Download citation
Download citation
link to html
The formation and crystal structure of a hydrated mol­ecular salt that results in a square network is reported. The crystalline solid is based upon the tetra­pro­ton­ated photo­product rtct-tetra­kis­(pyri­din-4-yl)cyclo­butane (4H-rtct-TPCB)4+ along with two sulfate anions (SO42−) and eight waters of hydration, namely, 4,4′,4′′,4′′′-(cyclo­butane-1,2,3,4-tetra­yl)tetra­pyri­dinium bis­(sulfate) octa­hydrate, C24H24N44+·2SO42−·8H2O. The fully protonated photo­product acts as a four-connecting node within the square network by engaging in four charge-assisted N+—H...O hydrogen bonds to the sulfate anion. The observed hydrogen-bonding pattern in this square network is akin to T-silica, which is a metastable form of SiO2. The included water mol­ecules and sulfate anions engage in numerous O—H...O hydrogen bonds to form various hydrogen-bonded ring structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621008597/ov3153sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621008597/ov3153Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229621008597/ov3153sup3.pdf
NMR spectra

CCDC reference: 2087932

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4,4',4'',4'''-(Cyclobutane-1,2,3,4-tetrayl)tetrapyridinium bis(sulfate) octahydrate top
Crystal data top
C24H24N44+·2SO42·8H2OF(000) = 744
Mr = 704.72Dx = 1.526 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 9.7415 (6) ÅCell parameters from 3517 reflections
b = 16.3378 (8) Åθ = 2.3–24.9°
c = 9.6396 (5) ŵ = 0.26 mm1
β = 91.680 (2)°T = 100 K
V = 1533.53 (14) Å3Block, colourless
Z = 20.37 × 0.31 × 0.25 mm
Data collection top
Bruker D8 Venture
diffractometer
2665 reflections with I > 2σ(I)
Radiation source: Mo microsourceRint = 0.025
phi– and ω–scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1111
Tmin = 0.873, Tmax = 0.928k = 1919
6517 measured reflectionsl = 1111
2715 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0429P)2 + 2.9664P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.20 e Å3
2715 reflectionsΔρmin = 0.38 e Å3
236 parametersAbsolute structure: Flack x determined using 1231 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
5 restraintsAbsolute structure parameter: 0.04 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.72188 (9)0.16567 (9)0.78936 (9)0.0139 (2)
O10.7919 (3)0.20197 (18)0.9113 (3)0.0205 (6)
O30.5857 (3)0.13548 (19)0.8243 (3)0.0234 (7)
O20.7072 (3)0.22694 (19)0.6766 (3)0.0212 (6)
O40.8047 (3)0.09612 (19)0.7381 (3)0.0227 (6)
N10.5290 (4)0.5207 (2)0.8328 (3)0.0160 (7)
H10.45420.54530.80810.019*
O60.9329 (4)0.5482 (2)0.6231 (4)0.0387 (9)
H6A0.84740.55870.61980.058*
H6B0.96180.56940.69900.058*
N21.1749 (4)0.2878 (2)0.5495 (4)0.0201 (7)
O50.6317 (3)0.2555 (2)1.1456 (4)0.0332 (8)
O70.6661 (5)0.5672 (2)0.5399 (4)0.0420 (10)
H7A0.62630.52120.53030.063*
H7B0.68680.58090.45800.063*
C81.0804 (4)0.3728 (2)0.7710 (4)0.0132 (7)
C40.7572 (4)0.5284 (2)0.9187 (4)0.0167 (8)
H40.83170.55990.94900.020*
O90.50000.2909 (4)0.50000.0436 (13)
C50.7673 (4)0.4430 (2)0.9147 (4)0.0125 (7)
C30.6365 (4)0.5650 (2)0.8774 (4)0.0181 (8)
H30.62920.62170.88040.022*
C71.0346 (4)0.4197 (2)0.8947 (4)0.0116 (7)
H71.04040.47860.87700.014*
C111.1564 (4)0.4122 (3)0.6701 (4)0.0198 (8)
H111.17550.46790.67710.024*
C91.0532 (4)0.2900 (3)0.7561 (4)0.0168 (8)
H91.00140.26280.82120.020*
C60.8956 (4)0.3987 (2)0.9610 (4)0.0125 (7)
H60.87980.33950.95500.015*
C101.1033 (4)0.2483 (2)0.6442 (4)0.0170 (8)
H101.08700.19250.63470.020*
C121.2025 (5)0.3671 (3)0.5595 (4)0.0244 (9)
H121.25340.39250.49160.029*
C20.6532 (4)0.3986 (2)0.8670 (4)0.0178 (8)
H2A0.65730.34180.86300.021*
C10.5344 (4)0.4387 (3)0.8255 (4)0.0197 (9)
H1A0.45860.40910.79280.024*
O80.50000.4487 (4)0.50000.088 (3)
H8A0.48010.48140.56500.132*0.5
H5A0.675 (5)0.255 (6)1.070 (3)0.09 (3)*
H5B0.558 (3)0.228 (3)1.141 (6)0.039 (15)*
H9A0.560 (5)0.275 (4)0.567 (4)0.08 (3)*
H8B0.50000.3906 (4)0.50000.09 (4)*
H21.196 (5)0.254 (3)0.485 (6)0.029 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0155 (4)0.0116 (4)0.0148 (4)0.0013 (4)0.0020 (3)0.0018 (4)
O10.0276 (16)0.0160 (12)0.0177 (14)0.0044 (12)0.0010 (12)0.0004 (11)
O30.0193 (15)0.0267 (15)0.0242 (15)0.0017 (12)0.0015 (12)0.0083 (12)
O20.0259 (16)0.0184 (13)0.0194 (15)0.0032 (12)0.0041 (12)0.0072 (11)
O40.0241 (15)0.0188 (14)0.0248 (15)0.0114 (12)0.0055 (12)0.0053 (12)
N10.0160 (17)0.0191 (16)0.0130 (16)0.0072 (13)0.0001 (13)0.0015 (12)
O60.045 (2)0.039 (2)0.0319 (18)0.0035 (17)0.0040 (16)0.0031 (16)
N20.0231 (19)0.0222 (17)0.0151 (16)0.0035 (15)0.0025 (13)0.0071 (15)
O50.0280 (19)0.0405 (19)0.0315 (18)0.0104 (15)0.0071 (15)0.0115 (16)
O70.060 (3)0.041 (2)0.0266 (18)0.0171 (19)0.0192 (17)0.0030 (16)
C80.0094 (17)0.0182 (19)0.0118 (17)0.0035 (15)0.0015 (13)0.0007 (15)
C40.019 (2)0.0168 (19)0.0146 (18)0.0008 (16)0.0013 (15)0.0008 (15)
O90.032 (3)0.048 (3)0.050 (3)0.0000.015 (3)0.000
C50.0153 (19)0.0146 (18)0.0077 (16)0.0023 (14)0.0029 (14)0.0014 (13)
C30.025 (2)0.0122 (17)0.0168 (19)0.0048 (16)0.0016 (16)0.0016 (15)
C70.0132 (18)0.0087 (16)0.0129 (17)0.0009 (14)0.0002 (14)0.0012 (14)
C110.023 (2)0.0171 (19)0.020 (2)0.0008 (16)0.0047 (16)0.0003 (16)
C90.018 (2)0.0153 (18)0.017 (2)0.0004 (15)0.0005 (15)0.0003 (16)
C60.0145 (18)0.0111 (17)0.0120 (17)0.0002 (14)0.0005 (14)0.0000 (14)
C100.020 (2)0.0145 (19)0.0170 (19)0.0008 (15)0.0000 (16)0.0030 (15)
C120.027 (2)0.026 (2)0.021 (2)0.0009 (19)0.0083 (18)0.0001 (17)
C20.017 (2)0.0129 (17)0.023 (2)0.0003 (15)0.0017 (16)0.0017 (15)
C10.019 (2)0.020 (2)0.020 (2)0.0009 (17)0.0024 (17)0.0009 (16)
O80.101 (6)0.052 (5)0.112 (7)0.0000.013 (6)0.000
Geometric parameters (Å, º) top
S1—O11.467 (3)O9—O9i0.000 (12)
S1—O31.464 (3)O9—H9A0.9000 (15)
S1—O21.482 (3)C5—C61.501 (5)
S1—O41.487 (3)C5—C21.394 (6)
N1—H10.8600C3—H30.9300
N1—C31.333 (6)C7—H70.9800
N1—C11.343 (5)C7—C61.552 (5)
O6—H6A0.8505C7—C6ii1.568 (5)
O6—H6B0.8501C11—H110.9300
N2—C101.331 (5)C11—C121.382 (6)
N2—C121.326 (6)C9—H90.9300
N2—H20.86 (6)C9—C101.377 (6)
O5—H5A0.8500 (16)C6—C7ii1.568 (5)
O5—H5B0.8499 (16)C6—H60.9800
O7—H7A0.8499C10—H100.9300
O7—H7B0.8504C12—H120.9300
C8—C71.497 (5)C2—H2A0.9300
C8—C111.396 (5)C2—C11.379 (6)
C8—C91.385 (5)C1—H1A0.9300
C4—H40.9300O8—H8A0.8500
C4—C51.400 (5)O8—H8B0.9501 (15)
C4—C31.368 (6)
O1—S1—O2110.32 (17)C8—C7—C6ii117.6 (3)
O1—S1—O4109.34 (17)C6—C7—H7110.1
O3—S1—O1110.82 (17)C6ii—C7—H7110.1
O3—S1—O2109.14 (17)C6—C7—C6ii87.0 (3)
O3—S1—O4108.86 (18)C8—C11—H11120.6
O2—S1—O4108.29 (17)C12—C11—C8118.8 (4)
C3—N1—H1119.1C12—C11—H11120.6
C3—N1—C1121.8 (4)C8—C9—H9120.2
C1—N1—H1119.1C10—C9—C8119.5 (4)
H6A—O6—H6B104.4C10—C9—H9120.2
C10—N2—H2109 (3)C5—C6—C7ii119.6 (3)
C12—N2—C10122.2 (4)C5—C6—C7120.0 (3)
C12—N2—H2129 (3)C5—C6—H6109.3
H5A—O5—H5B113 (6)C7—C6—C7ii87.5 (3)
H7A—O7—H7B104.5C7ii—C6—H6109.3
C11—C8—C7119.7 (3)C7—C6—H6109.3
C9—C8—C7121.4 (3)N2—C10—C9120.2 (4)
C9—C8—C11118.8 (4)N2—C10—H10119.9
C5—C4—H4120.4C9—C10—H10119.9
C3—C4—H4120.4N2—C12—C11120.5 (4)
C3—C4—C5119.2 (4)N2—C12—H12119.7
O9i—O9—H9A0 (10)C11—C12—H12119.7
C4—C5—C6122.1 (3)C5—C2—H2A119.9
C2—C5—C4118.2 (4)C1—C2—C5120.2 (4)
C2—C5—C6119.7 (3)C1—C2—H2A119.9
N1—C3—C4121.1 (4)N1—C1—C2119.5 (4)
N1—C3—H3119.4N1—C1—H1A120.2
C4—C3—H3119.4C2—C1—H1A120.2
C8—C7—H7110.1H8A—O8—H8B128.9
C8—C7—C6119.9 (3)
C8—C7—C6—C592.0 (4)C11—C8—C7—C6ii110.1 (4)
C8—C7—C6—C7ii145.0 (3)C11—C8—C7—C6146.4 (4)
C8—C11—C12—N20.1 (6)C11—C8—C9—C101.1 (6)
C8—C9—C10—N21.4 (6)C9—C8—C7—C635.8 (5)
C4—C5—C6—C755.8 (5)C9—C8—C7—C6ii67.7 (5)
C4—C5—C6—C7ii49.8 (5)C9—C8—C11—C120.5 (6)
C4—C5—C2—C10.2 (6)C6—C5—C2—C1179.3 (4)
C5—C4—C3—N10.4 (6)C6ii—C7—C6—C5147.7 (3)
C5—C2—C1—N10.6 (6)C6ii—C7—C6—C7ii24.7 (3)
C3—N1—C1—C21.0 (6)C10—N2—C12—C110.4 (7)
C3—C4—C5—C6178.8 (3)C12—N2—C10—C91.0 (6)
C3—C4—C5—C20.7 (6)C2—C5—C6—C7124.7 (4)
C7—C8—C11—C12177.3 (4)C2—C5—C6—C7ii129.7 (4)
C7—C8—C9—C10176.7 (4)C1—N1—C3—C40.4 (6)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4iii0.861.792.647 (4)174
O6—H6A···O70.851.912.716 (6)157
O6—H6B···O3iv0.852.002.800 (5)157
O7—H7A···O80.851.732.545 (7)161
O7—H7B···O4v0.851.912.744 (4)166
O5—H5A···O10.85 (1)2.12 (4)2.917 (4)155 (8)
O5—H5B···O3vi0.85 (1)2.09 (2)2.907 (5)160 (5)
O9—H9A···O20.90 (1)1.92 (2)2.804 (4)167 (6)
O8—H8B···O90.95 (1)1.63 (1)2.579 (10)180 (1)
N2—H2···O2vii0.86 (6)1.89 (6)2.683 (5)151 (5)
Symmetry codes: (iii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z; (v) x+3/2, y+1/2, z+1; (vi) x+1, y, z+2; (vii) x+2, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds