Download citation
Download citation
link to html
The crystal structures of fac-(aceto­nitrile-[kappa]N)(2-{[3,5-bis­(4-meth­oxy­phen­yl)-2H-pyrrol-2-yl­idene-[kappa]N1]amino}-3,5-bis­(4-meth­oxy­phen­yl)-1H-pyrrol-1-ido-[kappa]N1)tricarbon­ylrhenium(I)-hexa­ne-aceto­nitrile (2/1/2), [Re(C36H30N3O4)(CH3CN)(CO)3]·0.5C6H14·CH3CN, (2), and fac-(2-{[3,5-bis­(4-meth­oxy­phen­yl)-2H-pyrrol-2-yl­idene-[kappa]N1]amino}-3,5-bis­(4-meth­oxy­phen­yl)-1H-pyrrol-1-ido-[kappa]N1)tricarbon­yl(dimethyl sulfoxide-[kappa]O)rhenium(I), [Re(C36H30N3O4)(C2H6OS)(CO)3], (3), at 150 K are reported. Both complexes display a distorted octa­hedral geometry, with a fac-Re(CO)3 arrangement and one aza­dipyrromethene (ADPM) chelating ligand in the equatorial position. One solvent mol­ecule completes the coordination sphere of the ReI centre in the remaining axial position. The ADPM ligand shows high flexibility upon coordination, while retaining its [pi]-delocalized nature. Bond length and angle analyses indicate that the differences in the geometry around the ReI centre in (2) and (3), and those found in three reported fac-Re(CO)3-ADPM complexes, are dictated mainly by steric factors and crystal packing. Both structures display intra­molecular C-H...N hydrogen bonding. Inter­molecular inter­actions of the Csp2-H...[pi] and Csp2-H...O(carbonyl) types link the discrete monomers into extended chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614027673/ov3057sup1.cif
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614027673/ov30572sup2.hkl
Contains datablock 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614027673/ov30573sup3.hkl
Contains datablock 3

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229614027673/ov3057sup4.pdf
NMR spectra for (I) and (II)

CCDC references: 1040265; 1040264

Introduction top

Aza­dipyrromethene (ADPM) organic dyes and related metal complexes (Co, Ni, Cu, Zn, Cr and Cd) with bidentate coordination motifs were first synthesized and patented for dyeing wool in the 1940s (Rogers, 1943a,b, 1946). The half-phthalocyanine structure of ADPM confers tunable photophysical properties in the far-red to near-IR (NIR) regions, while avoiding tedious macrocyclization and purification steps in its synthesis. The study of ADPM chromophore and its dipyrromethene (DPM) counterpart is therefore attracting much inter­est for light-harvesting applications (Bessette & Hanan, 2014; Khan et al., 2014; Wu et al., 2014; Berhe et al., 2014). The ADPM framework bearing a BF2-chelate, namely the Aza-BODIPY derivative, also presents inter­esting fluorescence properties suitable for applications such as photodynamic therapy, fluorescent chemosensors and in vitro fluoro­phores in the NIR (Killoran et al., 2002; Loudet & Burgess, 2007; Coskun et al., 2007; Yuan et al., 2013; Wu & O'Shea, 2013; Lu et al., 2014; Collado et al., 2014). The exploration of transition-metal complexes incorporating ADPM ligands has been fuelled by their inter­esting spectroscopic properties and the possibility to fine tune them through ligand substitution. Luminescent three-coordinated complexes of group 11 (CuI, AgI and AuI) metals bearing deprotonated bidentate ADPM and a phosphine ligand were reported first (Teets et al., 2007, 2009; Gao, Deligonul et al., 2012), followed by other examples where copper and silver chelates were incorporated a posteriori in ADPM–alt-p-phenyl­ene ethynylene conjugated polymers (Gao, Tang et al., 2012). Complexes of d8 metal centres (RhI, IrI, PdII and PtII) and d6 (IrIII) were also reported where only one ADPM chromophore was coordinated (Deligonul & Gray, 2013; Deligonul et al., 2014). Four-coordinated homoleptic complexes of MII centres (Co, Ni, Cu, Zn, Hg and Pd) bearing two chromophores were also studied in detail, presenting inter­esting potential for light-harvesting applications (Teets et al., 2008; Palma et al., 2009; Bessette et al., 2012; Senevirathna & Sauvé, 2013; McLean et al., 2014; Senevirathna et al., 2014; Jones et al., 2014). A heteroleptic version with both ADPM and DPM ligands on a ZnII centre was reported to present fluorescence properties (Sakamoto et al., 2012). Finally, the family of fac-tri­carbonyl­rhenium(I)–ADPM complexes reported in the literature (Partyka et al., 2009) {[Re(ADPM)(L)(CO)3], with L = pyridine (py), tert-butyl­iso­nitrile and tetra­hydro­tiophene (THT)} attracted our attention due to the presence of the labile coordination position perpendicular to the tetra­phenyl ADPM. In an extension to this work, we describe herein the solid-state structures of two new fac-tri­carbonyl­rhenium(I) ADPM complexes. The electron-rich ADPM (1) {see Scheme; systematic name: N-[3,5-bis­(4-meth­oxy­phenyl)-2H-pyrrol-2-yl­idene]-3,5-bis­(4-meth­oxy­phenyl)-1H-pyrrol-2-amine} is used to prepare the complexes [Re(ADPM)(ACN)(CO)3].0.5C6H14.ACN, (2), and [Re(ADPM)(DMSO)(CO)3], (3) (ACN is aceto­nitrile and DMSO is di­methyl sulfoxide). The ligand-substitution effect on crystal structure in this family of compounds is assessed by comparative analysis of (2), (3) and previously reported similar fac-Re(CO)3 complexes (Partyka et al., 2009; Casanova et al., 2006; Chen et al., 2003; Zhao et al., 2013; Kia & Fun, 2008).

Experimental top

Synthesis, crystallization and NMR data top

General procedure for the synthesis of (2) and (3) top

A suspension of (1) (564 mg, 0.990 mmol, 1 equivalent), [Re(CO)3(H2O)3]Br (400 mg, 0.990 mmol, 1 equivalent) and KOtBu (111 mg, 0.990 mmol, 1 equivalent) in n-butanol (10 ml) was reacted in a microwave reactor for 3 h at 423 K under magnetic stirring. The reaction mixture was evaporated to dryness, dissolved in a minimum of di­chloro­methane and filtered. The solvent was evaporated and the resulting residue, presumably an inter­mediate stabilized by the coordination of n-butanol at the L position (see Scheme), was dissolved either in aceto­nitrile (ACN) for (2) or di­methyl sulfoxide (DMSO) for (3) (25 ml). The reaction mixture was heated at 348 K for 12 h, in order to exchange the n-butanol for the corresponding solvent, concentrated in vacuo, and a hot recrystallization was done to remove the unreacted ligand and salts. The solvent was removed in vacuo to afford a dark-purple solid. Diffraction-quality crystals of (2) (yield 603 mg, 69%) were obtained by slow diffusion of hexane in a concentrated di­chloro­methane solution of the complex. Crystals of (3) (yield 381 mg, 42%) suitable for X-ray diffraction studies were obtained with difficulty by slow diffusion of cyclo­hexane into a concentrated di­chloro­methane solution of the complex to which a drop of toluene was added.

NMR data top

For (2), 1H NMR (CDCl3, 400 MHz): δ 7.88–7.94 (m, 4H), 7.74–7.80 (m, 4H), 7.02–7.07 (m, 4H), 6.90–6.97 (m, 6H), 3.90 (s, 6H, meth­oxy), 3.89 (s, 6H, meth­oxy), 1.99 (s, 3H, coordinated ACN).

For (3), 1H NMR (CDCl3, 400 MHz): δ (ppm) 7.90 (d, J=8.8 Hz, 4H), 7.80 (d, J=8.8 Hz, 4H), 7.05 (d, J=8.8 Hz, 4H), 6.91-6.93 (m, 6H), 3.91 (s, 6H, meth­oxy), 3.88 (s, 6H, meth­oxy), 2.33 (s, 6H, coordinated DMSO).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were included in calculated positions and treated as riding atoms, with aromatic C—H = 0.95 Å and methyl C—H = 0.98 Å, and with Uiso(H) = kUiso(C), where k = 1.2 for the aromatic H atoms and 1.5 for the methyl H atoms.

The structure of (2) displays disorder at the level of the terminal meth­oxy substituents and the distal benzene rings, over two positions. The disordered benzene groups were constrained to an ideal hexagon, with C—C distances equal to 1.39 Å. The disorder was modelled as two components, with the occupation factors first refined, and then fixed at the values obtained after refinement (60:40 and 52:48 for the distal phenyl rings; 54:46 and 50:50 for the proximal meth­oxy groups). The model was refined anisotropically. Bond distance and mild displacement parameter (Uij restraints were also applied to model the disordered moieties. Cocrystallized solvent (aceto­nitrile) was modelled in the same manner as described above, using in addition the EDAP instruction for the split N atom. The C—C distances were fixed at 1.529 (1) and 1.531 (1) Å in the model of the disordered cocrystallized hexane molecule on a symmetry position.

Results and discussion top

The molecular structures of (2) and (3) with the atom-numbering schemes are shown in Figs. 1 and 2, respectively. Selected geometric parameters are presented in Tables 2–4. Complex (2) crystallizes as black needles, with one independent molecule of the compound, one aceto­nitrile solvent molecule and half a hexane solvent molecule in the asymmetric unit. It exhibits disorder of the main molecule in the distal benzene rings and the terminal 4-meth­oxy groups of the ADPM ligand. The cocrystallized solvent (aceto­nitrile and hexane) is also disordered. Treatment of the disorder afforded an acceptable model (R1 = 0.0399) for discussion of bond lengths and angles in this comparative structural analysis. Complex (3) crystallizes as black blocks, with no cocrystallized solvent.

Both (2) and (3) show a distorted o­cta­hedral geometry at the metal centre, with a fac-Re(CO)3 arrangement, one chelating ADPM ligand in the equatorial plane and the coordinated solvent molecule in the axial position. In (3), the DMSO molecule, trans to a carbonyl (strong π-acceptor) ligand, presents the κO coordination mode also found in [Re(DMSO)3(CO)3]+, [Re(DMSO)(py)2(CO)3]+ and [Re(bpy)(DMSO)(CO)3]+ (Casanova et al., 2006).

The bond lengths and angles around the rhenium centres and the fac-Re(CO)3 unit are comparable between the two structures (Table 2), and with those found in closely related structures of fac-[Re(ADPM)(L)(CO)3] [where L = pyridine (py), tert-butyl­iso­nitrile and tetra­hydro­tiophene (THT)] (Partyka et al., 2009). Nevertheless, the Re1—C39 bond is significantly shorter in (3) than in (2). This situation is related to a higher degree of back-donation in complex (3) from the metal centre into the π*-orbitals of the carbonyl group, as also supported by the longer C39—O7 bond for (3) as compared to (2). A larger deviation from an o­cta­hedral geometry is observed in (3) versus (2) [N1—Re1—O8(DMSO) = 80.47 (10)° and N1—Re1—N4(ACN) = 84.63 (13)°], resulting from the necessity to accommodate the steric constraints of the DMSO molecule, and from crystal packing inter­actions [a weak C31(sp2)—H31···O8(DMSO) hydrogen bond is observed [H31···O8 = 2.69 Å, C31···O8 = 3.37 Å and C31—H31···O8 = 129 (1)°]. The N1—Re1—O8—S1 torsion angle of 60.6 (1)°, confirms the position of the DMSO ligand closer to the N1-side of the molecule. The bite angle N1—Re1—N3 of the ADPM ligand at 82.82 (11)° in (3) is similar to those found in [Re(ADPM)(py)(CO)3] and [Re(ADPM)(THT)(CO)3] (Partyka et al., 2009), but inferior to the value of 84.34 (14)° observed in (2).

It is important to note the axial C—O bonds that are trans to the coordinated solvent ligand are identical within 3σ in (2), (3) and the fac-[Re(CO)3(ADPM)(L)] (L = py, tert-butyl­iso­nitrile and THT; Partyka et al., 2009). As such, the effect on the crystal structure of the σ-donation and/or π-acceptance capacity of the axial ligand cannot be determined. However, the fac-Re(CO)3 unit presents C—O bond lengths in the range 1.146 (5)–1.160 (6) Å that are longer than in free CO (1.128 Å; Housecroft & Sharpe, 2012), as a result of back-donation from the rhenium in the carbonyl ligand π*-orbitals.

Consistent with the effect of the difference in charge density on the metal, the Re1—N4(ACN) bond distance in (2) [2.181 (4) Å] is similar within 3σ to those reported for the neutral complexes [Re(ACN)(L)(CO)3] (L is an 8-oxyquinolate-type ligand; Zhao et al., 2013) and [Re(ACN)2(tri­fluoro­acetato-kO)(CO)3] (Kia & Fun, 2008), while being longer than in the cationic complex [Re(bpy)(ACN)(CO)3]+ [bpy is ?,?'-bi­pyridine; 2.140 (3) Å; Chen et al., 2003]. The same type of comparison for (3) shows the Re1—O8(DMSO) bond [2.218 (3) Å] to be longer than in the corresponding cationic complex [Re(bpy)(DMSO)(CO)3]+ (Casanova et al., 2006), as expected. In addition, the Re1—O8(DMSO) bond in (3) is longer than the Re1—N4(ACN) in (2), supporting the more labile nature of the DMSO ligand versus ACN.

Direct observations regarding the modification of ADPM ligand (1) upon complexation can be drawn from comparison of its solid-state structure (Bessette et al., 2012) and those of its rhenium complexes (2) and (3). The torsion of aryl substituents with respect to the ADPM core increases in order to accommodate the fac-Re(CO)3 unit [tilt angles are in range 19.3 (1)–25.4 (1)° for (1) and 19.1 (1)–48.6 (1)° for (2) and (3), with the higher values corresponding to the tilt of the proximal aryl substituents]. The metal–chelate ring tilts with respect to the plane formed by the Re and the two equatorial carbonyl C atoms. This feature is common for all crystallographically charactherized fac-Re(ADPM)(CO)3 complexes, and also for the ADPM complexes of metals with trigonal planar geometry (Teets et al., 2007). In (2) and (3), the values of these synclinal angles are 33.0 (1) and 37.9 (1)°, respectively, comparable with the range 34.4 (1)–39.8 (1)° observed for the other fac-Re(ADPM)(CO)3 complexes (Partyka et al., 2009).

The synclinal angles between the planes of the pyrrole rings are also increased upon complexation. Even though the effect of π-delocalization remains dominant for this family of compounds independently of the deformation shown by the ligands upon complexation (Partyka et al., 2009), the periplanar angle of the pyrrole rings [8.5 (1)° in (2) and 5.1 (1)° in (3) versus 0.5 (1)° in (1)] correlates with bond length and angle modification in the ADPM ligand. In fact, a longer N1—C1 bond is observed in both (2) [1.403 (5) Å] and (3) [1.407 (4) Å] than the value of 1.374 (5) Å reported for free (1). In addition, larger C1—N2—C17 and N2—C17—N3 angles (Table 2) are found in both (2) [128.3 (4) and 127.4 (4)°] and (3) [127.3 (3) and 128.0 (3)°], as compared with (1) [121.1 (3) and 122.3 (3)°]. All these factors indicate a relatively high degree of flexibility and adaptability in the coordinated ADPM ligand, which represents an advantage over the structurally more rigid polypyridyl-type ligands.

Analysis of the packing in (2) and (3) reveals discrete monomers stacked in offset anti­parallel lines to accomodate the meth­oxy substituents and the tilted aryl rings (Figs. 3 and 4). Weak inter­molecular inter­actions link the molecules in extended chains throughout the crystal lattice. The results of hydrogen-bonding pattern analysis using PLATON (Spek, 2009) are presented in Table 3. It reveals nonclassical intra­molecular bifurcated acceptor Csp2—H···N hydrogen bonding (C6—H6···N2 and C22—H22···N2) (Desiraju & Steiner, 1999) and inter­molecular Csp2—H···O(carbonyl) inter­actions for (2). A simple intra­molecular Csp2—H···N hydrogen bond is identified in case of (3) (C22—H22···N2). The packing forces in both (2) and (3) are completed by weak inter­molecular Csp2—H···π(arene) hydrogen bonds (Table 3).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (2), showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms (except those involved in hydrogen bonds), cocrystallized solvent and the minor-disorder components have been omitted for clarity.
[Figure 2] Fig. 2. The molecular structure of (3), showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms (except those involved in hydrogen bonds) have been omitted for clarity.
[Figure 3] Fig. 3. A packing diagram for (2), viewed along the a axis. Cocrystallized solvent and the minor-disorder components have been omitted for clarity.
[Figure 4] Fig. 4. A packing diagram for (3), viewed along the b axis.
(2) fac-(Acetonitrile-κN)(2-{[3,5-bis(4-methoxyphenyl)-2H-pyrrol-2-ylidene-κN1]amino}-3,5-bis(4-methoxyphenyl)-1H-pyrrol-1-ido-κN1)tricarbonylrhenium(I)–hexane–acetonitrile (2/1/2) top
Crystal data top
[Re(C36H30N3O4)(C2H3N)(CO)3]·0.5C6H14·C2H3NF(000) = 1940
Mr = 964.05Dx = 1.561 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 12.4549 (3) ÅCell parameters from 9330 reflections
b = 15.5837 (4) Åθ = 3.5–70.6°
c = 21.1975 (5) ŵ = 6.28 mm1
β = 94.5206 (11)°T = 150 K
V = 4101.50 (17) Å3Needle, black
Z = 40.12 × 0.03 × 0.02 mm
Data collection top
Bruker Microstar
diffractometer
7834 independent reflections
Radiation source: Rotating Anode7291 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1Rint = 0.054
ω scansθmax = 70.6°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.518, Tmax = 0.753k = 1919
88930 measured reflectionsl = 2425
Refinement top
Refinement on F2786 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0559P)2 + 8.6779P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
7834 reflectionsΔρmax = 1.60 e Å3
678 parametersΔρmin = 0.90 e Å3
Crystal data top
[Re(C36H30N3O4)(C2H3N)(CO)3]·0.5C6H14·C2H3NV = 4101.50 (17) Å3
Mr = 964.05Z = 4
Monoclinic, P21/nCu Kα radiation
a = 12.4549 (3) ŵ = 6.28 mm1
b = 15.5837 (4) ÅT = 150 K
c = 21.1975 (5) Å0.12 × 0.03 × 0.02 mm
β = 94.5206 (11)°
Data collection top
Bruker Microstar
diffractometer
7834 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
7291 reflections with I > 2σ(I)
Tmin = 0.518, Tmax = 0.753Rint = 0.054
88930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040786 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.08Δρmax = 1.60 e Å3
7834 reflectionsΔρmin = 0.90 e Å3
678 parameters
Special details top

Experimental. Crystallographic data for the title compound were collected at 150 K, from single-crystal samples, which were mounted on a loop fiber. Data were collected using a Bruker Microstar diffractometer equipped with a Platinum 135 CCD Detector, a Helios optics and a Kappa goniometer. The crystal-to-detector distance was 3.8 cm, and the data collection was carried out in 512 x 512 pixel mode. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 110.0 degree scan in 110 frames over three different parts of the reciprocal space.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.11477 (2)0.58734 (2)0.28869 (2)0.03598 (8)
O10.8039 (5)0.3809 (6)0.4823 (5)0.056 (2)0.6
O1A0.8164 (6)0.4086 (12)0.4633 (8)0.085 (5)0.4
O2A0.1589 (7)0.2045 (6)0.2725 (8)0.078 (4)0.5
O20.1864 (5)0.2368 (6)0.2746 (6)0.055 (2)0.5
O30.8070 (3)0.7863 (3)0.4839 (3)0.0915 (15)
O40.1621 (7)0.9708 (6)0.2862 (6)0.082 (3)0.52
O4A0.1839 (6)0.9341 (6)0.2693 (6)0.067 (3)0.48
O50.0127 (5)0.4581 (3)0.2026 (2)0.108 (2)
O60.0758 (3)0.5862 (3)0.37134 (18)0.0639 (11)
O70.0111 (4)0.7161 (3)0.20213 (18)0.0929 (16)
N10.2156 (3)0.4926 (2)0.34109 (16)0.0387 (7)
N20.3680 (3)0.5867 (2)0.37115 (16)0.0385 (8)
N30.2157 (3)0.6810 (2)0.34272 (16)0.0367 (7)
N40.2425 (3)0.58839 (19)0.22397 (17)0.0360 (7)
C10.3225 (3)0.5106 (3)0.3630 (2)0.0421 (9)
C20.3784 (4)0.4315 (3)0.3783 (2)0.0490 (11)
C30.3037 (3)0.3674 (3)0.3658 (2)0.0470 (10)
H30.31590.30760.37110.056*
C40.2052 (4)0.4068 (3)0.3435 (2)0.0420 (10)
C70.6467 (4)0.4801 (3)0.4734 (3)0.0557 (19)0.6
H70.68310.52310.49860.067*0.6
C60.5407 (4)0.4930 (3)0.4496 (3)0.0505 (18)0.6
H60.50470.54470.45860.061*0.6
C50.4875 (3)0.4301 (4)0.4126 (3)0.042 (2)0.6
C100.5402 (5)0.3543 (3)0.3995 (3)0.056 (2)0.6
H100.50380.31130.37420.067*0.6
C90.6462 (5)0.3415 (3)0.4232 (3)0.066 (2)0.6
H90.68230.28970.41420.079*0.6
C80.6995 (4)0.4044 (4)0.4602 (3)0.056 (3)0.6
C8A0.7064 (4)0.3948 (6)0.4491 (4)0.053 (4)0.4
C7A0.6784 (5)0.4640 (5)0.4099 (4)0.056 (3)0.4
H7A0.73120.50530.40090.067*0.4
C6A0.5731 (5)0.4728 (4)0.3837 (4)0.044 (2)0.4
H6A0.55390.52010.35690.052*0.4
C5A0.4958 (4)0.4124 (5)0.3968 (4)0.025 (2)0.4
C10A0.5238 (5)0.3432 (4)0.4360 (3)0.036 (2)0.4
H10A0.47090.30190.44490.044*0.4
C9A0.6291 (6)0.3343 (5)0.4622 (3)0.045 (3)0.4
H9A0.64820.28700.48900.054*0.4
C110.1049 (3)0.3590 (3)0.3259 (2)0.0432 (9)
C120.0085 (4)0.3785 (3)0.3518 (2)0.0462 (10)
H120.00640.42390.38160.055*
C130.0839 (4)0.3327 (3)0.3346 (2)0.0536 (11)
H130.14910.34660.35280.064*
C140.0824 (4)0.2669 (4)0.2912 (2)0.0597 (13)
C150.0134 (5)0.2452 (4)0.2664 (3)0.0627 (14)
H150.01420.20000.23640.075*
C160.1079 (3)0.2881 (3)0.2844 (2)0.0449 (10)
H160.17400.27020.26910.054*
C170.3229 (3)0.6625 (3)0.36427 (18)0.0375 (8)
C180.3790 (4)0.7418 (3)0.3807 (2)0.0456 (10)
C190.3042 (4)0.8058 (3)0.3695 (2)0.0503 (10)
H190.31620.86540.37610.060*
C200.2055 (3)0.7669 (3)0.3463 (2)0.0417 (9)
C210.4929 (3)0.7426 (4)0.4094 (3)0.038 (3)0.52
C220.5461 (4)0.6775 (3)0.4441 (3)0.0442 (18)0.52
H220.50960.62540.45180.053*0.52
C230.6527 (4)0.6885 (4)0.4674 (3)0.052 (2)0.52
H230.68910.64390.49100.063*0.52
C240.7060 (3)0.7646 (4)0.4560 (3)0.045 (3)0.52
C250.6528 (4)0.8297 (3)0.4214 (4)0.061 (3)0.52
H250.68930.88180.41370.073*0.52
C260.5462 (4)0.8188 (3)0.3981 (3)0.054 (2)0.52
H260.50980.86330.37440.065*0.52
C21A0.4931 (3)0.7606 (4)0.4033 (4)0.042 (3)0.48
C22A0.5685 (4)0.6954 (4)0.3994 (3)0.0433 (19)0.48
H22A0.54940.64430.37680.052*0.48
C23A0.6718 (4)0.7051 (4)0.4284 (3)0.048 (2)0.48
H23A0.72330.66060.42570.058*0.48
C24A0.6997 (3)0.7800 (5)0.4614 (4)0.063 (4)0.48
C25A0.6243 (5)0.8452 (4)0.4653 (4)0.060 (3)0.48
H25A0.64340.89640.48780.072*0.48
C26A0.5210 (4)0.8355 (4)0.4362 (4)0.053 (2)0.48
H26A0.46950.88000.43890.064*0.48
C270.1061 (4)0.8147 (3)0.3295 (2)0.0495 (10)
C280.0087 (4)0.7942 (3)0.3542 (3)0.0588 (13)
H280.00630.74780.38310.071*
C290.0839 (4)0.8396 (4)0.3376 (3)0.0736 (17)
H290.14930.82480.35510.088*
C300.0816 (5)0.9074 (4)0.2951 (4)0.084 (2)
C310.0150 (5)0.9302 (4)0.2714 (4)0.081 (2)
H310.01780.97760.24340.097*
C320.1069 (4)0.8840 (5)0.2885 (3)0.0714 (17)
H320.17260.90010.27180.086*
C330.8669 (5)0.4488 (6)0.5063 (4)0.052 (2)0.6
H33A0.87320.49180.47300.078*0.6
H33B0.93860.42770.52090.078*0.6
H33C0.83310.47490.54180.078*0.6
C33A0.8538 (19)0.3436 (13)0.5043 (9)0.119 (8)0.4
H33D0.84030.28780.48390.179*0.4
H33E0.81620.34640.54320.179*0.4
H33F0.93140.35080.51470.179*0.4
C34A0.2593 (9)0.2262 (10)0.2969 (8)0.090 (4)0.5
H34A0.25350.21870.34290.134*0.5
H34B0.31610.18870.27780.134*0.5
H34C0.27710.28610.28650.134*0.5
C340.1964 (8)0.1730 (6)0.2259 (5)0.060 (3)0.5
H34D0.15910.12060.24090.090*0.5
H34E0.16410.19440.18830.090*0.5
H34F0.27270.16030.21530.090*0.5
C350.8706 (4)0.7169 (5)0.5035 (3)0.0769 (19)
H35A0.83290.68220.53330.115*
H35B0.93880.73750.52430.115*
H35C0.88510.68180.46670.115*
C360.1918 (8)1.0012 (7)0.2223 (5)0.070 (3)0.52
H36A0.27041.00420.21530.106*0.52
H36B0.16380.96150.19170.106*0.52
H36C0.16111.05840.21680.106*0.52
C36A0.2596 (9)0.9531 (9)0.3164 (7)0.090 (5)0.48
H36D0.30001.00520.30410.135*0.48
H36E0.22000.96190.35770.135*0.48
H36F0.30970.90500.31900.135*0.48
C370.0374 (4)0.5037 (4)0.2360 (2)0.0613 (14)
C380.0016 (4)0.5870 (3)0.3416 (2)0.0536 (12)
C390.0381 (4)0.6718 (4)0.2366 (2)0.0543 (12)
C400.2954 (4)0.5899 (3)0.1837 (2)0.0462 (10)
C410.3622 (5)0.5914 (5)0.1302 (3)0.086 (2)
H41A0.35880.53540.10920.129*
H41B0.43690.60400.14530.129*
H41C0.33570.63580.10010.129*
C420.1484 (18)1.1450 (10)0.4621 (14)0.328 (14)
H42A0.09041.17880.44570.492*
H42B0.15631.16100.50620.492*
H42C0.21601.15620.43660.492*
C430.1210 (10)1.0495 (9)0.4586 (7)0.199 (7)
H43A0.10791.03230.41490.239*
H43B0.17931.01360.47380.239*
C440.0181 (9)1.0428 (7)0.5028 (6)0.159 (6)
H44A0.03691.08380.49000.191*
H44B0.03331.05530.54710.191*
N50.6344 (11)0.9652 (13)0.5650 (10)0.096 (5)0.54
C450.5566 (11)0.9235 (8)0.5570 (7)0.073 (3)0.54
C460.4575 (11)0.8778 (10)0.5485 (6)0.095 (4)0.54
H46D0.46020.83780.51300.143*0.54
H46E0.39820.91840.53960.143*0.54
H46F0.44600.84560.58710.143*0.54
N5A0.6062 (13)0.9826 (16)0.5855 (12)0.096 (5)0.46
C45A0.5203 (11)0.9522 (9)0.5829 (7)0.067 (3)0.46
C46A0.4157 (11)0.9149 (9)0.5814 (7)0.076 (4)0.46
H46A0.37330.93310.54280.115*0.46
H46B0.37980.93390.61850.115*0.46
H46C0.42200.85220.58180.115*0.46
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.02553 (11)0.04698 (13)0.03484 (12)0.00191 (6)0.00143 (7)0.00835 (7)
O10.034 (3)0.070 (5)0.062 (5)0.029 (3)0.017 (3)0.009 (4)
O1A0.068 (8)0.107 (12)0.079 (10)0.040 (7)0.001 (6)0.021 (7)
O2A0.063 (5)0.072 (8)0.102 (7)0.025 (5)0.015 (6)0.034 (7)
O20.049 (5)0.051 (5)0.064 (5)0.023 (4)0.000 (4)0.009 (5)
O30.051 (2)0.098 (3)0.121 (4)0.037 (2)0.024 (2)0.017 (3)
O40.074 (6)0.067 (7)0.108 (8)0.042 (5)0.034 (5)0.031 (6)
O4A0.065 (6)0.045 (5)0.093 (7)0.027 (4)0.016 (5)0.000 (5)
O50.137 (4)0.111 (4)0.066 (3)0.081 (4)0.055 (3)0.032 (3)
O60.0289 (17)0.106 (3)0.058 (2)0.0010 (16)0.0128 (15)0.0168 (18)
O70.105 (3)0.123 (4)0.049 (2)0.071 (3)0.005 (2)0.020 (2)
N10.0272 (16)0.0443 (18)0.0437 (18)0.0032 (14)0.0034 (13)0.0156 (15)
N20.0287 (17)0.050 (2)0.0364 (18)0.0021 (13)0.0001 (14)0.0091 (14)
N30.0287 (16)0.0432 (18)0.0381 (17)0.0009 (13)0.0020 (13)0.0007 (14)
N40.0355 (18)0.0321 (16)0.0404 (18)0.0003 (12)0.0040 (15)0.0004 (13)
C10.0276 (19)0.049 (2)0.049 (2)0.0045 (17)0.0056 (16)0.0194 (19)
C20.037 (2)0.051 (2)0.058 (3)0.0007 (19)0.0038 (19)0.023 (2)
C30.038 (2)0.046 (2)0.056 (3)0.0035 (18)0.0005 (19)0.017 (2)
C40.037 (2)0.051 (2)0.038 (2)0.0066 (17)0.0035 (17)0.0077 (17)
C70.049 (4)0.065 (5)0.053 (4)0.013 (4)0.001 (3)0.002 (4)
C60.049 (4)0.057 (4)0.045 (4)0.015 (4)0.002 (3)0.002 (3)
C50.047 (5)0.037 (4)0.043 (5)0.010 (3)0.007 (4)0.002 (4)
C100.047 (4)0.040 (4)0.080 (6)0.010 (4)0.006 (4)0.001 (4)
C90.052 (5)0.055 (5)0.091 (7)0.025 (4)0.013 (5)0.009 (5)
C80.047 (6)0.071 (6)0.050 (5)0.026 (5)0.000 (4)0.006 (5)
C8A0.030 (7)0.066 (8)0.060 (8)0.022 (6)0.006 (6)0.025 (7)
C7A0.017 (4)0.057 (7)0.093 (9)0.002 (4)0.002 (5)0.016 (6)
C6A0.025 (4)0.043 (5)0.062 (6)0.005 (4)0.000 (4)0.004 (5)
C5A0.022 (5)0.031 (6)0.022 (5)0.003 (4)0.002 (4)0.010 (4)
C10A0.037 (5)0.050 (6)0.023 (4)0.018 (4)0.002 (4)0.003 (4)
C9A0.043 (6)0.062 (7)0.029 (5)0.028 (5)0.003 (4)0.010 (5)
C110.041 (2)0.050 (2)0.039 (2)0.0106 (18)0.0047 (17)0.0074 (18)
C120.045 (2)0.054 (3)0.040 (2)0.009 (2)0.0037 (18)0.0052 (19)
C130.040 (2)0.069 (3)0.053 (3)0.013 (2)0.009 (2)0.002 (2)
C140.056 (3)0.070 (3)0.054 (3)0.025 (2)0.007 (2)0.003 (2)
C150.071 (3)0.062 (3)0.057 (3)0.027 (3)0.019 (3)0.012 (2)
C160.046 (2)0.040 (2)0.049 (2)0.0141 (18)0.0083 (19)0.0024 (18)
C170.0274 (18)0.050 (2)0.0353 (19)0.0001 (16)0.0006 (15)0.0021 (17)
C180.040 (2)0.055 (3)0.042 (2)0.0022 (19)0.0017 (17)0.0076 (19)
C190.046 (2)0.048 (2)0.057 (3)0.003 (2)0.008 (2)0.008 (2)
C200.039 (2)0.044 (2)0.043 (2)0.0028 (17)0.0092 (17)0.0004 (17)
C210.049 (6)0.031 (4)0.036 (5)0.016 (4)0.011 (4)0.008 (4)
C220.050 (5)0.046 (4)0.035 (4)0.019 (4)0.002 (3)0.006 (3)
C230.053 (5)0.067 (6)0.036 (4)0.023 (4)0.006 (4)0.002 (4)
C240.037 (6)0.057 (6)0.042 (6)0.006 (5)0.007 (5)0.004 (5)
C250.057 (6)0.039 (5)0.088 (7)0.023 (4)0.020 (5)0.013 (5)
C260.050 (5)0.028 (4)0.086 (7)0.010 (4)0.014 (5)0.002 (4)
C21A0.038 (6)0.042 (6)0.044 (6)0.003 (4)0.009 (5)0.011 (5)
C22A0.037 (4)0.046 (5)0.046 (5)0.009 (4)0.003 (4)0.003 (4)
C23A0.036 (4)0.059 (6)0.047 (5)0.008 (4)0.008 (4)0.000 (5)
C24A0.047 (8)0.070 (8)0.068 (9)0.030 (6)0.011 (7)0.006 (7)
C25A0.060 (6)0.047 (5)0.072 (7)0.018 (5)0.012 (5)0.014 (5)
C26A0.053 (6)0.036 (5)0.070 (6)0.012 (4)0.002 (5)0.006 (5)
C270.042 (2)0.050 (2)0.059 (3)0.0089 (19)0.014 (2)0.004 (2)
C280.053 (3)0.058 (3)0.068 (3)0.011 (2)0.025 (2)0.013 (2)
C290.044 (3)0.074 (4)0.106 (5)0.016 (3)0.033 (3)0.025 (3)
C300.057 (3)0.078 (4)0.121 (6)0.032 (3)0.039 (4)0.040 (4)
C310.063 (4)0.067 (3)0.119 (5)0.026 (3)0.041 (4)0.043 (4)
C320.048 (3)0.097 (4)0.074 (4)0.016 (3)0.031 (3)0.020 (3)
C330.024 (3)0.092 (6)0.039 (4)0.013 (4)0.007 (3)0.014 (4)
C33A0.093 (15)0.19 (2)0.075 (12)0.013 (16)0.012 (11)0.003 (14)
C34A0.048 (7)0.104 (11)0.117 (11)0.016 (7)0.009 (7)0.020 (9)
C340.050 (5)0.052 (5)0.075 (7)0.015 (4)0.013 (5)0.007 (5)
C350.047 (3)0.125 (6)0.056 (3)0.028 (3)0.012 (2)0.014 (3)
C360.046 (5)0.058 (6)0.103 (9)0.017 (5)0.019 (5)0.001 (6)
C36A0.041 (6)0.077 (9)0.152 (14)0.004 (6)0.008 (7)0.009 (9)
C370.052 (3)0.082 (4)0.048 (3)0.021 (3)0.012 (2)0.028 (3)
C380.039 (3)0.072 (3)0.048 (3)0.001 (2)0.010 (2)0.014 (2)
C390.043 (2)0.077 (3)0.043 (2)0.013 (2)0.0062 (19)0.006 (2)
C400.041 (2)0.054 (3)0.044 (2)0.0004 (18)0.004 (2)0.0074 (18)
C410.063 (4)0.145 (7)0.053 (3)0.009 (4)0.024 (3)0.018 (3)
C420.21 (2)0.31 (3)0.46 (4)0.01 (2)0.00 (2)0.03 (3)
C430.142 (11)0.264 (18)0.196 (14)0.062 (13)0.029 (10)0.016 (14)
C440.165 (10)0.192 (12)0.127 (8)0.101 (12)0.057 (7)0.009 (10)
N50.107 (9)0.087 (9)0.091 (13)0.004 (8)0.011 (7)0.005 (7)
C450.096 (10)0.064 (7)0.057 (7)0.002 (6)0.004 (7)0.006 (5)
C460.115 (11)0.110 (11)0.059 (7)0.026 (9)0.002 (7)0.017 (7)
N5A0.107 (9)0.087 (9)0.091 (13)0.004 (8)0.011 (7)0.005 (7)
C45A0.091 (10)0.057 (8)0.051 (7)0.013 (7)0.012 (7)0.002 (6)
C46A0.104 (12)0.076 (9)0.048 (7)0.008 (7)0.000 (7)0.008 (6)
Geometric parameters (Å, º) top
Re1—N12.185 (3)C21—C221.3900
Re1—N32.190 (3)C21—C261.3900
Re1—N42.181 (4)C22—H220.9500
Re1—C371.925 (6)C22—C231.3900
Re1—C381.901 (6)C23—H230.9500
Re1—C391.923 (5)C23—C241.3900
O1—C81.396 (6)C24—C251.3900
O1—C331.390 (12)C25—H250.9500
O1A—C8A1.396 (6)C25—C261.3900
O1A—C33A1.390 (12)C26—H260.9500
O2A—C141.396 (6)C21A—C22A1.3900
O2A—C34A1.431 (11)C21A—C26A1.3900
O2—C141.397 (6)C22A—H22A0.9500
O2—C341.431 (11)C22A—C23A1.3900
O3—C241.388 (5)C23A—H23A0.9500
O3—C24A1.387 (5)C23A—C24A1.3900
O3—C351.386 (8)C24A—C25A1.3900
O4—C301.409 (7)C25A—H25A0.9500
O4—C361.457 (13)C25A—C26A1.3900
O4A—C301.410 (7)C26A—H26A0.9500
O4A—C36A1.456 (13)C27—C281.396 (6)
O5—C371.152 (7)C27—C321.387 (8)
O6—C381.160 (6)C28—H280.9500
O7—C391.147 (6)C28—C291.375 (7)
N1—C11.403 (5)C29—H290.9500
N1—C41.345 (5)C29—C301.390 (8)
N2—C11.319 (5)C30—C311.385 (8)
N2—C171.312 (5)C31—H310.9500
N3—C171.406 (5)C31—C321.376 (8)
N3—C201.348 (5)C32—H320.9500
N4—C401.120 (6)C33—H33A0.9800
C1—C21.440 (6)C33—H33B0.9800
C2—C31.377 (7)C33—H33C0.9800
C2—C51.490 (6)C33A—H33D0.9800
C2—C5A1.513 (6)C33A—H33E0.9800
C3—H30.9500C33A—H33F0.9800
C3—C41.419 (6)C34A—H34A0.9800
C4—C111.477 (6)C34A—H34B0.9800
C7—H70.9500C34A—H34C0.9800
C7—C61.3900C34—H34D0.9800
C7—C81.3900C34—H34E0.9800
C6—H60.9500C34—H34F0.9800
C6—C51.3900C35—H35A0.9800
C5—C101.3900C35—H35B0.9800
C10—H100.9500C35—H35C0.9800
C10—C91.3900C36—H36A0.9800
C9—H90.9500C36—H36B0.9800
C9—C81.3900C36—H36C0.9800
C8A—C7A1.3900C36A—H36D0.9800
C8A—C9A1.3900C36A—H36E0.9800
C7A—H7A0.9500C36A—H36F0.9800
C7A—C6A1.3900C40—C411.458 (7)
C6A—H6A0.9500C41—H41A0.9800
C6A—C5A1.3900C41—H41B0.9800
C5A—C10A1.3900C41—H41C0.9800
C10A—H10A0.9500C42—H42A0.9800
C10A—C9A1.3900C42—H42B0.9800
C9A—H9A0.9500C42—H42C0.9800
C11—C121.393 (6)C42—C431.5287 (10)
C11—C161.413 (6)C43—H43A0.9900
C12—H120.9500C43—H43B0.9900
C12—C131.379 (6)C43—C441.5307 (11)
C13—H130.9500C44—C44i1.42 (2)
C13—C141.379 (7)C44—H44A0.9900
C14—C151.384 (8)C44—H44B0.9900
C15—H150.9500N5—C451.168 (11)
C15—C161.380 (7)C45—C461.424 (13)
C16—H160.9500C46—H46D0.9800
C17—C181.448 (6)C46—H46E0.9800
C18—C191.372 (7)C46—H46F0.9800
C18—C211.499 (5)N5A—C45A1.168 (11)
C18—C21A1.492 (5)C45A—C46A1.424 (13)
C19—H190.9500C46A—H46A0.9800
C19—C201.423 (6)C46A—H46B0.9800
C20—C271.463 (6)C46A—H46C0.9800
N1—Re1—N384.34 (14)C26—C25—C24120.0
N4—Re1—N184.63 (13)C26—C25—H25120.0
N4—Re1—N384.67 (12)C21—C26—H26120.0
C37—Re1—N194.51 (19)C25—C26—C21120.0
C37—Re1—N3174.45 (19)C25—C26—H26120.0
C37—Re1—N489.82 (19)C22A—C21A—C18117.9 (4)
C38—Re1—N197.65 (16)C22A—C21A—C26A120.0
C38—Re1—N397.26 (18)C26A—C21A—C18121.3 (4)
C38—Re1—N4177.14 (16)C21A—C22A—H22A120.0
C38—Re1—C3788.3 (2)C23A—C22A—C21A120.0
C38—Re1—C3988.5 (2)C23A—C22A—H22A120.0
C39—Re1—N1173.87 (16)C22A—C23A—H23A120.0
C39—Re1—N394.8 (2)C24A—C23A—C22A120.0
C39—Re1—N489.26 (16)C24A—C23A—H23A120.0
C39—Re1—C3785.8 (2)O3—C24A—C23A115.4 (5)
C33—O1—C8114.0 (7)O3—C24A—C25A124.4 (5)
C33A—O1A—C8A107.3 (14)C23A—C24A—C25A120.0
C14—O2A—C34A109.2 (9)C24A—C25A—H25A120.0
C14—O2—C34116.2 (8)C24A—C25A—C26A120.0
C35—O3—C24114.5 (5)C26A—C25A—H25A120.0
C35—O3—C24A124.1 (5)C21A—C26A—H26A120.0
C30—O4—C36118.5 (9)C25A—C26A—C21A120.0
C30—O4A—C36A114.1 (10)C25A—C26A—H26A120.0
C1—N1—Re1121.7 (3)C28—C27—C20122.4 (4)
C4—N1—Re1129.6 (3)C32—C27—C20120.1 (4)
C4—N1—C1106.2 (3)C32—C27—C28117.5 (4)
C17—N2—C1128.3 (4)C27—C28—H28119.2
C17—N3—Re1121.6 (3)C29—C28—C27121.5 (5)
C20—N3—Re1129.7 (3)C29—C28—H28119.2
C20—N3—C17106.1 (3)C28—C29—H29120.1
C40—N4—Re1169.3 (4)C28—C29—C30119.8 (5)
N1—C1—C2109.4 (4)C30—C29—H29120.1
N2—C1—N1127.6 (4)C29—C30—O4124.6 (7)
N2—C1—C2123.0 (4)C29—C30—O4A114.3 (7)
C1—C2—C5122.0 (4)C31—C30—O4113.6 (7)
C1—C2—C5A131.9 (5)C31—C30—O4A124.6 (8)
C3—C2—C1105.7 (4)C31—C30—C29119.5 (5)
C3—C2—C5131.3 (4)C30—C31—H31120.0
C3—C2—C5A122.1 (5)C32—C31—C30119.9 (5)
C2—C3—H3126.2C32—C31—H31120.0
C2—C3—C4107.7 (4)C27—C32—H32119.1
C4—C3—H3126.2C31—C32—C27121.7 (5)
N1—C4—C3111.0 (4)C31—C32—H32119.1
N1—C4—C11125.1 (4)O1—C33—H33A109.5
C3—C4—C11123.9 (4)O1—C33—H33B109.5
C6—C7—H7120.0O1—C33—H33C109.5
C6—C7—C8120.0H33A—C33—H33B109.5
C8—C7—H7120.0H33A—C33—H33C109.5
C7—C6—H6120.0H33B—C33—H33C109.5
C5—C6—C7120.0O1A—C33A—H33D109.5
C5—C6—H6120.0O1A—C33A—H33E109.5
C6—C5—C2129.8 (4)O1A—C33A—H33F109.5
C6—C5—C10120.0H33D—C33A—H33E109.5
C10—C5—C2110.0 (4)H33D—C33A—H33F109.5
C5—C10—H10120.0H33E—C33A—H33F109.5
C9—C10—C5120.0O2A—C34A—H34A109.5
C9—C10—H10120.0O2A—C34A—H34B109.5
C10—C9—H9120.0O2A—C34A—H34C109.5
C10—C9—C8120.0H34A—C34A—H34B109.5
C8—C9—H9120.0H34A—C34A—H34C109.5
C7—C8—O1126.7 (6)H34B—C34A—H34C109.5
C9—C8—O1113.2 (6)O2—C34—H34D109.5
C9—C8—C7120.0O2—C34—H34E109.5
C7A—C8A—O1A101.8 (8)O2—C34—H34F109.5
C7A—C8A—C9A120.0H34D—C34—H34E109.5
C9A—C8A—O1A138.1 (8)H34D—C34—H34F109.5
C8A—C7A—H7A120.0H34E—C34—H34F109.5
C8A—C7A—C6A120.0O3—C35—H35A109.5
C6A—C7A—H7A120.0O3—C35—H35B109.5
C7A—C6A—H6A120.0O3—C35—H35C109.5
C5A—C6A—C7A120.0H35A—C35—H35B109.5
C5A—C6A—H6A120.0H35A—C35—H35C109.5
C6A—C5A—C2119.0 (4)H35B—C35—H35C109.5
C6A—C5A—C10A120.0O4—C36—H36A109.5
C10A—C5A—C2120.0 (4)O4—C36—H36B109.5
C5A—C10A—H10A120.0O4—C36—H36C109.5
C9A—C10A—C5A120.0H36A—C36—H36B109.5
C9A—C10A—H10A120.0H36A—C36—H36C109.5
C8A—C9A—H9A120.0H36B—C36—H36C109.5
C10A—C9A—C8A120.0O4A—C36A—H36D109.5
C10A—C9A—H9A120.0O4A—C36A—H36E109.5
C12—C11—C4121.9 (4)O4A—C36A—H36F109.5
C12—C11—C16118.8 (4)H36D—C36A—H36E109.5
C16—C11—C4119.2 (4)H36D—C36A—H36F109.5
C11—C12—H12119.7H36E—C36A—H36F109.5
C13—C12—C11120.7 (5)O5—C37—Re1175.4 (5)
C13—C12—H12119.7O6—C38—Re1176.8 (4)
C12—C13—H13119.8O7—C39—Re1173.8 (5)
C14—C13—C12120.4 (5)N4—C40—C41178.6 (6)
C14—C13—H13119.8C40—C41—H41A109.5
C13—C14—O2A131.4 (7)C40—C41—H41B109.5
C13—C14—O2110.9 (6)C40—C41—H41C109.5
C13—C14—C15119.5 (5)H41A—C41—H41B109.5
C15—C14—O2A108.2 (6)H41A—C41—H41C109.5
C15—C14—O2129.2 (6)H41B—C41—H41C109.5
C14—C15—H15119.4H42A—C42—H42B109.5
C16—C15—C14121.2 (5)H42A—C42—H42C109.5
C16—C15—H15119.4H42B—C42—H42C109.5
C11—C16—H16120.4C43—C42—H42A109.5
C15—C16—C11119.2 (4)C43—C42—H42B109.5
C15—C16—H16120.4C43—C42—H42C109.5
N2—C17—N3127.4 (4)C42—C43—H43A111.3
N2—C17—C18123.2 (4)C42—C43—H43B111.3
N3—C17—C18109.4 (4)C42—C43—C44102.5 (13)
C17—C18—C21121.9 (4)H43A—C43—H43B109.2
C17—C18—C21A132.4 (4)C44—C43—H43A111.3
C19—C18—C17105.6 (4)C44—C43—H43B111.3
C19—C18—C21132.2 (5)C43—C44—H44A110.6
C19—C18—C21A121.9 (5)C43—C44—H44B110.6
C18—C19—H19126.1C44i—C44—C43105.6 (13)
C18—C19—C20107.9 (4)C44i—C44—H44A110.6
C20—C19—H19126.1C44i—C44—H44B110.6
N3—C20—C19111.0 (4)H44A—C44—H44B108.8
N3—C20—C27125.0 (4)N5—C45—C46176.0 (18)
C19—C20—C27124.0 (4)C45—C46—H46D109.5
C22—C21—C18127.2 (4)C45—C46—H46E109.5
C22—C21—C26120.0C45—C46—H46F109.5
C26—C21—C18112.8 (4)H46D—C46—H46E109.5
C21—C22—H22120.0H46D—C46—H46F109.5
C21—C22—C23120.0H46E—C46—H46F109.5
C23—C22—H22120.0N5A—C45A—C46A179 (2)
C22—C23—H23120.0C45A—C46A—H46A109.5
C22—C23—C24120.0C45A—C46A—H46B109.5
C24—C23—H23120.0C45A—C46A—H46C109.5
O3—C24—C23124.4 (5)H46A—C46A—H46B109.5
O3—C24—C25115.1 (5)H46A—C46A—H46C109.5
C25—C24—C23120.0H46B—C46A—H46C109.5
C24—C25—H25120.0
Re1—N1—C1—N219.0 (6)C12—C11—C16—C155.8 (7)
Re1—N1—C1—C2162.9 (3)C12—C13—C14—O2A170.2 (10)
Re1—N1—C4—C3161.1 (3)C12—C13—C14—O2172.3 (7)
Re1—N1—C4—C1119.3 (6)C12—C13—C14—C152.0 (8)
Re1—N3—C17—N219.3 (6)C13—C14—C15—C160.2 (9)
Re1—N3—C17—C18162.7 (3)C14—C15—C16—C114.1 (8)
Re1—N3—C20—C19161.2 (3)C16—C11—C12—C133.6 (7)
Re1—N3—C20—C2719.7 (6)C17—N2—C1—N14.4 (8)
O1A—C8A—C7A—C6A178.6 (11)C17—N2—C1—C2173.4 (4)
O1A—C8A—C9A—C10A177.9 (17)C17—N3—C20—C190.3 (5)
O2A—C14—C15—C16170.4 (9)C17—N3—C20—C27178.9 (4)
O2—C14—C15—C16173.4 (8)C17—C18—C19—C200.6 (5)
O3—C24—C25—C26172.0 (7)C17—C18—C21—C2224.6 (7)
O3—C24A—C25A—C26A174.1 (8)C17—C18—C21—C26155.1 (4)
O4—C30—C31—C32165.7 (9)C17—C18—C21A—C22A12.5 (9)
O4A—C30—C31—C32162.8 (8)C17—C18—C21A—C26A157.6 (5)
N1—C1—C2—C30.5 (5)C18—C19—C20—N30.2 (5)
N1—C1—C2—C5169.7 (5)C18—C19—C20—C27179.4 (4)
N1—C1—C2—C5A172.4 (6)C18—C21—C22—C23179.7 (7)
N1—C4—C11—C1253.1 (6)C18—C21—C26—C25179.8 (6)
N1—C4—C11—C16130.7 (5)C18—C21A—C22A—C23A170.2 (7)
N2—C1—C2—C3177.7 (4)C18—C21A—C26A—C25A169.8 (8)
N2—C1—C2—C58.4 (8)C19—C18—C21—C22148.8 (5)
N2—C1—C2—C5A9.4 (9)C19—C18—C21—C2631.5 (7)
N2—C17—C18—C19177.3 (4)C19—C18—C21A—C22A165.3 (4)
N2—C17—C18—C212.4 (7)C19—C18—C21A—C26A24.7 (8)
N2—C17—C18—C21A4.6 (8)C19—C20—C27—C28127.0 (6)
N3—C17—C18—C190.8 (5)C19—C20—C27—C3251.9 (7)
N3—C17—C18—C21175.7 (4)C20—N3—C17—N2177.4 (4)
N3—C17—C18—C21A177.2 (6)C20—N3—C17—C180.7 (4)
N3—C20—C27—C2852.1 (7)C20—C27—C28—C29179.7 (6)
N3—C20—C27—C32129.0 (6)C20—C27—C32—C31179.6 (6)
C1—N1—C4—C30.8 (5)C21—C18—C19—C20174.8 (5)
C1—N1—C4—C11178.8 (4)C21—C22—C23—C240.0
C1—N2—C17—N34.2 (7)C22—C21—C26—C250.0
C1—N2—C17—C18173.6 (4)C22—C23—C24—O3171.2 (7)
C1—C2—C3—C40.0 (5)C22—C23—C24—C250.0
C1—C2—C5—C619.3 (8)C23—C24—C25—C260.0
C1—C2—C5—C10156.0 (4)C24—C25—C26—C210.0
C1—C2—C5A—C6A18.3 (9)C26—C21—C22—C230.0
C1—C2—C5A—C10A150.2 (5)C21A—C18—C19—C20177.7 (5)
C2—C3—C4—N10.5 (6)C21A—C22A—C23A—C24A0.0
C2—C3—C4—C11179.1 (4)C22A—C21A—C26A—C25A0.0
C2—C5—C10—C9175.9 (5)C22A—C23A—C24A—O3174.7 (8)
C2—C5A—C10A—C9A168.4 (7)C22A—C23A—C24A—C25A0.0
C3—C2—C5—C6146.8 (5)C23A—C24A—C25A—C26A0.0
C3—C2—C5—C1037.8 (7)C24A—C25A—C26A—C21A0.0
C3—C2—C5A—C6A153.6 (5)C26A—C21A—C22A—C23A0.0
C3—C2—C5A—C10A37.9 (8)C27—C28—C29—C300.4 (10)
C3—C4—C11—C12126.4 (5)C28—C27—C32—C311.4 (10)
C3—C4—C11—C1649.8 (6)C28—C29—C30—O4163.8 (9)
C4—N1—C1—N2177.3 (4)C28—C29—C30—O4A164.3 (7)
C4—N1—C1—C20.8 (5)C28—C29—C30—C312.1 (12)
C4—C11—C12—C13179.8 (4)C29—C30—C31—C322.1 (13)
C4—C11—C16—C15177.9 (4)C30—C31—C32—C270.3 (12)
C7—C6—C5—C2174.9 (7)C32—C27—C28—C291.4 (9)
C7—C6—C5—C100.0C33—O1—C8—C716.6 (12)
C6—C7—C8—O1177.6 (8)C33—O1—C8—C9165.6 (7)
C6—C7—C8—C90.0C33A—O1A—C8A—C7A178.5 (15)
C6—C5—C10—C90.0C33A—O1A—C8A—C9A3 (3)
C5—C2—C3—C4167.8 (5)C34A—O2A—C14—C1311.7 (19)
C5—C10—C9—C80.0C34A—O2A—C14—C15179.1 (11)
C10—C9—C8—O1177.9 (7)C34—O2—C14—C13175.1 (8)
C10—C9—C8—C70.0C34—O2—C14—C151.5 (15)
C8—C7—C6—C50.0C35—O3—C24—C2324.7 (8)
C8A—C7A—C6A—C5A0.0C35—O3—C24—C25163.6 (5)
C7A—C8A—C9A—C10A0.0C35—O3—C24A—C23A32.6 (9)
C7A—C6A—C5A—C2168.5 (7)C35—O3—C24A—C25A153.0 (6)
C7A—C6A—C5A—C10A0.0C36—O4—C30—C29141.1 (10)
C6A—C5A—C10A—C9A0.0C36—O4—C30—C3156.2 (14)
C5A—C2—C3—C4173.7 (5)C36A—O4A—C30—C2952.5 (12)
C5A—C10A—C9A—C8A0.0C36A—O4A—C30—C31141.9 (11)
C9A—C8A—C7A—C6A0.0C42—C43—C44—C44i174.4 (15)
C11—C12—C13—C140.3 (7)
Symmetry code: (i) x, y+2, z+1.
(3) fac-(2-{[3,5-Bis(4-methoxyphenyl)-2H-pyrrol-2-ylidene-κN1]amino}-3,5-bis(4-methoxyphenyl)-1H-pyrrol-1-ido-κN1)tricarbonyl(dimethyl sulfoxide-κO)rhenium(I), top
Crystal data top
[Re(C36H30N3O4)(C2H6OS)(CO)3]Z = 2
Mr = 916.99F(000) = 916
Triclinic, P1Dx = 1.648 Mg m3
a = 10.7054 (4) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.9330 (4) ÅCell parameters from 9592 reflections
c = 16.7416 (7) Åθ = 5.3–69.3°
α = 78.195 (2)°µ = 7.45 mm1
β = 81.029 (2)°T = 150 K
γ = 75.883 (2)°Block, black
V = 1848.46 (13) Å30.21 × 0.13 × 0.07 mm
Data collection top
Bruker Microstar
diffractometer
6882 independent reflections
Radiation source: Rotating Anode6811 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1Rint = 0.042
ω scansθmax = 69.7°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.490, Tmax = 0.753k = 1313
74487 measured reflectionsl = 2014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0545P)2 + 3.5218P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
6882 reflectionsΔρmax = 1.60 e Å3
493 parametersΔρmin = 0.77 e Å3
0 restraints
Crystal data top
[Re(C36H30N3O4)(C2H6OS)(CO)3]γ = 75.883 (2)°
Mr = 916.99V = 1848.46 (13) Å3
Triclinic, P1Z = 2
a = 10.7054 (4) ÅCu Kα radiation
b = 10.9330 (4) ŵ = 7.45 mm1
c = 16.7416 (7) ÅT = 150 K
α = 78.195 (2)°0.21 × 0.13 × 0.07 mm
β = 81.029 (2)°
Data collection top
Bruker Microstar
diffractometer
6882 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6811 reflections with I > 2σ(I)
Tmin = 0.490, Tmax = 0.753Rint = 0.042
74487 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.12Δρmax = 1.60 e Å3
6882 reflectionsΔρmin = 0.77 e Å3
493 parameters
Special details top

Experimental. Crystallographic data for the title compound were collected at 150 K, from single-crystal samples, which were mounted on a loop fiber. Data were collected using a Bruker Microstar diffractometer equipped with a Platinum 135 CCD Detector, a Helios optics and a Kappa goniometer. The crystal-to-detector distance was 3.8 cm, and the data collection was carried out in 512 x 512 pixel mode. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 110.0 degree scan in 110 frames over three different parts of the reciprocal space.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. All non-H atoms were refined by full-matrix least-squares with anisotropic displacement parameters. The H-atoms were included in calculated positions and treated as riding atoms: aromatic C—H 0.95 Å, methyl C—H 0.98 Å, with Uiso(H) = k x Ueq (parent C-atom), where k = 1.2 for the aromatic H-atoms and 1.5 for the methyl H-atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.14601 (2)0.72963 (2)0.32787 (2)0.02121 (7)
S10.14545 (10)0.69801 (10)0.32555 (6)0.0339 (2)
O10.4071 (3)1.1575 (3)0.10292 (17)0.0319 (6)
O20.4460 (3)0.1858 (3)0.18698 (18)0.0312 (6)
O30.3485 (3)1.5812 (3)0.11663 (16)0.0304 (6)
O40.4407 (3)0.8682 (3)0.61296 (17)0.0394 (7)
O50.1617 (3)0.4391 (3)0.36997 (19)0.0411 (7)
O60.4414 (3)0.6569 (3)0.3063 (2)0.0433 (8)
O70.1630 (4)0.6938 (3)0.51300 (17)0.0427 (8)
O80.0685 (2)0.7819 (3)0.34965 (16)0.0268 (5)
N10.0999 (3)0.7597 (3)0.20143 (18)0.0204 (6)
N20.0220 (3)0.9804 (3)0.19183 (17)0.0194 (6)
N30.1135 (3)0.9387 (3)0.30388 (19)0.0202 (6)
C10.0084 (3)0.8671 (3)0.1689 (2)0.0204 (7)
C20.0499 (3)0.8346 (3)0.1057 (2)0.0206 (7)
C30.0075 (3)0.7082 (3)0.1024 (2)0.0221 (7)
H30.01210.65790.06790.027*
C40.1005 (3)0.6663 (3)0.1591 (2)0.0203 (7)
C50.1449 (3)0.9182 (3)0.0524 (2)0.0213 (7)
C60.1692 (4)1.0518 (4)0.0414 (2)0.0268 (7)
H60.12521.09110.07070.032*
C70.2554 (4)1.1273 (4)0.0110 (2)0.0279 (8)
H70.26981.21780.01760.034*
C80.3216 (4)1.0731 (4)0.0541 (2)0.0249 (7)
C90.2988 (4)0.9411 (4)0.0452 (3)0.0320 (8)
H90.34270.90240.07500.038*
C100.2112 (4)0.8657 (4)0.0077 (3)0.0295 (8)
H100.19590.77520.01350.035*
C110.1921 (3)0.5424 (3)0.1676 (2)0.0211 (7)
C120.3237 (3)0.5342 (3)0.1702 (2)0.0222 (7)
H120.35370.61000.16750.027*
C130.4115 (4)0.4165 (3)0.1767 (2)0.0239 (7)
H130.50080.41190.17850.029*
C140.3673 (4)0.3057 (3)0.1806 (2)0.0232 (7)
C150.2365 (4)0.3122 (3)0.1775 (2)0.0251 (7)
H150.20670.23630.18000.030*
C160.1502 (4)0.4299 (4)0.1707 (2)0.0241 (7)
H160.06110.43430.16800.029*
C170.0258 (3)1.0153 (3)0.2495 (2)0.0199 (6)
C180.0130 (3)1.1427 (3)0.2687 (2)0.0196 (6)
C190.0497 (3)1.1407 (3)0.3348 (2)0.0228 (7)
H190.04231.21020.36250.027*
C200.1271 (3)1.0161 (3)0.3540 (2)0.0209 (7)
C210.1002 (3)1.2541 (3)0.2263 (2)0.0200 (7)
C220.0969 (3)1.2816 (3)0.1410 (2)0.0207 (7)
H220.03831.22520.10910.025*
C230.1777 (4)1.3898 (3)0.1015 (2)0.0230 (7)
H230.17441.40670.04330.028*
C240.2630 (4)1.4726 (3)0.1483 (2)0.0238 (7)
C250.2671 (4)1.4481 (4)0.2331 (2)0.0276 (8)
H250.32511.50550.26460.033*
C260.1866 (4)1.3398 (4)0.2722 (2)0.0257 (7)
H260.19011.32360.33040.031*
C270.2131 (3)0.9766 (3)0.4195 (2)0.0222 (7)
C280.3401 (4)0.9074 (4)0.4074 (2)0.0264 (7)
H280.37340.88570.35490.032*
C290.4193 (4)0.8695 (4)0.4702 (2)0.0301 (8)
H290.50560.82190.46070.036*
C300.3717 (4)0.9014 (4)0.5471 (2)0.0291 (8)
C310.2455 (4)0.9730 (4)0.5602 (2)0.0284 (8)
H310.21280.99500.61270.034*
C320.1683 (4)1.0119 (4)0.4968 (2)0.0247 (7)
H320.08371.06320.50560.030*
C330.4777 (5)1.1060 (4)0.1473 (3)0.0398 (10)
H33A0.53771.17580.17790.060*
H33B0.52681.04950.10910.060*
H33C0.41751.05700.18580.060*
C340.5819 (4)0.1771 (4)0.1860 (3)0.0355 (9)
H34A0.62780.08700.19160.053*
H34B0.59630.21370.23160.053*
H34C0.61460.22460.13390.053*
C350.3696 (4)1.5952 (4)0.0331 (2)0.0338 (9)
H35A0.44021.66950.01990.051*
H35B0.39271.51790.02440.051*
H35C0.29031.60780.00250.051*
C360.5689 (4)0.7921 (5)0.6029 (3)0.0450 (11)
H36A0.60900.77810.65380.068*
H36B0.62040.83640.55780.068*
H36C0.56550.70930.59040.068*
C370.1555 (4)0.5470 (4)0.3509 (2)0.0303 (8)
C380.3302 (4)0.6873 (4)0.3121 (2)0.0319 (9)
C390.1581 (4)0.7109 (4)0.4416 (3)0.0311 (9)
C400.2117 (6)0.6198 (6)0.4207 (4)0.0608 (15)
H40A0.14600.54660.44300.091*
H40B0.28680.58980.41200.091*
H40C0.23880.68000.45940.091*
C410.2894 (5)0.8075 (6)0.2965 (3)0.0496 (12)
H41A0.27110.85840.24230.074*
H41B0.32150.86450.33690.074*
H41C0.35520.76020.29400.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.02337 (11)0.02141 (10)0.01819 (10)0.00039 (6)0.00751 (6)0.00444 (6)
S10.0326 (5)0.0361 (5)0.0360 (5)0.0096 (4)0.0048 (4)0.0101 (4)
O10.0387 (15)0.0259 (13)0.0328 (15)0.0011 (11)0.0220 (12)0.0022 (11)
O20.0319 (14)0.0198 (13)0.0388 (16)0.0018 (11)0.0091 (12)0.0035 (11)
O30.0389 (15)0.0243 (13)0.0248 (13)0.0042 (11)0.0120 (11)0.0036 (10)
O40.0327 (15)0.063 (2)0.0211 (14)0.0027 (14)0.0134 (11)0.0060 (13)
O50.065 (2)0.0200 (14)0.0348 (16)0.0022 (13)0.0139 (14)0.0002 (11)
O60.0216 (15)0.056 (2)0.053 (2)0.0043 (13)0.0103 (13)0.0239 (16)
O70.071 (2)0.0401 (17)0.0172 (14)0.0111 (16)0.0117 (14)0.0025 (12)
O80.0239 (13)0.0282 (13)0.0283 (14)0.0016 (10)0.0043 (10)0.0088 (11)
N10.0199 (14)0.0192 (14)0.0212 (14)0.0005 (11)0.0057 (11)0.0045 (11)
N20.0196 (13)0.0213 (14)0.0184 (14)0.0024 (11)0.0047 (11)0.0066 (11)
N30.0214 (14)0.0195 (14)0.0211 (14)0.0016 (11)0.0083 (11)0.0056 (11)
C10.0216 (16)0.0229 (16)0.0173 (16)0.0026 (13)0.0072 (12)0.0040 (13)
C20.0212 (16)0.0237 (17)0.0187 (16)0.0040 (13)0.0059 (13)0.0060 (13)
C30.0240 (17)0.0222 (17)0.0216 (17)0.0022 (13)0.0073 (13)0.0071 (13)
C40.0229 (16)0.0226 (16)0.0157 (15)0.0026 (13)0.0039 (13)0.0053 (12)
C50.0222 (16)0.0248 (17)0.0162 (16)0.0019 (13)0.0060 (13)0.0033 (13)
C60.0336 (19)0.0244 (18)0.0255 (18)0.0056 (15)0.0128 (15)0.0049 (14)
C70.037 (2)0.0206 (17)0.0275 (19)0.0034 (15)0.0125 (16)0.0033 (14)
C80.0258 (18)0.0270 (18)0.0206 (17)0.0007 (14)0.0078 (14)0.0035 (14)
C90.038 (2)0.0288 (19)0.035 (2)0.0031 (16)0.0205 (17)0.0096 (16)
C100.035 (2)0.0208 (17)0.036 (2)0.0013 (15)0.0176 (17)0.0078 (15)
C110.0240 (17)0.0213 (16)0.0178 (16)0.0019 (13)0.0053 (13)0.0043 (13)
C120.0270 (17)0.0208 (16)0.0195 (16)0.0041 (14)0.0049 (13)0.0046 (13)
C130.0230 (17)0.0252 (18)0.0230 (17)0.0019 (14)0.0063 (13)0.0045 (14)
C140.0287 (18)0.0194 (16)0.0191 (17)0.0007 (14)0.0050 (13)0.0028 (13)
C150.0308 (19)0.0202 (17)0.0253 (18)0.0075 (14)0.0033 (14)0.0041 (14)
C160.0228 (17)0.0270 (18)0.0240 (18)0.0055 (14)0.0031 (14)0.0074 (14)
C170.0198 (16)0.0206 (16)0.0190 (16)0.0019 (13)0.0045 (12)0.0041 (13)
C180.0212 (16)0.0201 (16)0.0180 (16)0.0035 (13)0.0053 (12)0.0035 (12)
C190.0262 (17)0.0237 (17)0.0206 (17)0.0043 (14)0.0070 (13)0.0069 (13)
C200.0219 (16)0.0238 (17)0.0186 (16)0.0046 (13)0.0046 (13)0.0057 (13)
C210.0222 (16)0.0198 (16)0.0202 (17)0.0048 (13)0.0070 (13)0.0045 (13)
C220.0235 (16)0.0220 (16)0.0190 (16)0.0053 (13)0.0036 (13)0.0076 (13)
C230.0290 (18)0.0248 (17)0.0173 (16)0.0079 (14)0.0057 (13)0.0038 (13)
C240.0272 (18)0.0173 (16)0.0270 (18)0.0011 (13)0.0106 (14)0.0029 (13)
C250.0316 (19)0.0261 (18)0.0241 (18)0.0029 (15)0.0070 (15)0.0106 (14)
C260.0323 (19)0.0270 (18)0.0184 (17)0.0017 (15)0.0077 (14)0.0069 (14)
C270.0233 (17)0.0256 (17)0.0197 (17)0.0063 (14)0.0062 (13)0.0044 (13)
C280.0260 (18)0.0340 (19)0.0197 (17)0.0029 (15)0.0054 (14)0.0081 (14)
C290.0242 (18)0.041 (2)0.0260 (19)0.0026 (16)0.0067 (15)0.0093 (16)
C300.0278 (19)0.039 (2)0.0214 (18)0.0057 (16)0.0107 (14)0.0028 (15)
C310.0283 (19)0.041 (2)0.0182 (17)0.0086 (16)0.0027 (14)0.0101 (15)
C320.0221 (16)0.0299 (19)0.0241 (18)0.0043 (14)0.0049 (14)0.0092 (15)
C330.048 (3)0.036 (2)0.038 (2)0.0033 (19)0.030 (2)0.0014 (18)
C340.030 (2)0.0268 (19)0.044 (2)0.0041 (16)0.0068 (17)0.0036 (17)
C350.043 (2)0.032 (2)0.0232 (19)0.0015 (17)0.0147 (17)0.0029 (16)
C360.031 (2)0.067 (3)0.032 (2)0.002 (2)0.0150 (18)0.001 (2)
C370.033 (2)0.034 (2)0.0230 (19)0.0007 (16)0.0084 (15)0.0062 (15)
C380.039 (2)0.032 (2)0.0258 (19)0.0014 (17)0.0098 (16)0.0105 (16)
C390.0272 (19)0.0216 (18)0.042 (2)0.0024 (15)0.0070 (16)0.0017 (16)
C400.062 (3)0.052 (3)0.060 (3)0.022 (3)0.003 (3)0.016 (3)
C410.035 (2)0.069 (3)0.046 (3)0.015 (2)0.020 (2)0.002 (2)
Geometric parameters (Å, º) top
Re1—O82.218 (3)C14—C151.393 (5)
Re1—N12.190 (3)C15—H150.9500
Re1—N32.188 (3)C15—C161.384 (5)
Re1—C371.935 (4)C16—H160.9500
Re1—C381.901 (4)C17—C181.441 (5)
Re1—C391.894 (4)C18—C191.375 (5)
S1—O81.518 (3)C18—C211.468 (5)
S1—C401.777 (5)C19—H190.9500
S1—C411.772 (5)C19—C201.414 (5)
O1—C81.367 (4)C20—C271.471 (5)
O1—C331.412 (5)C21—C221.394 (5)
O2—C141.368 (4)C21—C261.405 (5)
O2—C341.433 (5)C22—H220.9500
O3—C241.376 (4)C22—C231.395 (5)
O3—C351.422 (5)C23—H230.9500
O4—C301.362 (5)C23—C241.389 (5)
O4—C361.425 (6)C24—C251.386 (5)
O5—C371.146 (5)C25—H250.9500
O6—C381.150 (5)C25—C261.391 (5)
O7—C391.179 (5)C26—H260.9500
N1—C11.407 (4)C27—C281.392 (5)
N1—C41.354 (4)C27—C321.403 (5)
N2—C11.322 (5)C28—H280.9500
N2—C171.319 (4)C28—C291.386 (5)
N3—C171.407 (4)C29—H290.9500
N3—C201.352 (5)C29—C301.389 (5)
C1—C21.450 (5)C30—C311.396 (6)
C2—C31.377 (5)C31—H310.9500
C2—C51.471 (5)C31—C321.382 (5)
C3—H30.9500C32—H320.9500
C3—C41.414 (5)C33—H33A0.9800
C4—C111.461 (5)C33—H33B0.9800
C5—C61.397 (5)C33—H33C0.9800
C5—C101.390 (5)C34—H34A0.9800
C6—H60.9500C34—H34B0.9800
C6—C71.374 (5)C34—H34C0.9800
C7—H70.9500C35—H35A0.9800
C7—C81.384 (5)C35—H35B0.9800
C8—C91.385 (5)C35—H35C0.9800
C9—H90.9500C36—H36A0.9800
C9—C101.388 (5)C36—H36B0.9800
C10—H100.9500C36—H36C0.9800
C11—C121.397 (5)C40—H40A0.9800
C11—C161.398 (5)C40—H40B0.9800
C12—H120.9500C40—H40C0.9800
C12—C131.391 (5)C41—H41A0.9800
C13—H130.9500C41—H41B0.9800
C13—C141.391 (5)C41—H41C0.9800
N1—Re1—O880.47 (10)C19—C18—C21126.2 (3)
N3—Re1—O879.58 (10)C18—C19—H19126.3
N3—Re1—N182.82 (11)C18—C19—C20107.4 (3)
C37—Re1—O894.49 (14)C20—C19—H19126.3
C37—Re1—N196.02 (14)N3—C20—C19111.5 (3)
C37—Re1—N3174.07 (14)N3—C20—C27124.5 (3)
C38—Re1—O8178.17 (13)C19—C20—C27124.0 (3)
C38—Re1—N1101.08 (14)C22—C21—C18122.3 (3)
C38—Re1—N399.62 (15)C22—C21—C26118.1 (3)
C38—Re1—C3786.32 (18)C26—C21—C18119.5 (3)
C39—Re1—O890.76 (14)C21—C22—H22119.2
C39—Re1—N1171.23 (14)C21—C22—C23121.6 (3)
C39—Re1—N395.42 (14)C23—C22—H22119.2
C39—Re1—C3784.84 (16)C22—C23—H23120.4
C39—Re1—C3887.68 (17)C24—C23—C22119.1 (3)
O8—S1—C40104.3 (2)C24—C23—H23120.4
O8—S1—C41103.4 (2)O3—C24—C23124.6 (3)
C41—S1—C4098.1 (3)O3—C24—C25115.1 (3)
C8—O1—C33117.5 (3)C25—C24—C23120.3 (3)
C14—O2—C34117.0 (3)C24—C25—H25119.8
C24—O3—C35117.1 (3)C24—C25—C26120.3 (3)
C30—O4—C36117.6 (3)C26—C25—H25119.8
S1—O8—Re1118.41 (15)C21—C26—H26119.8
C1—N1—Re1121.8 (2)C25—C26—C21120.4 (3)
C4—N1—Re1125.7 (2)C25—C26—H26119.8
C4—N1—C1105.9 (3)C28—C27—C20122.3 (3)
C17—N2—C1127.3 (3)C28—C27—C32117.9 (3)
C17—N3—Re1121.8 (2)C32—C27—C20119.8 (3)
C20—N3—Re1128.0 (2)C27—C28—H28119.2
C20—N3—C17105.7 (3)C29—C28—C27121.5 (3)
N1—C1—C2109.4 (3)C29—C28—H28119.2
N2—C1—N1126.2 (3)C28—C29—H29120.2
N2—C1—C2124.4 (3)C28—C29—C30119.6 (4)
C1—C2—C5128.4 (3)C30—C29—H29120.2
C3—C2—C1105.4 (3)O4—C30—C29124.4 (4)
C3—C2—C5126.1 (3)O4—C30—C31115.8 (3)
C2—C3—H3126.0C29—C30—C31119.8 (3)
C2—C3—C4108.1 (3)C30—C31—H31120.0
C4—C3—H3126.0C32—C31—C30120.0 (3)
N1—C4—C3111.1 (3)C32—C31—H31120.0
N1—C4—C11123.8 (3)C27—C32—H32119.5
C3—C4—C11124.9 (3)C31—C32—C27121.0 (3)
C6—C5—C2122.6 (3)C31—C32—H32119.5
C10—C5—C2120.3 (3)O1—C33—H33A109.5
C10—C5—C6117.1 (3)O1—C33—H33B109.5
C5—C6—H6119.4O1—C33—H33C109.5
C7—C6—C5121.2 (3)H33A—C33—H33B109.5
C7—C6—H6119.4H33A—C33—H33C109.5
C6—C7—H7119.6H33B—C33—H33C109.5
C6—C7—C8120.9 (3)O2—C34—H34A109.5
C8—C7—H7119.6O2—C34—H34B109.5
O1—C8—C7115.7 (3)O2—C34—H34C109.5
O1—C8—C9124.9 (3)H34A—C34—H34B109.5
C7—C8—C9119.4 (3)H34A—C34—H34C109.5
C8—C9—H9120.4H34B—C34—H34C109.5
C8—C9—C10119.3 (3)O3—C35—H35A109.5
C10—C9—H9120.4O3—C35—H35B109.5
C5—C10—H10118.9O3—C35—H35C109.5
C9—C10—C5122.3 (3)H35A—C35—H35B109.5
C9—C10—H10118.9H35A—C35—H35C109.5
C12—C11—C4120.8 (3)H35B—C35—H35C109.5
C12—C11—C16118.7 (3)O4—C36—H36A109.5
C16—C11—C4120.5 (3)O4—C36—H36B109.5
C11—C12—H12119.5O4—C36—H36C109.5
C13—C12—C11120.9 (3)H36A—C36—H36B109.5
C13—C12—H12119.5H36A—C36—H36C109.5
C12—C13—H13120.3H36B—C36—H36C109.5
C14—C13—C12119.4 (3)O5—C37—Re1175.3 (3)
C14—C13—H13120.3O6—C38—Re1176.4 (4)
O2—C14—C13123.7 (3)O7—C39—Re1176.5 (3)
O2—C14—C15115.8 (3)S1—C40—H40A109.5
C13—C14—C15120.5 (3)S1—C40—H40B109.5
C14—C15—H15120.2S1—C40—H40C109.5
C16—C15—C14119.6 (3)H40A—C40—H40B109.5
C16—C15—H15120.2H40A—C40—H40C109.5
C11—C16—H16119.5H40B—C40—H40C109.5
C15—C16—C11120.9 (3)S1—C41—H41A109.5
C15—C16—H16119.5S1—C41—H41B109.5
N2—C17—N3128.0 (3)S1—C41—H41C109.5
N2—C17—C18122.7 (3)H41A—C41—H41B109.5
N3—C17—C18109.2 (3)H41A—C41—H41C109.5
C17—C18—C21127.7 (3)H41B—C41—H41C109.5
C19—C18—C17106.2 (3)
Re1—N1—C1—N228.0 (5)C11—C12—C13—C140.0 (5)
Re1—N1—C1—C2151.5 (2)C12—C11—C16—C151.0 (5)
Re1—N1—C4—C3148.9 (2)C12—C13—C14—O2179.9 (3)
Re1—N1—C4—C1135.2 (5)C12—C13—C14—C150.4 (5)
Re1—N3—C17—N218.6 (5)C13—C14—C15—C160.2 (5)
Re1—N3—C17—C18158.2 (2)C14—C15—C16—C110.6 (6)
Re1—N3—C20—C19155.4 (2)C16—C11—C12—C130.8 (5)
Re1—N3—C20—C2725.4 (5)C17—N2—C1—N10.6 (6)
O1—C8—C9—C10178.7 (4)C17—N2—C1—C2178.8 (3)
O2—C14—C15—C16179.7 (3)C17—N3—C20—C190.8 (4)
O3—C24—C25—C26178.9 (3)C17—N3—C20—C27178.4 (3)
O4—C30—C31—C32179.6 (4)C17—C18—C19—C201.4 (4)
N1—C1—C2—C30.4 (4)C17—C18—C21—C2240.6 (5)
N1—C1—C2—C5176.5 (3)C17—C18—C21—C26142.2 (4)
N1—C4—C11—C1243.9 (5)C18—C19—C20—N31.4 (4)
N1—C4—C11—C16138.1 (4)C18—C19—C20—C27177.7 (3)
N2—C1—C2—C3179.1 (3)C18—C21—C22—C23178.0 (3)
N2—C1—C2—C54.0 (6)C18—C21—C26—C25177.9 (3)
N2—C17—C18—C19176.0 (3)C19—C18—C21—C22138.5 (4)
N2—C17—C18—C214.8 (6)C19—C18—C21—C2638.7 (5)
N3—C17—C18—C191.0 (4)C19—C20—C27—C28133.5 (4)
N3—C17—C18—C21178.2 (3)C19—C20—C27—C3244.8 (5)
N3—C20—C27—C2845.6 (5)C20—N3—C17—N2176.7 (3)
N3—C20—C27—C32136.1 (4)C20—N3—C17—C180.1 (4)
C1—N1—C4—C32.7 (4)C20—C27—C28—C29179.1 (4)
C1—N1—C4—C11173.3 (3)C20—C27—C32—C31178.1 (3)
C1—N2—C17—N34.6 (6)C21—C18—C19—C20177.8 (3)
C1—N2—C17—C18179.0 (3)C21—C22—C23—C240.4 (5)
C1—C2—C3—C42.0 (4)C22—C21—C26—C250.6 (5)
C1—C2—C5—C616.5 (6)C22—C23—C24—O3179.1 (3)
C1—C2—C5—C10166.1 (4)C22—C23—C24—C250.4 (5)
C2—C3—C4—N13.0 (4)C23—C24—C25—C260.6 (6)
C2—C3—C4—C11172.9 (3)C24—C25—C26—C210.1 (6)
C2—C5—C6—C7177.9 (4)C26—C21—C22—C230.8 (5)
C2—C5—C10—C9178.1 (4)C27—C28—C29—C300.3 (6)
C3—C2—C5—C6159.8 (4)C28—C27—C32—C313.5 (6)
C3—C2—C5—C1017.6 (6)C28—C29—C30—O4179.5 (4)
C3—C4—C11—C12131.5 (4)C28—C29—C30—C311.0 (6)
C3—C4—C11—C1646.5 (5)C29—C30—C31—C320.0 (6)
C4—N1—C1—N2179.1 (3)C30—C31—C32—C272.3 (6)
C4—N1—C1—C21.4 (4)C32—C27—C28—C292.6 (6)
C4—C11—C12—C13178.8 (3)C33—O1—C8—C7179.3 (4)
C4—C11—C16—C15179.1 (3)C33—O1—C8—C90.2 (6)
C5—C2—C3—C4175.0 (3)C34—O2—C14—C132.7 (5)
C5—C6—C7—C80.4 (6)C34—O2—C14—C15176.8 (3)
C6—C5—C10—C90.6 (6)C35—O3—C24—C2313.5 (5)
C6—C7—C8—O1178.6 (4)C35—O3—C24—C25166.0 (3)
C6—C7—C8—C91.0 (6)C36—O4—C30—C292.1 (6)
C7—C8—C9—C100.8 (6)C36—O4—C30—C31178.3 (4)
C8—C9—C10—C50.0 (7)C40—S1—O8—Re1110.0 (3)
C10—C5—C6—C70.4 (6)C41—S1—O8—Re1147.8 (2)

Experimental details

(2)(3)
Crystal data
Chemical formula[Re(C36H30N3O4)(C2H3N)(CO)3]·0.5C6H14·C2H3N[Re(C36H30N3O4)(C2H6OS)(CO)3]
Mr964.05916.99
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)150150
a, b, c (Å)12.4549 (3), 15.5837 (4), 21.1975 (5)10.7054 (4), 10.9330 (4), 16.7416 (7)
α, β, γ (°)90, 94.5206 (11), 9078.195 (2), 81.029 (2), 75.883 (2)
V3)4101.50 (17)1848.46 (13)
Z42
Radiation typeCu KαCu Kα
µ (mm1)6.287.45
Crystal size (mm)0.12 × 0.03 × 0.020.21 × 0.13 × 0.07
Data collection
DiffractometerBruker Microstar
diffractometer
Bruker Microstar
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Multi-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.518, 0.7530.490, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
88930, 7834, 7291 74487, 6882, 6811
Rint0.0540.042
(sin θ/λ)max1)0.6120.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.08 0.032, 0.089, 1.12
No. of reflections78346882
No. of parameters678493
No. of restraints7860
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.60, 0.901.60, 0.77

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

Selected geometric details for bonds and contacts (Å, °) top
(2)(3)(2)(3)
Re1—N12.185 (3)2.190 (3)N1—Re—N384.34 (14)82.8 (1)
Re1—N32.190 (3)2.188 (3)N3—Re—Xa84.67 (12)79.6 (1)
Re1—N42.181 (4)-N1—Re1—Xa84.63 (13)80.5 (1)
Re1—O82.218 (3)C38—Re1—Xa177.14 (16)178.2 (1)
Re1—C371.925 (6)1.935 (4)C37—Re1—C3985.8 (2)84.9 (1)
Re1—C381.901 (6)1.901 (4)N3—Re1—C37174.45 (19)174.1 (1)
Re1—C391.923 (5)1.894 (5)N1—Re1—C39173.87 (16)171.2 (2)
O5—C371.152 (7)1.146 (5)N1—C1—N2127.6 (4)126.2 (3)
O6—C381.160 (6)1.150 (5)C1—N2—C17128.3 (4)127.3 (3)
O7—C391.147 (6)1.179 (5)N2—C17—N3127.4 (4)128.0 (3)
N1—C11.403 (5)1.407 (4)N1—Re1—O8—S1-60.6 (1)
N2—C11.319 (5)1.322 (5)ADPM/(C37/Re1/C39)b33.0 (1)37.9 (1)
N2—C171.312 (5)1.319 (4)(N1/C1–C5)/(N3/C17–C20)c8.5 (1)5.1 (1)
N3—C171.406 (5)1.407 (4)
Notes: (a) X = N4 for (2) and X = O8 for (3); (b) the tilt angle between the plane of the ADPM ligand and the plane formed by atoms Re1, C37 and C39; (c) the tilt angle between the pyrrole rings.
Hydrogen-bond geometry (Å, °) for (2) and (3) top
D—H···AD—HH···AD···AD—H···A
(2)
C6—H6···N20.952.502.994 (1)112
C22—H22···N20.952.432.962 (1)115
C10—H10···O7i0.952.203.047 (1)148
C26—H26···O5ii0.952.213.051 (1)148
C16—H16···Cg1a,i0.952.903.556 (1)127
C22—H22···Cg2b,iii0.952.863.509 (1)126
C32—H32···Cg3c,ii0.952.923.602 (1)129
(3)
C6—H6···N20.952.423.044 (5)123
C31—H31···O80.952.693.367 (5)129
C16—H16···Cg4d0.952.843.754 (5)161
Notes: (a) Cg1 is the centroid of the N3/C17–C20 five-membered ring; (b) Cg2 is the centroid of the C5–C10 phenyl ring; (c) Cg3 is the centroid of the N1/C1–C4 five-membered ring; (d) Cg4 is the centroid of the C21–C26 phenyl ring. Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) -x+1/2, y+1/2, -z+1/2; (iii) -x, -y, -z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds