansh = 612
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.742, Tmax = 0.849l = 1314
6281 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0367P)2 + 0.3975P]
where P = (Fo2 + 2Fc2)/3
4497 reflections(Δ/σ)max = 0.006
318 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Zn4(C19H20N2O4)2(C2H3O2)4]γ = 115.677 (1)°
Mr = 1178.48V = 1162.17 (18) Å3
Triclinic, P1Z = 1
a = 10.4894 (9) ÅMo Kα radiation
b = 10.7917 (9) ŵ = 2.12 mm1
c = 11.9550 (11) ÅT = 298 K
α = 103.425 (2)°0.15 × 0.10 × 0.08 mm
β = 94.323 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4497 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3969 reflections with I > 2σ(I)
Tmin = 0.742, Tmax = 0.849Rint = 0.013
6281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
4497 reflectionsΔρmin = 0.27 e Å3
318 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5747 (2)0.1717 (3)0.1390 (2)0.0479 (6)
H1A0.56510.09380.16920.072*
H1B0.53480.13500.05630.072*
H1C0.52390.21860.17830.072*
C20.7601 (2)0.3909 (2)0.12186 (18)0.0334 (4)
C30.6657 (2)0.4234 (3)0.0636 (2)0.0431 (5)
H30.56660.36420.04970.052*
C40.7206 (3)0.5459 (3)0.0258 (2)0.0540 (7)
H40.65770.56800.01440.065*
C50.8656 (3)0.6339 (3)0.0473 (2)0.0485 (6)
H50.90050.71360.01930.058*
C60.9640 (2)0.6057 (2)0.11148 (18)0.0344 (5)
C70.9110 (2)0.4824 (2)0.14919 (17)0.0288 (4)
C81.1149 (2)0.7072 (2)0.13321 (19)0.0374 (5)
H81.13840.77910.09640.045*
C91.3647 (2)0.8311 (2)0.2054 (2)0.0428 (5)
H9A1.35630.91910.21720.051*
H9B1.39590.81320.13160.051*
C101.4783 (2)0.8521 (2)0.3040 (2)0.0438 (5)
H10A1.44110.85670.37590.053*
H10B1.56270.94360.31520.053*
C111.5238 (3)0.7346 (3)0.2830 (2)0.0503 (6)
H11A1.54150.71560.20390.060*
H11B1.61380.76830.33700.060*
C121.4643 (2)0.5208 (3)0.33241 (19)0.0396 (5)
H121.56420.55830.34660.048*
C131.3848 (2)0.3817 (2)0.35174 (18)0.0362 (5)
C141.4677 (3)0.3186 (3)0.3880 (2)0.0446 (6)
H141.56790.36890.40150.053*
C151.4038 (3)0.1858 (3)0.4035 (2)0.0499 (6)
H151.46020.14650.42800.060*
C161.2532 (3)0.1083 (3)0.3828 (2)0.0435 (5)
H161.20930.01690.39250.052*
C171.1699 (2)0.1679 (2)0.34775 (18)0.0354 (5)
C181.2338 (2)0.3069 (2)0.33311 (17)0.0310 (4)
C190.9443 (3)0.0457 (3)0.3169 (3)0.0661 (8)
H19A0.84250.07610.29910.099*
H19B0.96860.05850.39100.099*
H19C0.96910.10210.25660.099*
C200.7933 (2)0.0082 (2)0.06099 (19)0.0343 (4)
C210.7849 (2)0.1000 (3)0.0585 (2)0.0422 (5)
H21A0.71290.19740.07040.063*
H21B0.87690.09730.06330.063*
H21C0.75940.06350.11790.063*
C220.8649 (2)0.3057 (2)0.48569 (18)0.0314 (4)
C231.0099 (3)0.3370 (3)0.5482 (2)0.0493 (6)
H23A1.07780.43540.55840.074*
H23B1.04240.27470.50260.074*
H23C1.00220.32080.62360.074*
N11.22093 (19)0.71044 (18)0.19729 (15)0.0340 (4)
N21.41504 (19)0.59888 (19)0.29835 (16)0.0359 (4)
O10.99395 (15)0.44590 (15)0.20882 (13)0.0329 (3)
O21.14934 (15)0.35966 (15)0.30055 (13)0.0343 (3)
O30.72225 (16)0.27149 (18)0.15849 (17)0.0488 (4)
O41.02202 (17)0.10166 (16)0.32310 (15)0.0437 (4)
O50.89752 (18)0.11959 (17)0.09127 (14)0.0436 (4)
O60.7050 (2)0.0567 (2)0.12112 (17)0.0590 (5)
O70.82953 (16)0.25334 (17)0.37574 (13)0.0409 (4)
O80.77997 (17)0.33076 (18)0.54407 (13)0.0423 (4)
Zn11.20447 (2)0.56385 (2)0.28798 (2)0.02906 (8)
Zn20.92824 (2)0.25063 (2)0.24271 (2)0.02988 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0285 (12)0.0518 (14)0.0543 (15)0.0087 (11)0.0080 (10)0.0197 (12)
C20.0322 (11)0.0350 (11)0.0342 (11)0.0155 (9)0.0064 (9)0.0125 (9)
C30.0314 (12)0.0494 (13)0.0485 (13)0.0184 (11)0.0017 (10)0.0174 (11)
C40.0471 (15)0.0605 (16)0.0624 (17)0.0293 (13)0.0030 (12)0.0281 (14)
C50.0517 (15)0.0470 (14)0.0532 (15)0.0243 (12)0.0024 (12)0.0258 (12)
C60.0383 (12)0.0344 (11)0.0332 (11)0.0177 (9)0.0062 (9)0.0136 (9)
C70.0311 (10)0.0288 (10)0.0270 (10)0.0145 (8)0.0052 (8)0.0081 (8)
C80.0461 (13)0.0308 (11)0.0363 (11)0.0151 (10)0.0110 (10)0.0164 (9)
C90.0401 (13)0.0356 (12)0.0433 (13)0.0061 (10)0.0100 (10)0.0178 (10)
C100.0331 (12)0.0387 (12)0.0445 (13)0.0024 (10)0.0072 (10)0.0141 (10)
C110.0302 (12)0.0540 (15)0.0619 (16)0.0099 (11)0.0159 (11)0.0262 (13)
C120.0259 (11)0.0473 (13)0.0384 (12)0.0149 (10)0.0045 (9)0.0046 (10)
C130.0352 (12)0.0427 (12)0.0292 (10)0.0220 (10)0.0001 (8)0.0019 (9)
C140.0394 (13)0.0543 (14)0.0402 (12)0.0284 (12)0.0019 (10)0.0041 (11)
C150.0579 (16)0.0616 (16)0.0421 (13)0.0432 (14)0.0025 (11)0.0093 (11)
C160.0597 (16)0.0434 (13)0.0363 (12)0.0326 (12)0.0053 (11)0.0113 (10)
C170.0424 (12)0.0379 (11)0.0291 (10)0.0226 (10)0.0064 (9)0.0077 (9)
C180.0332 (11)0.0353 (11)0.0254 (10)0.0193 (9)0.0029 (8)0.0048 (8)
C190.0645 (19)0.0417 (15)0.085 (2)0.0146 (14)0.0019 (16)0.0313 (15)
C200.0313 (11)0.0406 (12)0.0349 (11)0.0190 (10)0.0052 (9)0.0134 (9)
C210.0367 (12)0.0430 (12)0.0406 (12)0.0185 (10)0.0017 (10)0.0035 (10)
C220.0355 (11)0.0279 (10)0.0316 (10)0.0131 (9)0.0107 (9)0.0121 (8)
C230.0518 (15)0.0672 (16)0.0374 (12)0.0374 (13)0.0075 (11)0.0111 (12)
N10.0332 (10)0.0307 (9)0.0325 (9)0.0083 (8)0.0084 (7)0.0119 (7)
N20.0279 (9)0.0393 (10)0.0364 (10)0.0125 (8)0.0083 (7)0.0100 (8)
O10.0255 (7)0.0312 (7)0.0399 (8)0.0094 (6)0.0001 (6)0.0163 (6)
O20.0269 (7)0.0315 (7)0.0460 (9)0.0138 (6)0.0035 (6)0.0149 (6)
O30.0254 (8)0.0468 (9)0.0741 (12)0.0089 (7)0.0038 (8)0.0355 (9)
O40.0397 (9)0.0345 (8)0.0589 (10)0.0168 (7)0.0095 (8)0.0182 (7)
O50.0423 (9)0.0382 (9)0.0384 (9)0.0129 (7)0.0064 (7)0.0024 (7)
O60.0571 (11)0.0699 (12)0.0544 (11)0.0260 (10)0.0266 (9)0.0283 (10)
O70.0369 (8)0.0534 (9)0.0281 (8)0.0185 (7)0.0093 (6)0.0086 (7)
O80.0365 (9)0.0551 (10)0.0323 (8)0.0206 (8)0.0113 (7)0.0077 (7)
Zn10.02476 (13)0.02968 (13)0.03096 (13)0.00999 (10)0.00664 (9)0.01083 (10)
Zn20.02869 (14)0.02835 (13)0.02989 (13)0.01035 (10)0.00723 (10)0.00921 (10)
Geometric parameters (Å, º) top
C1—O31.412 (3)C15—C161.398 (4)
C1—H1A0.9600C15—H150.9300
C1—H1B0.9600C16—C171.382 (3)
C1—H1C0.9600C16—H160.9300
C2—O31.362 (3)C17—O41.370 (3)
C2—C31.378 (3)C17—C181.414 (3)
C2—C71.416 (3)C18—O21.322 (2)
C3—C41.394 (3)C19—O41.418 (3)
C3—H30.9300C19—H19A0.9600
C4—C51.363 (4)C19—H19B0.9600
C4—H40.9300C19—H19C0.9600
C5—C61.417 (3)C20—O61.226 (3)
C5—H50.9300C20—O51.277 (3)
C6—C71.399 (3)C20—C211.509 (3)
C6—C81.441 (3)C21—H21A0.9600
C7—O11.325 (2)C21—H21B0.9600
C8—N11.285 (3)C21—H21C0.9600
C8—H80.9300C22—O81.253 (2)
C9—N11.482 (3)C22—O71.259 (2)
C9—C101.514 (3)C22—C231.501 (3)
C9—H9A0.9700C23—H23A0.9600
C9—H9B0.9700C23—H23B0.9600
C10—C111.515 (4)C23—H23C0.9600
C10—H10A0.9700N1—Zn12.0727 (17)
C10—H10B0.9700N2—Zn12.0616 (18)
C11—N21.479 (3)O1—Zn12.0203 (14)
C11—H11A0.9700O1—Zn22.0639 (14)
C11—H11B0.9700O2—Zn22.0632 (14)
C12—N21.284 (3)O2—Zn12.0676 (14)
C12—C131.452 (3)O3—Zn22.4356 (16)
C12—H120.9300O5—Zn21.9261 (15)
C13—C181.402 (3)O7—Zn21.9635 (14)
C13—C141.415 (3)O8—Zn1i2.0201 (15)
C14—C151.359 (4)Zn1—O8i2.0201 (15)
C14—H140.9300
O3—C1—H1A109.5C13—C18—C17118.12 (19)
O3—C1—H1B109.5O4—C19—H19A109.5
H1A—C1—H1B109.5O4—C19—H19B109.5
O3—C1—H1C109.5H19A—C19—H19B109.5
H1A—C1—H1C109.5O4—C19—H19C109.5
H1B—C1—H1C109.5H19A—C19—H19C109.5
O3—C2—C3125.4 (2)H19B—C19—H19C109.5
O3—C2—C7112.88 (18)O6—C20—O5124.8 (2)
C3—C2—C7121.7 (2)O6—C20—C21120.8 (2)
C2—C3—C4119.1 (2)O5—C20—C21114.42 (19)
C2—C3—H3120.4C20—C21—H21A109.5
C4—C3—H3120.4C20—C21—H21B109.5
C5—C4—C3120.6 (2)H21A—C21—H21B109.5
C5—C4—H4119.7C20—C21—H21C109.5
C3—C4—H4119.7H21A—C21—H21C109.5
C4—C5—C6121.0 (2)H21B—C21—H21C109.5
C4—C5—H5119.5O8—C22—O7120.8 (2)
C6—C5—H5119.5O8—C22—C23119.36 (19)
C7—C6—C5119.1 (2)O7—C22—C23119.80 (19)
C7—C6—C8123.83 (19)C22—C23—H23A109.5
C5—C6—C8117.1 (2)C22—C23—H23B109.5
O1—C7—C6123.77 (18)H23A—C23—H23B109.5
O1—C7—C2117.92 (17)C22—C23—H23C109.5
C6—C7—C2118.31 (18)H23A—C23—H23C109.5
N1—C8—C6127.81 (19)H23B—C23—H23C109.5
N1—C8—H8116.1C8—N1—C9115.46 (18)
C6—C8—H8116.1C8—N1—Zn1125.35 (15)
N1—C9—C10113.12 (18)C9—N1—Zn1119.19 (14)
N1—C9—H9A109.0C12—N2—C11116.01 (19)
C10—C9—H9A109.0C12—N2—Zn1124.81 (15)
N1—C9—H9B109.0C11—N2—Zn1118.53 (15)
C10—C9—H9B109.0C7—O1—Zn1129.06 (12)
H9A—C9—H9B107.8C7—O1—Zn2125.64 (12)
C9—C10—C11114.1 (2)Zn1—O1—Zn2105.29 (6)
C9—C10—H10A108.7C18—O2—Zn2127.10 (13)
C11—C10—H10A108.7C18—O2—Zn1129.24 (13)
C9—C10—H10B108.7Zn2—O2—Zn1103.62 (6)
C11—C10—H10B108.7C2—O3—C1119.07 (18)
H10A—C10—H10B107.6C2—O3—Zn2113.52 (12)
N2—C11—C10113.20 (19)C1—O3—Zn2127.31 (14)
N2—C11—H11A108.9C17—O4—C19119.41 (19)
C10—C11—H11A108.9C20—O5—Zn2120.25 (14)
N2—C11—H11B108.9C22—O7—Zn2137.14 (14)
C10—C11—H11B108.9C22—O8—Zn1i135.32 (15)
H11A—C11—H11B107.8O1—Zn1—O8i109.18 (6)
N2—C12—C13128.7 (2)O1—Zn1—N2149.75 (7)
N2—C12—H12115.7O8i—Zn1—N298.57 (7)
C13—C12—H12115.7O1—Zn1—O275.35 (5)
C18—C13—C14119.5 (2)O8i—Zn1—O2100.83 (6)
C18—C13—C12123.98 (19)N2—Zn1—O288.08 (6)
C14—C13—C12116.5 (2)O1—Zn1—N188.64 (6)
C15—C14—C13121.3 (2)O8i—Zn1—N1103.96 (7)
C15—C14—H14119.3N2—Zn1—N196.30 (7)
C13—C14—H14119.3O2—Zn1—N1153.84 (7)
C14—C15—C16120.0 (2)O5—Zn2—O7137.44 (7)
C14—C15—H15120.0O5—Zn2—O2104.92 (7)
C16—C15—H15120.0O7—Zn2—O2110.70 (6)
C17—C16—C15119.8 (2)O5—Zn2—O1103.31 (7)
C17—C16—H16120.1O7—Zn2—O1107.96 (6)
C15—C16—H16120.1O2—Zn2—O174.53 (5)
O4—C17—C16125.1 (2)O5—Zn2—O385.68 (7)
O4—C17—C18113.64 (18)O7—Zn2—O379.46 (6)
C16—C17—C18121.3 (2)O2—Zn2—O3143.50 (5)
O2—C18—C13122.92 (19)O1—Zn2—O369.03 (5)
O2—C18—C17118.95 (19)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn4(C19H20N2O4)2(C2H3O2)4]
Mr1178.48
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.4894 (9), 10.7917 (9), 11.9550 (11)
α, β, γ (°)103.425 (2), 94.323 (1), 115.677 (1)
V3)1162.17 (18)
Z1
Radiation typeMo Kα
µ (mm1)2.12
Crystal size (mm)0.15 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.742, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
6281, 4497, 3969
Rint0.013
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.071, 1.05
No. of reflections4497
No. of parameters318
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.27

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Postdoctoral Science-Research Developmental Foundation of Heilongjiang Province (LBH-Q13170).

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLaskin, J., Yang, Z. & Chu, I. K. (2008). J. Am. Chem. Soc. 130, 3218–3230.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigamonti, L., Demartin, F., Forni, A., Righetto, S. & Pasini, A. (2006). Inorg. Chem. 45, 10976–10989.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWezenberg, S. J. & Kleij, A. W. (2008). Angew. Chem. Int. Ed. 47, 2354–2364.  Web of Science CrossRef CAS Google Scholar
First citationYuan, M., Zhao, F., Zhang, W., Wang, Z.-M. & Gao, S. (2007). Inorg. Chem. 46, 11235–11242.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds