metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ6-(naphthalene-2,6-di­carboxyl­ato)-bis­­(aqua­lithium)]

aLaboratoire de Réactivité et Chimie des Solides (LRCS), Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039, Amiens, France
*Correspondence e-mail: jean-noel.chotard@u-picardie.fr

(Received 16 May 2014; accepted 5 June 2014; online 2 July 2014)

The title compound, [Li2(C12H6O4)(H2O)2]n, crystallizes with one half of the molecular entities in the asymmetric unit. The second half is gererated by inversion symmetry. The crystal structure has a layered arrangement built from distorted edge-sharing LiO3(OH)2 tetra­hedra parallel to (100), with naphthalenedi­carboxyl­ate bridging the LiO3(OH)2 layers along the [100] direction. Hydrogen bonding between the water molecule and adjacent carboxylate groups consolidates the packing.

Related literature

For the synthesis and crystal structure of 2,6-naphthalenedi­carb­oxy­lic acid, see Kaduk & Golab (1999[Kaduk, J. A. & Golab, J. T. (1999). Acta Cryst. B55, 85-94.]). For the synthesis and crystal structure of dilithium-2,6-naphthalene di­carboxyl­ate [Li2(2,6-NDC)], see: Banerjee et al. (2009a[Banerjee, D., Kim, S. J. & Parise, J. B. (2009a). Cryst. Growth Des. 9, 2500-2503.]). For related compounds, see: Banerjee et al. (2009b[Banerjee, D., Borkowski, L. A., Kim, S. J. & Parise, J. B. (2009b). Cryst. Growth Des. 9, 4922-4926.]). [Li2(2,6-NDC)] was recently reported to exhibit good electrochemical performance, see: Fédèle et al. (2014[Fédèle, L., Sauvage, F., Bois, J., Tarascon, J.-M. & Becuwe, M. (2014). J. Electrochem. Soc. 161, A46-A52.]).

[Scheme 1]

Experimental

Crystal data
  • [Li2(C12H6O4)(H2O)2]

  • Mr = 132.04

  • Monoclinic, C 2/c

  • a = 23.5695 (18) Å

  • b = 6.8115 (5) Å

  • c = 7.5327 (6) Å

  • β = 90.325 (3)°

  • V = 1209.31 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.12 × 0.05 × 0.03 mm

Data collection
  • Bruker D8 Venture diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.707, Tmax = 0.746

  • 12848 measured reflections

  • 1388 independent reflections

  • 1032 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.109

  • S = 1.06

  • 1388 reflections

  • 99 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1W⋯O1i 0.81 (3) 2.10 (3) 2.905 (2) 176 (3)
O2—H2W⋯O3ii 0.89 (3) 2.01 (3) 2.883 (2) 169 (3)
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

For the last 30 years, inorganic compounds involving at least one transition metal as a redox center (such as LiCoO2 or LiFePO4) have been the traditional electrodes for Li-ion batteries. While they exhibit good performances in terms of cyclability, output voltage capacity, main drawbacks such as toxicity, sustainability and eco-conception still remain. In this context, organic based electrodes for Li-ion batteries recently regained attention. Among them, the dilithium 2,6-naphthalene dicarboxylate (Li2-2,6-NDC) was recently reported to exhibit good electrochemical performances (Fédèle et al. 2014). The title compound (dilithium 2,6-naphthalene dicarboxylate dihydrate) is the hydrated form of the Li2-2,6-NDC. In the former, pairs of edge-sharing LiO4 tetrahedra are connected to each other by corners (Banerjee et al. 2009a). In the hydrated form, the corner sharing arrangement is no longer possible as one oxygen is replaced by a water molecule. Edge-sharing LiO3(OH2) tetrahedra are connected into sheets that extend in the yz plane. These are linked by the naphthalene dicarboxylate into a 3-D array. Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For the synthesis and crystal structure of 2,6-naphthalenedicarboxylic acid, see Kaduk et al., (1999). For the synthesis and crystal structure of dilithium-2,6-naphthalene dicarboxylate [Li2(2,6-NDC)], see Banerjee et al. (2009a). For related compounds see Banerjee et al. (2009b). [Li2(2,6-NDC)] was recently reported to exhibit good electrochemical performance, see: Fédèle et al. (2014).

Experimental top

Reagent and chemicals. The 2,6 naphthalene dicarboxylic acid (98+%) and lithium hydroxide were purchased from Alfa Aesar and Sigma-Aldrich, respectively. They were used as received without further purification. De-ionized water was utilized for the synthesis of the di-lithium salt.

Hydrothermal Lithiation procedure. 1 g of 2,6-naphthalene dicarboxylic acid (4.6 mmol) was added into 10 ml de-ionized water and added to a 23 ml autoclave. Two equivalents of anhydrous lithium hydroxide (222 mg, 9.3 mmol) were incorporated with the naphthalene derivative. The autoclave was then placed into a temperature controlled oven set at 150°C for 12 h duration before to be cooled down to room temperature with a ramp of 10°C/h. The resulting green solution was poured into a 50 ml beaker while the excess water was slowly evaporated under ambient conditions to form the colorless single crystals of the di-lithium-2,6-naphthalene dicarboxylate dihydrate.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.90–0.93 Å and with Uiso(H) = 1.2Ueq(C). The H atoms of the aqua ligand (H1W and H2W) were found by Fourier difference map and further refined without any constrains.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXLE (Hübschle et al., 2011); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound. Li, O, C, and H atoms are represented by light green, red, brown and white spheres respectively
[Figure 2] Fig. 2. Crystal structure of the title compound view along the b axis. Layers of LiO3(OH2) edge-sharing tetrahedra in the (yz) plane are connected via naphthalene dicarboxylate molecules.
Poly[µ6-(naphthalene-2,6-dicarboxylato)-bis(aqualithium)] top
Crystal data top
[Li2(C12H6O4)(H2O)2]Z = 8
Mr = 132.04F(000) = 544
Monoclinic, C2/cDx = 1.450 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 23.5695 (18) ŵ = 0.11 mm1
b = 6.8115 (5) ÅT = 293 K
c = 7.5327 (6) ÅPrism, colourless
β = 90.325 (3)°0.12 × 0.05 × 0.03 mm
V = 1209.31 (16) Å3
Data collection top
Bruker D8 Venture
diffractometer
1388 independent reflections
Radiation source: fine-focus sealed tube1032 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.050
phi scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 3029
Tmin = 0.707, Tmax = 0.746k = 88
12848 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0452P)2 + 1.0165P]
where P = (Fo2 + 2Fc2)/3
1388 reflections(Δ/σ)max = 0.010
99 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Li2(C12H6O4)(H2O)2]V = 1209.31 (16) Å3
Mr = 132.04Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.5695 (18) ŵ = 0.11 mm1
b = 6.8115 (5) ÅT = 293 K
c = 7.5327 (6) Å0.12 × 0.05 × 0.03 mm
β = 90.325 (3)°
Data collection top
Bruker D8 Venture
diffractometer
1388 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1032 reflections with I > 2σ(I)
Tmin = 0.707, Tmax = 0.746Rint = 0.050
12848 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.23 e Å3
1388 reflectionsΔρmin = 0.24 e Å3
99 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger·A single gross outlier (reflection 3 3 3)was omitted from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06322 (5)0.42265 (18)0.41860 (17)0.0357 (3)
H1W0.0611 (12)0.761 (5)0.695 (4)0.082 (10)*
H2W0.0553 (11)0.949 (5)0.635 (4)0.089 (10)*
O20.05985 (7)0.8245 (3)0.6045 (2)0.0496 (4)
O30.05040 (4)0.75789 (19)0.34106 (15)0.0323 (3)
C10.08206 (6)0.3193 (2)0.5432 (2)0.0252 (4)
C20.14481 (6)0.2809 (2)0.5548 (2)0.0251 (4)
C30.17876 (6)0.3237 (2)0.4137 (2)0.0261 (4)
H30.16270.37640.31120.031*
C40.23825 (6)0.2893 (2)0.4209 (2)0.0245 (4)
C50.22574 (7)0.1697 (3)0.7239 (2)0.0300 (4)
H40.24120.12060.82880.036*
C60.16892 (7)0.2010 (3)0.7120 (2)0.0303 (4)
H50.14570.17000.80740.036*
Li10.03075 (12)0.6849 (4)0.4040 (4)0.0305 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0262 (6)0.0378 (7)0.0432 (7)0.0097 (5)0.0039 (5)0.0041 (6)
O20.0714 (11)0.0404 (9)0.0367 (8)0.0102 (8)0.0102 (7)0.0003 (7)
O30.0197 (5)0.0452 (7)0.0322 (6)0.0007 (5)0.0075 (5)0.0052 (6)
C10.0190 (7)0.0253 (8)0.0313 (9)0.0018 (6)0.0016 (6)0.0084 (7)
C20.0180 (7)0.0241 (8)0.0333 (9)0.0019 (6)0.0022 (6)0.0009 (7)
C30.0208 (8)0.0285 (8)0.0290 (8)0.0037 (7)0.0011 (6)0.0035 (7)
C40.0215 (8)0.0236 (8)0.0283 (8)0.0021 (6)0.0010 (6)0.0023 (7)
C50.0241 (8)0.0365 (9)0.0293 (9)0.0035 (7)0.0005 (6)0.0096 (8)
C60.0239 (8)0.0366 (9)0.0304 (9)0.0016 (7)0.0063 (6)0.0053 (7)
Li10.0275 (14)0.0337 (15)0.0302 (14)0.0016 (12)0.0007 (11)0.0021 (12)
Geometric parameters (Å, º) top
O1—C11.253 (2)C3—C41.422 (2)
O1—Li11.946 (3)C3—H30.9300
O2—Li11.910 (3)C4—C5iii1.414 (2)
O2—H1W0.81 (3)C4—C4iii1.417 (3)
O2—H2W0.89 (3)C5—C61.359 (2)
O3—C1i1.265 (2)C5—C4iii1.414 (2)
O3—Li1ii1.969 (3)C5—H40.9300
O3—Li12.030 (3)C6—H50.9300
C1—O3i1.265 (2)Li1—O3ii1.969 (3)
C1—C21.504 (2)Li1—C1i2.691 (3)
C1—Li1i2.691 (3)Li1—Li1ii2.728 (6)
C2—C31.365 (2)Li1—Li1i3.250 (6)
C2—C61.419 (2)
C1—O1—Li1134.09 (14)C5—C6—C2120.35 (15)
Li1—O2—H1W114 (2)C5—C6—H5119.8
Li1—O2—H2W129.8 (19)C2—C6—H5119.8
H1W—O2—H2W107 (3)O2—Li1—O1105.84 (15)
C1i—O3—Li1ii133.11 (14)O2—Li1—O3ii122.04 (16)
C1i—O3—Li1107.22 (13)O1—Li1—O3ii100.98 (14)
Li1ii—O3—Li186.02 (13)O2—Li1—O3113.35 (15)
O1—C1—O3i122.81 (14)O1—Li1—O3127.43 (16)
O1—C1—C2119.05 (14)O3ii—Li1—O386.88 (12)
O3i—C1—C2118.13 (14)O2—Li1—C1i103.83 (13)
O1—C1—Li1i76.73 (11)O1—Li1—C1i111.74 (13)
O3i—C1—Li1i46.09 (10)O3ii—Li1—C1i112.28 (13)
C2—C1—Li1i164.10 (13)O3—Li1—C1i26.69 (6)
C3—C2—C6119.84 (14)O2—Li1—Li1ii149.25 (11)
C3—C2—C1119.89 (14)O1—Li1—Li1ii104.78 (10)
C6—C2—C1120.27 (14)O3ii—Li1—Li1ii47.92 (9)
C2—C3—C4121.15 (15)O3—Li1—Li1ii46.06 (9)
C2—C3—H3119.4C1i—Li1—Li1ii66.74 (11)
C4—C3—H3119.4O2—Li1—Li1i101.12 (15)
C5iii—C4—C4iii119.35 (17)O1—Li1—Li1i55.92 (10)
C5iii—C4—C3122.30 (14)O3ii—Li1—Li1i136.12 (18)
C4iii—C4—C3118.35 (17)O3—Li1—Li1i82.63 (12)
C6—C5—C4iii120.93 (15)C1i—Li1—Li1i58.82 (9)
C6—C5—H4119.5Li1ii—Li1—Li1i98.18 (13)
C4iii—C5—H4119.5
Li1—O1—C1—O3i71.7 (2)C1—O1—Li1—O224.8 (2)
Li1—O1—C1—C2109.69 (19)C1—O1—Li1—O3ii152.87 (15)
Li1—O1—C1—Li1i72.46 (19)C1—O1—Li1—O3112.6 (2)
O1—C1—C2—C313.1 (2)C1—O1—Li1—C1i87.6 (2)
O3i—C1—C2—C3165.63 (15)C1—O1—Li1—Li1ii158.04 (16)
Li1i—C1—C2—C3159.3 (4)C1—O1—Li1—Li1i68.08 (18)
O1—C1—C2—C6166.67 (15)C1i—O3—Li1—O273.79 (18)
O3i—C1—C2—C614.6 (2)Li1ii—O3—Li1—O2152.12 (13)
Li1i—C1—C2—C621.0 (5)C1i—O3—Li1—O161.0 (2)
C6—C2—C3—C40.2 (3)Li1ii—O3—Li1—O173.05 (18)
C1—C2—C3—C4179.88 (14)C1i—O3—Li1—O3ii162.48 (11)
C2—C3—C4—C5iii179.28 (16)Li1ii—O3—Li1—O3ii28.40 (17)
C2—C3—C4—C4iii0.5 (3)Li1ii—O3—Li1—C1i134.08 (16)
C4iii—C5—C6—C21.7 (3)C1i—O3—Li1—Li1ii134.08 (16)
C3—C2—C6—C51.0 (3)C1i—O3—Li1—Li1i25.18 (15)
C1—C2—C6—C5178.74 (15)Li1ii—O3—Li1—Li1i108.90 (8)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1W···O1iv0.81 (3)2.10 (3)2.905 (2)176 (3)
O2—H2W···O3v0.89 (3)2.01 (3)2.883 (2)169 (3)
Symmetry codes: (iv) x, y+1, z+1/2; (v) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1W···O1i0.81 (3)2.10 (3)2.905 (2)176 (3)
O2—H2W···O3ii0.89 (3)2.01 (3)2.883 (2)169 (3)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+2, z+1.
 

Acknowledgements

The work was partially supported by the FEDER (European Fund for Regional Development) fund, the Picardie region and the French program `investissement d'avenir' Labex Storex (ANR-10-LABX-76–01) through the acquisition of the diffractometer The ANR funding agency is gratefully acknowledged for financial support through the grant accorded for the project `Store-ex'.

References

First citationBanerjee, D., Borkowski, L. A., Kim, S. J. & Parise, J. B. (2009b). Cryst. Growth Des. 9, 4922–4926.  Web of Science CSD CrossRef CAS Google Scholar
First citationBanerjee, D., Kim, S. J. & Parise, J. B. (2009a). Cryst. Growth Des. 9, 2500–2503.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFédèle, L., Sauvage, F., Bois, J., Tarascon, J.-M. & Becuwe, M. (2014). J. Electrochem. Soc. 161, A46–A52.  Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaduk, J. A. & Golab, J. T. (1999). Acta Cryst. B55, 85–94.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds