metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m200-m201

Di­chlorido­(4,4′-di-tert-butyl-2,2′-bi­pyridine-κ2N,N′)palladium(II) di­methyl sulfoxide monosolvate monohydrate

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, México, DF, 04510, Mexico
*Correspondence e-mail: rrm@uaem.mx

(Received 13 April 2014; accepted 26 April 2014; online 10 May 2014)

The title compound, [PdCl2(C18H24N2)]·(CH3)2SO·H2O, the PdII ion is in a distorted square-planar geometry. The Pd—N bond distances are 2.022 (2) and 2.027 (2) Å, the Pd—Cl bond distances are 2.2880 (7) and 2.2833 (7) Å, and the ligand bite angle is 80.07 (9)°. The dimethyl sulfoxide and water mol­ecules form linear chains along [100] by O—H⋯O and O—H⋯S hydrogen bonds, generating eight- and 12-membered rings. C—H⋯Cl inter­actions link the chains, forming a three-dimensional arrangement. In addition, the 4,4-di-tert-butyl-2,2′-bi­pyridine ligand exhibits ππ stacking inter­actions [centroid–centroid distances = 3.8741 (15) and 3.8353 (15) Å]. The DMSO solvent is disordered and was refined with an occupancy ratio of 0.866 (3):0.134 (3).

Related literature

For compounds with N—N ligands, see: Corona-Rodríguez et al. (2007[Corona-Rodríguez, M., Hernández-Ortega, S., Valdés-Martínez, J. & Morales-Morales, D. (2007). Supramol. Chem. 19, 579-585.]); Basauri-Molina et al. (2010[Basauri-Molina, M., Hernández-Ortega, S., Toscano, R. A., Valdés-Martínez, J. & Morales-Morales, D. (2010). Inorg. Chim. Acta, 363, 1222-1229.]). For the crystal structure of non-solvated compound, see: Qin et al. (2002[Qin, Z., Jennings, M. C. & Puddephatt, R. J. (2002). Inorg. Chem. 41, 3967-3974.]); MacLean et al. (2002[MacLean, E. J., Robinson, R. I., Teat, S. J., Wilson, C. & Woodward, S. (2002). J. Chem. Soc. Dalton Trans. pp. 3518-3524.]). For metallomacrocycles, see: Qin et al. (2002[Qin, Z., Jennings, M. C. & Puddephatt, R. J. (2002). Inorg. Chem. 41, 3967-3974.]); Tzeng et al. (2001[Tzeng, B., Chan, S., Chan, M. C. W., Che, C., Cheung, K. & Peng, S. (2001). Inorg. Chem. 40, 6699-6704.]). For similar compounds and their crystal structures, see: Jones et al. (2007[Jones, P. G., Fernández-Rodríguez, M. J. & Martínez-Martínez, A. J. (2007). Acta Cryst. E63, m2758.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C18H24N2)]·C2H6OS·H2O

  • Mr = 541.83

  • Monoclinic, P 21 /c

  • a = 7.4869 (3) Å

  • b = 19.5052 (8) Å

  • c = 16.8538 (7) Å

  • β = 102.907 (1)°

  • V = 2399.03 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 298 K

  • 0.42 × 0.19 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: analytical (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.780, Tmax = 0.932

  • 13351 measured reflections

  • 4343 independent reflections

  • 3766 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.076

  • S = 1.01

  • 4343 reflections

  • 302 parameters

  • 118 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.87 (1) 2.11 (2) 2.954 (7) 165 (7)
O2—H2A⋯S1Ai 0.87 (1) 2.71 (2) 3.565 (14) 167 (7)
O2—H2A⋯O1Ai 0.87 (1) 1.68 (4) 2.51 (3) 157 (8)
O2—H2B⋯O1ii 0.87 (1) 2.20 (2) 3.054 (9) 171 (7)
O2—H2B⋯S1Aii 0.87 (1) 1.84 (4) 2.604 (12) 146 (7)
O2—H2B⋯O1Aii 0.87 (1) 2.30 (4) 3.17 (4) 173 (7)
C14—H14B⋯Cl2iii 0.96 2.96 3.884 (1) 163
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Introduction top

The N—N chelate ligands have been studied with a variety of transition metals as building blocks in supra­molecular chemistry. 2,2'-Bi­pyridine and its derivatives have been employed as auxiliary ligands in transition metal complexes usually serving as blocking ligands. Thus, given our continuous inter­est in the synthesis of metal complexes with potential catalytic activities in cross coupling reactions and the use of N—N quelate ligands (Corona-Rodríguez et al., 2007; Basauri-Molina et al., 2010), we report here the crystal structure of the compound [PdCl2(tBubpy)]·(CH3)2SO)·H2O (tBubpy = 4,4'-di-tert-butyl-2,2'-bi­pyridine) as a solvated compound. The crystal structure of the non-solvated complex has been reported previously (Qin et al., 2002; MacLean et al., 2002), and this compound has served as precursor in the formation of metallomacrocycles (Qin et al., 2002; Tzeng et al., 2001) and due to its structure may present π inter­actions like π-π stacking and C—H···π inter­actions.

Experimental top

Synthesis and crystallization top

To a solution of [Pd(MeCN)2Cl2] (0.13 g, 0.501 mmol) in ethanol (10 ml), 4,4'-di-tert-butyl-2,2'-bi­pyridine (0.1 g, 0.651 mmol) was added under stirring. The resulting orange solution was allowed to react for 4 h under stirring at room temperature. After this time the solution was filtered and the solvent taken off under vacuum to produce a yellow solid. Crystals suitable for X-ray diffraction experiments were obtained from di­methyl­sulfoxide as solvent at room temperature.

1H-NMR (300 MHz, DMSO–D6): d 1.42 (s, 18H, tBu), 7.82 (d, 2H, CH), 8.60 (s, 2H, CH), 9.02 (d, 2H, CH). 13C-NMR (75.6 MHz, DMSO-D6): d 30.3 (s, CH3), 39.9 (s, C(CH3)3), 121.7 (s, CH), 124.4 (s, CH), 149.9 (s, CH), 156.4 (s, C), 165.7 (s, C).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

H atoms were included in calculated positions (C—H = 0.93 Å for aromatic H, C—H = 0.96 Å for methyl H), and refined using a riding model with U iso (H) = 1.2Ueq of the carrier atom. H atoms on O were located on the Fourier map and refined isotropically.

The DMSO solvent is disordered and was refined in two major positions using a free variable of Site Occupational Factor (SOF), the ratio of disordered atoms was 87/13 of SOF.

In the refinement six reflections, (0 0 1), (0 5 1), (1 2 2), (1 2 0), (-1 2 4) and (-2 0 2), were considered as disagreeable and were omitted.

Results and discussion top

The title compound is formed by a molecule of the complex [PdCl2(tBubpy)], one molecule of di­methyl­sulfoxide (disordered) and one molecule of water, the structure is presented in Figure 1.

The coordination around the Pd(II) ion adopts a distorted square planar geometry, surrounded by two chloride atoms and one 4,4'-di-tert-butyl-2,2'-bi­pyridine ligand coordinated in a chelate fashion with a bite angle of 80.07 (8)°. The Pd—Cl bond distances are 2.2880 (9) and 2.2832 (9) Å which are similar to those found in the non-solvated structure (Qin et al., 2002; MacLean et al., 2002). The Pd—N bond distances are 2.022 (2) and 2.027 (2) Å which are close in value to those found for the compound [PdCl2(tBubpy)] and slightly smaller than those observed in the di­iodo complex [PdI2(tBubpy)] (2.047 (4), 2.062 (4) Å) (Jones et al., 2007).

Both the di­methyl­sulfoxide and water molecules inter­act via hydrogen bonds (O—H···O, C—H···O) forming 8- and 12-member rings that generate a linear chain in the [100] direction (Table 1). The 4,4'-di-tert-butyl-2,2'-bi­pyridine ligand presents π-π stacking inter­actions which extend along the a axis [100] generated by the symmetry operations 1-x, 1-y, 1-z and -x, 1-y, 1-z. The two centroid-centroid distances between the ligand rings are 3.8741 (15) and 3.8353 (15) Å respectively. The crystal arrangement is complemented by C—H···Cl inter­actions which link the linear arrangement of π-π stacking in layers parallel to (100).

Related literature top

For compounds with N—N ligands, see: Corona-Rodríguez et al. (2007); Basauri-Molina et al. (2010). For crystal structure of non-solvated compound, see: Qin et al. (2002); MacLean et al. (2002). For metallomacrocycles, see: Qin et al. (2002); Tzeng et al. (2001). For similar compound and their crystal structure, see: Jones et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. All non-hydrogen atoms are shown as ellipsoids with probability level of 50%.
[Figure 2] Fig. 2. Packing of the molecular entities in the structure of the title compound. Hydrogen bonds interaction as shown by dashed lines.
Dichlorido(4,4'-di-tert-butyl-2,2'-bipyridine-κ2N,N')palladium(II) dimethyl sulfoxide monosolvate monohydrate top
Crystal data top
[PdCl2(C18H24N2)]·C2H6OS·H2OF(000) = 1112
Mr = 541.83Dx = 1.500 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4869 (3) ÅCell parameters from 9545 reflections
b = 19.5052 (8) Åθ = 2.4–25.3°
c = 16.8538 (7) ŵ = 1.10 mm1
β = 102.907 (1)°T = 298 K
V = 2399.03 (17) Å3Prism, yellow
Z = 40.42 × 0.19 × 0.09 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3766 reflections with I > 2σ(I)
Detector resolution: 0.83 pixels mm-1Rint = 0.030
ω scansθmax = 25.3°, θmin = 2.1°
Absorption correction: analytical
(SADABS; Sheldrick, 2008)
h = 98
Tmin = 0.780, Tmax = 0.932k = 2223
13351 measured reflectionsl = 2017
4343 independent reflections
Refinement top
Refinement on F2118 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.042P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
4343 reflectionsΔρmax = 0.39 e Å3
302 parametersΔρmin = 0.55 e Å3
Crystal data top
[PdCl2(C18H24N2)]·C2H6OS·H2OV = 2399.03 (17) Å3
Mr = 541.83Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4869 (3) ŵ = 1.10 mm1
b = 19.5052 (8) ÅT = 298 K
c = 16.8538 (7) Å0.42 × 0.19 × 0.09 mm
β = 102.907 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4343 independent reflections
Absorption correction: analytical
(SADABS; Sheldrick, 2008)
3766 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.932Rint = 0.030
13351 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028118 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.39 e Å3
4343 reflectionsΔρmin = 0.55 e Å3
302 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.23053 (3)0.61408 (2)0.50569 (2)0.02992 (9)
Cl10.06474 (11)0.69947 (4)0.42999 (5)0.0527 (2)
Cl20.38522 (12)0.69340 (4)0.59479 (5)0.0573 (2)
N10.3456 (3)0.53217 (10)0.57115 (12)0.0297 (5)
C20.3043 (3)0.47048 (12)0.53503 (14)0.0282 (5)
C30.3586 (3)0.40999 (13)0.57591 (15)0.0325 (6)
H30.33090.36840.54900.039*
C40.4548 (3)0.41033 (14)0.65727 (15)0.0342 (6)
C50.4957 (4)0.47497 (14)0.69216 (16)0.0378 (6)
H50.56110.47830.74590.045*
C60.4416 (4)0.53308 (14)0.64896 (15)0.0373 (6)
H60.47210.57520.67410.045*
N70.1298 (3)0.53767 (10)0.42684 (12)0.0296 (5)
C80.1932 (3)0.47392 (12)0.45083 (14)0.0274 (5)
C90.1545 (3)0.41861 (13)0.39897 (15)0.0337 (6)
H90.19800.37550.41730.040*
C100.0514 (3)0.42587 (13)0.31945 (15)0.0333 (6)
C110.0115 (4)0.49177 (14)0.29707 (15)0.0375 (6)
H110.08130.49960.24490.045*
C120.0281 (3)0.54553 (13)0.35099 (15)0.0358 (6)
H120.01710.58880.33430.043*
C130.5026 (4)0.34551 (14)0.70770 (17)0.0407 (6)
C140.3815 (5)0.34392 (17)0.7700 (2)0.0599 (9)
H14A0.40210.38460.80280.072*
H14B0.41140.30430.80430.072*
H14C0.25500.34180.74200.072*
C150.7021 (4)0.34643 (18)0.7528 (2)0.0623 (9)
H15A0.77900.34440.71420.075*
H15B0.72660.30760.78850.075*
H15C0.72700.38790.78400.075*
C160.4686 (5)0.28042 (15)0.6560 (2)0.0601 (9)
H16A0.34080.27720.63030.072*
H16B0.50420.24110.69010.072*
H16C0.53940.28210.61500.072*
C170.0188 (4)0.36691 (14)0.25874 (17)0.0419 (7)
C180.1755 (5)0.36822 (19)0.2081 (2)0.0730 (11)
H18A0.26000.36620.24330.088*
H18B0.19480.32950.17200.088*
H18C0.19510.40980.17680.088*
C190.1540 (6)0.3743 (2)0.2040 (2)0.0750 (12)
H19A0.13740.41810.17740.090*
H19B0.13310.33860.16380.090*
H19C0.27680.37090.23620.090*
C200.0506 (5)0.29733 (16)0.3010 (2)0.0643 (10)
H20A0.17750.29290.32770.077*
H20B0.01800.26150.26130.077*
H20C0.02370.29380.34040.077*
S10.13101 (19)0.11340 (6)0.41808 (7)0.0740 (4)0.866 (3)
O10.2143 (7)0.0432 (3)0.4267 (4)0.1113 (14)0.866 (3)
C210.0510 (7)0.1118 (3)0.4701 (4)0.0994 (19)0.866 (3)
H21A0.14880.08370.44050.119*0.866 (3)
H21B0.09510.15760.47420.119*0.866 (3)
H21C0.00740.09330.52370.119*0.866 (3)
C220.2808 (10)0.1680 (3)0.4875 (4)0.112 (2)0.866 (3)
H22A0.39150.17510.46880.135*0.866 (3)
H22B0.30990.14690.54040.135*0.866 (3)
H22C0.22190.21120.49080.135*0.866 (3)
S1A0.2169 (17)0.0735 (7)0.4816 (7)0.114 (3)0.134 (3)
O1A0.258 (4)0.0344 (17)0.411 (2)0.113 (5)0.134 (3)
C21A0.028 (2)0.0783 (19)0.463 (2)0.094 (5)0.134 (3)
H21D0.07710.03340.46780.112*0.134 (3)
H21E0.07540.09530.40860.112*0.134 (3)
H21F0.06280.10860.50150.112*0.134 (3)
C22A0.252 (5)0.1620 (9)0.462 (3)0.107 (6)0.134 (3)
H22D0.38070.17060.46820.128*0.134 (3)
H22E0.20530.18990.49960.128*0.134 (3)
H22F0.18900.17300.40730.128*0.134 (3)
O20.4246 (8)1.0021 (3)0.5968 (3)0.1554 (16)
H2A0.522 (6)0.990 (4)0.580 (4)0.187*
H2B0.377 (10)1.015 (4)0.5472 (18)0.187*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03419 (14)0.02250 (12)0.03379 (13)0.00049 (8)0.00909 (9)0.00093 (7)
Cl10.0637 (5)0.0305 (4)0.0592 (5)0.0118 (3)0.0034 (4)0.0048 (3)
Cl20.0757 (6)0.0323 (4)0.0567 (5)0.0099 (4)0.0007 (4)0.0110 (3)
N10.0307 (11)0.0271 (11)0.0323 (11)0.0022 (9)0.0088 (9)0.0002 (9)
C20.0255 (12)0.0305 (13)0.0293 (12)0.0005 (10)0.0076 (10)0.0003 (10)
C30.0354 (14)0.0260 (13)0.0362 (14)0.0010 (11)0.0085 (12)0.0021 (11)
C40.0300 (14)0.0382 (14)0.0352 (14)0.0019 (11)0.0088 (11)0.0066 (12)
C50.0376 (15)0.0417 (16)0.0307 (13)0.0020 (12)0.0005 (12)0.0037 (12)
C60.0420 (16)0.0359 (15)0.0322 (13)0.0025 (12)0.0043 (12)0.0019 (11)
N70.0322 (11)0.0267 (11)0.0311 (11)0.0001 (9)0.0097 (9)0.0005 (9)
C80.0264 (13)0.0269 (13)0.0299 (12)0.0012 (10)0.0086 (10)0.0026 (10)
C90.0381 (15)0.0271 (13)0.0363 (14)0.0003 (11)0.0094 (12)0.0007 (11)
C100.0297 (14)0.0356 (15)0.0355 (13)0.0055 (11)0.0088 (11)0.0029 (11)
C110.0370 (15)0.0424 (16)0.0294 (13)0.0016 (12)0.0007 (12)0.0018 (12)
C120.0361 (15)0.0314 (14)0.0383 (14)0.0022 (11)0.0051 (12)0.0067 (11)
C130.0383 (15)0.0392 (16)0.0434 (16)0.0051 (13)0.0068 (13)0.0109 (13)
C140.066 (2)0.057 (2)0.062 (2)0.0104 (17)0.0274 (18)0.0289 (17)
C150.0480 (19)0.062 (2)0.071 (2)0.0108 (17)0.0007 (17)0.0235 (18)
C160.068 (2)0.0397 (17)0.068 (2)0.0097 (16)0.0046 (18)0.0151 (16)
C170.0435 (17)0.0425 (16)0.0383 (15)0.0064 (13)0.0059 (13)0.0109 (13)
C180.060 (2)0.064 (2)0.080 (3)0.0053 (18)0.015 (2)0.031 (2)
C190.089 (3)0.083 (3)0.062 (2)0.026 (2)0.037 (2)0.036 (2)
C200.083 (3)0.0400 (18)0.066 (2)0.0046 (17)0.010 (2)0.0193 (16)
S10.0947 (10)0.0791 (9)0.0486 (6)0.0027 (6)0.0171 (6)0.0019 (5)
O10.129 (4)0.086 (2)0.125 (4)0.013 (2)0.040 (3)0.020 (3)
C210.108 (4)0.129 (6)0.065 (3)0.002 (3)0.026 (3)0.006 (4)
C220.144 (5)0.115 (4)0.078 (4)0.035 (4)0.024 (4)0.025 (3)
S1A0.138 (5)0.114 (6)0.085 (5)0.003 (5)0.010 (5)0.002 (5)
O1A0.123 (10)0.108 (9)0.104 (10)0.005 (10)0.015 (9)0.005 (8)
C21A0.135 (6)0.085 (11)0.058 (10)0.006 (8)0.016 (9)0.010 (11)
C22A0.140 (11)0.113 (7)0.066 (12)0.012 (9)0.020 (11)0.009 (9)
O20.173 (5)0.174 (4)0.126 (3)0.025 (4)0.047 (3)0.023 (3)
Geometric parameters (Å, º) top
Pd1—N12.022 (2)C16—H16B0.9600
Pd1—N72.027 (2)C16—H16C0.9600
Pd1—Cl22.2833 (7)C17—C181.513 (4)
Pd1—Cl12.2880 (7)C17—C191.522 (4)
N1—C61.347 (3)C17—C201.526 (4)
N1—C21.353 (3)C18—H18A0.9600
C2—C31.381 (3)C18—H18B0.9600
C2—C81.477 (3)C18—H18C0.9600
C3—C41.399 (3)C19—H19A0.9600
C3—H30.9300C19—H19B0.9600
C4—C51.396 (4)C19—H19C0.9600
C4—C131.521 (4)C20—H20A0.9600
C5—C61.359 (4)C20—H20B0.9600
C5—H50.9300C20—H20C0.9600
C6—H60.9300S1—O11.498 (5)
N7—C121.342 (3)S1—C211.777 (5)
N7—C81.360 (3)S1—C221.782 (5)
C8—C91.378 (3)C21—H21A0.9600
C9—C101.396 (3)C21—H21B0.9600
C9—H90.9300C21—H21C0.9600
C10—C111.392 (4)C22—H22A0.9600
C10—C171.522 (4)C22—H22B0.9600
C11—C121.376 (4)C22—H22C0.9600
C11—H110.9300S1A—O1A1.504 (12)
C12—H120.9300S1A—C22A1.789 (9)
C13—C151.517 (4)S1A—C21A1.792 (9)
C13—C161.529 (4)C21A—H21D0.9600
C13—C141.534 (4)C21A—H21E0.9600
C14—H14A0.9600C21A—H21F0.9600
C14—H14B0.9600C22A—H22D0.9600
C14—H14C0.9600C22A—H22E0.9600
C15—H15A0.9600C22A—H22F0.9600
C15—H15B0.9600O2—H2A0.869 (10)
C15—H15C0.9600O2—H2B0.867 (10)
C16—H16A0.9600
N1—Pd1—N780.07 (9)C13—C16—H16B109.5
N1—Pd1—Cl294.87 (6)H16A—C16—H16B109.5
N7—Pd1—Cl2171.60 (6)C13—C16—H16C109.5
N1—Pd1—Cl1172.53 (6)H16A—C16—H16C109.5
N7—Pd1—Cl195.37 (6)H16B—C16—H16C109.5
Cl2—Pd1—Cl190.33 (3)C18—C17—C19110.0 (3)
C6—N1—C2117.9 (2)C18—C17—C10110.9 (2)
C6—N1—Pd1126.19 (17)C19—C17—C10107.9 (2)
C2—N1—Pd1115.51 (16)C18—C17—C20108.0 (3)
N1—C2—C3121.5 (2)C19—C17—C20108.2 (3)
N1—C2—C8114.5 (2)C10—C17—C20111.9 (2)
C3—C2—C8123.9 (2)C17—C18—H18A109.5
C2—C3—C4121.0 (2)C17—C18—H18B109.5
C2—C3—H3119.5H18A—C18—H18B109.5
C4—C3—H3119.5C17—C18—H18C109.5
C5—C4—C3115.7 (2)H18A—C18—H18C109.5
C5—C4—C13120.9 (2)H18B—C18—H18C109.5
C3—C4—C13123.3 (2)C17—C19—H19A109.5
C6—C5—C4121.1 (2)C17—C19—H19B109.5
C6—C5—H5119.5H19A—C19—H19B109.5
C4—C5—H5119.5C17—C19—H19C109.5
N1—C6—C5122.7 (2)H19A—C19—H19C109.5
N1—C6—H6118.6H19B—C19—H19C109.5
C5—C6—H6118.6C17—C20—H20A109.5
C12—N7—C8118.3 (2)C17—C20—H20B109.5
C12—N7—Pd1126.10 (17)H20A—C20—H20B109.5
C8—N7—Pd1115.04 (16)C17—C20—H20C109.5
N7—C8—C9121.1 (2)H20A—C20—H20C109.5
N7—C8—C2114.3 (2)H20B—C20—H20C109.5
C9—C8—C2124.6 (2)O1—S1—C21106.5 (3)
C8—C9—C10121.5 (2)O1—S1—C22107.1 (3)
C8—C9—H9119.3C21—S1—C2297.2 (3)
C10—C9—H9119.3S1—C21—H21A109.5
C11—C10—C9115.8 (2)S1—C21—H21B109.5
C11—C10—C17121.4 (2)H21A—C21—H21B109.5
C9—C10—C17122.7 (2)S1—C21—H21C109.5
C12—C11—C10121.0 (2)H21A—C21—H21C109.5
C12—C11—H11119.5H21B—C21—H21C109.5
C10—C11—H11119.5S1—C22—H22A109.5
N7—C12—C11122.3 (2)S1—C22—H22B109.5
N7—C12—H12118.8H22A—C22—H22B109.5
C11—C12—H12118.8S1—C22—H22C109.5
C15—C13—C4110.6 (2)H22A—C22—H22C109.5
C15—C13—C16108.4 (3)H22B—C22—H22C109.5
C4—C13—C16112.5 (2)O1A—S1A—C22A106.1 (8)
C15—C13—C14108.9 (3)O1A—S1A—C21A105.7 (8)
C4—C13—C14107.3 (2)C22A—S1A—C21A96.0 (7)
C16—C13—C14109.0 (3)S1A—C21A—H21D109.5
C13—C14—H14A109.5S1A—C21A—H21E109.5
C13—C14—H14B109.5H21D—C21A—H21E109.5
H14A—C14—H14B109.5S1A—C21A—H21F109.5
C13—C14—H14C109.5H21D—C21A—H21F109.5
H14A—C14—H14C109.5H21E—C21A—H21F109.5
H14B—C14—H14C109.5S1A—C22A—H22D109.5
C13—C15—H15A109.5S1A—C22A—H22E109.5
C13—C15—H15B109.5H22D—C22A—H22E109.5
H15A—C15—H15B109.5S1A—C22A—H22F109.5
C13—C15—H15C109.5H22D—C22A—H22F109.5
H15A—C15—H15C109.5H22E—C22A—H22F109.5
H15B—C15—H15C109.5H2A—O2—H2B88 (6)
C13—C16—H16A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.87 (1)2.11 (2)2.954 (7)165 (7)
O2—H2A···S1Ai0.87 (1)2.71 (2)3.565 (14)167 (7)
O2—H2A···O1Ai0.87 (1)1.68 (4)2.51 (3)157 (8)
O2—H2B···O1ii0.87 (1)2.20 (2)3.054 (9)171 (7)
O2—H2B···S1Aii0.87 (1)1.84 (4)2.604 (12)146 (7)
O2—H2B···O1Aii0.87 (1)2.30 (4)3.17 (4)173 (7)
C14—H14B···Cl2iii0.962.963.884 (1)163
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.869 (10)2.11 (2)2.954 (7)165 (7)
O2—H2A···S1Ai0.869 (10)2.71 (2)3.565 (14)167 (7)
O2—H2A···O1Ai0.869 (10)1.68 (4)2.51 (3)157 (8)
O2—H2B···O1ii0.867 (10)2.195 (17)3.054 (9)171 (7)
O2—H2B···S1Aii0.867 (10)1.84 (4)2.604 (12)146 (7)
O2—H2B···O1Aii0.867 (10)2.30 (4)3.17 (4)173 (7)
C14—H14B···Cl2iii0.9602.963.884 (1)163
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y1/2, z+3/2.
 

Acknowledgements

Financial support of this research by CONACyT (grant CB2010–154732) and PAPIIT (grants IN201711–3 and IN213214–3) is gratefully acknowledged.

References

First citationBasauri-Molina, M., Hernández-Ortega, S., Toscano, R. A., Valdés-Martínez, J. & Morales-Morales, D. (2010). Inorg. Chim. Acta, 363, 1222–1229.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorona-Rodríguez, M., Hernández-Ortega, S., Valdés-Martínez, J. & Morales-Morales, D. (2007). Supramol. Chem. 19, 579–585.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJones, P. G., Fernández-Rodríguez, M. J. & Martínez-Martínez, A. J. (2007). Acta Cryst. E63, m2758.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacLean, E. J., Robinson, R. I., Teat, S. J., Wilson, C. & Woodward, S. (2002). J. Chem. Soc. Dalton Trans. pp. 3518–3524.  Web of Science CSD CrossRef Google Scholar
First citationQin, Z., Jennings, M. C. & Puddephatt, R. J. (2002). Inorg. Chem. 41, 3967–3974.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTzeng, B., Chan, S., Chan, M. C. W., Che, C., Cheung, K. & Peng, S. (2001). Inorg. Chem. 40, 6699–6704.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m200-m201
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds