Download citation
Download citation
link to html
The analysis of [5,10-di­bromo-15,20-bis­(4-methyl­phen­yl)por­phyrinato]palladium(II), [Pd(C34H22Br2N4)], and [5,10-di­bromo-15,20-bis­(4-methyl­phen­yl)porphyrinato](methan­ol)zinc(II), [Zn(C34H22Br2N4)(CH4O)], reveals a small but localized influence of the bromine residues on the conformation of the macrocycle. A comparison of the 5,10-di­bromo substituent pattern with literature data for 5,15-di­bromo­porphyrins shows similar in-plane distortions in both but a different mix of out-of-plane distortion modes for the different regiochemical arrangements.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614023687/ov3055sup1.cif
Contains datablocks V, VI, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614023687/ov3055Vsup2.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614023687/ov3055VIsup3.hkl
Contains datablock VI

CCDC references: 1031318; 1031317

Introduction top

The structural chemistry of porphyrins is one of best investigated areas of coordination chemistry. Many studies are available on metal coordination (Scheidt, 2008), aspects of macrocycle modification (Chmielewski & Latos-Grazynski, 2005), supra­molecular chemistry (Beletskaya et al., 2009) and nonplanar systems (Senge, 2006). The latter have been the focus of conformational analyses which highlighted the flexible character of the porphyrins macrocycle, especially in the case of highly substituted systems, i.e. porphyrins with large or sterically hindered substituents. For the simple symmetric meso-5,10,15,20-tetra­substituted porphyrins (A4-type), several thousand crystal structures are available (Senge, 2000). Yet much less is known about the structural chemistry of porphyrins with few meso substituents or the impact of different regiochemical arrangements thereof. In part, this has been hampered by the only recently overcome synthetic inaccessibility of components of the Ax- and ABCD-type porphyrins, (I) (where ABCD refers to meso substituents) (Senge, 2011).

For example, the structural impact of a 5,10- versus a 5,15-disubstitution pattern has not been investigated in detail. This has now become possible with the advent of general syntheses for 5,10-disubstituted porphyrins (Ryppa et al., 2005). These have been used to develop 5,10-A2-10,20-B2-type porphyrins, (II) (see Scheme), for optical applications due to the altered orientation of the intra­molecular dipole moment compared to the well-known 5,15-A2-10,20-B2 systems, (III) (Senge et al., 2011; Zawadzka et al., 2013a). Here, we use 5,10-di­bromo-15,20-bis­(4-methyl­phenyl)­porphyrin, (IV), and its palladium(II), (V), and zinc(II), (VI), complexes for a comparative analysis of their structural properties.

Experimental top

Synthesis and crystallization top

Compounds (V) and (VI) were prepared via metallation of the respective free base (III) (Senge et al., 2011), as described previously (Zawadzka et al., 2013b). Crystals were grown by liquid diffusion of methanol into a solution of the porphyrins in methyl­ene chloride using crystallization tubes (5 × 200 mm). Crystals formed within two weeks at room temperature and were handled as outlined by Hope (1994).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms, except for the methanol -OH hydrogen in (VI), were located in a difference map and then treated as riding in geometrically idealized positions, with C—H = 0.95 (aromatic) or 0.98 Å (methyl), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups and 1.2 for all other H atoms. For palladium(II) complex (V), the residual electron density was located close to the metal centre. In the refinement of (VI), no H atom was included for the –OH group of the axial methanol molecule. The methyl group exhibited high librational movement.

Results and discussion top

Views of the molecular structures of the palladium(II) porphyrinate complex (V) and the zinc(II) porphyrinate complex (VI) are shown in Figs. 1 and 2, respectively. The structure of the free base (IV) was reported previously (Senge et al., 2011). Both compounds crystallized in the triclinic space group P1 with one molecule in the asymmetric unit. The palladium complex is characterized by a typical four-coordinate Pd centre with an average Pd—N bond length of 2.009 (3) Å. The Pd1—N21 bond [2.001 (6) Å] is slightly shorter than the other three [average 2.012 (6) Å]. A similar situation is encountered in the zinc(II) complex. Compound (VI) crystallized as the methanol adduct, which a methanol molecule coordinated as the axial ligand to the ZnII ion [Zn1—O1A = 2.207 (3) Å], which is penta­coordinated. Here the Zn1—N24 bond length is 2.033 (3) Å, compared to an average value of 2.059 (3) Å for the other three Zn—N bonds. Note, that Zn1—N22 is also somewhat shorter than Zn1—N23 and Zn1—N24.

Further evidence for structural differences between the meso-bromo quadrants and the meso-tolyl quadrants can be derived from an inspection of the relevant Ca—Cm—Ca angles (Table 2). In both, the metal complexes and the free base the Ca—Cm(Br)—Ca angles are larger than the Ca—Cm(tolyl)—Ca ones. This is most pronounced in the case of the palladium(II) complex where the respective average values are 128.1 (7) versus 123.3 (7)°. Thus, the presence of the bromo residues results in a partial flattening of this bond, which is in agreement with a localized conformational effect of the Br atoms (Senge, 2000).

Packing forces can only partially account for these differences. Both the palladium(II) complex (Fig. 3) and the zinc(II) complex (Fig. 4) form layers of porphyrins molecules with only minimal π-overlap. For example, in (V), the inter­planar separation of the two N4 planes of the porphyrin rings is 3.87 (1) Å and the closest inter­molecular contact observed was a Pd···Br inter­action [3.734 (6) Å]. In addition, atoms H15C and Br2i form a close contact [C15E···Br2i = 3.759 (6) Å and C15E—H15C···Br2i = 149°; symmetry code: (i) x-1, y-1, z]. In the case of compound (VI), the closest intra­molecular contacts observed were Zn1···Br1 [3.578 (4) Å] and Br1···H20D [3.053 (4) Å].

In order to investigate the conformation in more detail, the compounds were analysed using the normal-structural-decomposition (NSD) method (Jentzen et al., 1997). This method allows an identification of the major out-of-plane and in-plane distortion modes and their individual contributions. An overall measure of the degree of conformational distortion, if any, is obtained by the determination of the average of in-plane distortion (Dip) and of out-of-plane distortion (Doop). As listed in Table 2, all three compounds are nonplanar, i.e. have significant Doop values, and the free base and zinc(II) complex have measurable in-plane distortions. Fig. 5 shows a graphical representation of the individual contributions of the main distortion modes. The pattern and degree of out-of-plane distortion is very similar in all three compounds. They all have B2u, B1u and A2u contributions, which in descriptive terms mean saddling, ruffling and doming contributions. The latter is atypical for (IV) and (V), as it is mostly observed in porphyrins with penta­coordinated metal centres. Only one in-plane distortion mode (A1g) contributes significantly in the free base and zinc(II) complex. This one is related to the macrocycle breathing.

In order to investigate the influence of the regiochemistry, i.e. the 5,10-di­bromo substituent pattern on the conformation, we tried to identify suitable compounds for comparison. Only three other crystal structures with meso-bromo residues were found. One, namely (5-bromo-10,20-di­phenyl­porphyrinato)nickel(II) (Arnold et al., 1997), was omitted due to the nickel-induced ruffling and the absence of a comparative structure in our analysis here. Two more related structures are the free bases (VII) and (VIII) (see Scheme). Both are 5,15-di­bromo-substituted porphyrins with a hexyl and tri­meth­oxy­phenyl residue (Senge et al., 2010). Their NSD analysis (Fig. 5) indicates a similar overall degree of in-plane distortion (Dip ~0.21 Å for both) and different degrees of out-of-plane distortion [Doop = 0.353 and 0.893 Å for (VII) and (VIII), respectively]. In terms of the contributions of individual distortion modes, both are characterized by an A1g contribution for the in-plane distortion, similar to the compounds reported here. More differences between the 5,10- and 5,15-di­bromo substituent pattern are observed in the out-of-plane distortion modes. The doming contribution is almost absent in the latter, the degree of ruffling is significantly reduced, while minor contributions of wave distortions (Eg) are present. Thus, differences in the `mix' of distortion modes are associated with the two substituent patterns.

Related literature top

For related literature, see: Arnold et al. (1997); Beletskaya et al. (2009); Chmielewski & Latos-Grazynski (2005); Hope (1994); Jentzen et al. (1997); Ryppa et al. (2005); Scheidt (2008); Senge (2000, 2006, 2011); Senge et al. (2010); Senge, Ryppa, Fazekas, Zawadzka & Dahms (2011); Zawadzka et al. (2013a, 2013b).

Computing details top

Data collection: APEX2 (Bruker, 2005) for (V); CrystalClear (Rigaku/MSC, 2005) for (VI). Cell refinement: SAINT (Bruker, 2005) for (V); CrystalClear (Rigaku/MSC, 2005) for (VI). Data reduction: SAINT (Bruker, 2005) for (V); CrystalClear (Rigaku/MSC, 2005) for (VI). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: SHELXTL (Sheldrick, 2008) for (V); SHELXL97 (Sheldrick, 2008) for (VI). For both compounds, software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (V) in the crystal. H atoms have been omitted for clarity and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the molecular structure of (VI) in the crystal. H atoms have been omitted for clarity and displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. View of the molecular packing of (V) in the crystal. H atoms have been omitted for clarity.
[Figure 4] Fig. 4. View of the molecular packing of (VI) in the crystal. H atoms have been omitted for clarity.
[Figure 5] Fig. 5. Graphical representation of the displacements along the lowest-frequency coordinates that best simulate the free base (IV), palladium(II) complex(V) and zinc(II) complex (VI), and a comparison with structures (VII) and (VIII) (see Scheme) (normal structural decomposition analysis).
(V) [5,10-Dibromo-15,20-bis(4-methylphenyl)porphyrinato]palladium(II) top
Crystal data top
[Pd(C34H22Br2N4)]Z = 2
Mr = 752.78F(000) = 740
Triclinic, P1Dx = 1.817 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.396 (4) ÅCell parameters from 871 reflections
b = 10.558 (5) Åθ = 2.4–28.4°
c = 15.129 (7) ŵ = 3.61 mm1
α = 95.157 (8)°T = 123 K
β = 103.433 (8)°Plate, red
γ = 107.007 (8)°0.35 × 0.25 × 0.07 mm
V = 1375.7 (10) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4833 independent reflections
Radiation source: sealed tube3628 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.365, Tmax = 0.786k = 1212
10757 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1228P)2]
where P = (Fo2 + 2Fc2)/3
4833 reflections(Δ/σ)max = 0.017
372 parametersΔρmax = 2.50 e Å3
0 restraintsΔρmin = 1.36 e Å3
Crystal data top
[Pd(C34H22Br2N4)]γ = 107.007 (8)°
Mr = 752.78V = 1375.7 (10) Å3
Triclinic, P1Z = 2
a = 9.396 (4) ÅMo Kα radiation
b = 10.558 (5) ŵ = 3.61 mm1
c = 15.129 (7) ÅT = 123 K
α = 95.157 (8)°0.35 × 0.25 × 0.07 mm
β = 103.433 (8)°
Data collection top
Bruker APEXII CCD
diffractometer
4833 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2005)
3628 reflections with I > 2σ(I)
Tmin = 0.365, Tmax = 0.786Rint = 0.041
10757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.06Δρmax = 2.50 e Å3
4833 reflectionsΔρmin = 1.36 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Residual electron density is located close to the metal center.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.23463 (6)0.46454 (5)0.10846 (4)0.0289 (2)
N210.1743 (7)0.4455 (5)0.0291 (4)0.0331 (14)
N220.4339 (7)0.6082 (6)0.1146 (4)0.0376 (15)
N230.2916 (7)0.4876 (6)0.2469 (4)0.0320 (13)
N240.0386 (6)0.3170 (5)0.1024 (4)0.0274 (12)
C10.0497 (8)0.3479 (7)0.0893 (5)0.0336 (16)
C20.0461 (9)0.3694 (8)0.1834 (5)0.0422 (19)
H2A0.02770.31680.23830.051*
C30.1668 (10)0.4771 (8)0.1772 (6)0.045 (2)
H3A0.19320.51640.22770.054*
C40.2498 (9)0.5243 (8)0.0831 (5)0.0390 (18)
C50.3897 (9)0.6266 (7)0.0475 (6)0.0402 (19)
C60.4781 (9)0.6657 (7)0.0433 (6)0.0417 (19)
C70.6269 (9)0.7643 (8)0.0776 (7)0.049 (2)
H7A0.68270.81880.04220.058*
C80.6744 (9)0.7669 (8)0.1680 (7)0.050 (2)
H8A0.76950.82370.20870.060*
C90.5560 (9)0.6690 (7)0.1922 (6)0.0422 (19)
C100.5530 (9)0.6415 (7)0.2804 (6)0.0425 (19)
C110.4329 (8)0.5669 (7)0.3078 (5)0.0375 (18)
C120.4259 (9)0.5542 (8)0.3996 (5)0.045 (2)
H12A0.50660.59800.45400.054*
C130.2864 (9)0.4700 (8)0.3965 (5)0.0404 (18)
H13A0.25030.44320.44780.048*
C140.2006 (8)0.4273 (7)0.2998 (5)0.0337 (16)
C150.0563 (8)0.3310 (7)0.2691 (5)0.0307 (16)
C160.0167 (8)0.2761 (6)0.1751 (4)0.0286 (15)
C170.1583 (8)0.1671 (7)0.1422 (5)0.0307 (15)
H17A0.22150.12300.17830.037*
C180.1852 (8)0.1383 (7)0.0488 (5)0.0319 (16)
H18A0.26850.06800.00760.038*
C190.0633 (8)0.2345 (6)0.0251 (5)0.0286 (15)
C200.0576 (8)0.2434 (6)0.0657 (5)0.0298 (15)
Br10.47722 (11)0.71886 (9)0.13457 (7)0.0570 (3)
Br20.74249 (11)0.72204 (11)0.37495 (7)0.0689 (4)
C15A0.0199 (8)0.2728 (7)0.3400 (4)0.0326 (16)
C15B0.0669 (9)0.3541 (8)0.3960 (5)0.0405 (18)
H15A0.05770.44360.38660.049*
C15C0.1275 (10)0.3046 (9)0.4659 (6)0.053 (2)
H15B0.15960.36120.50380.063*
C15D0.1426 (10)0.1755 (9)0.4817 (5)0.050 (2)
C15E0.0932 (11)0.0992 (9)0.4251 (6)0.055 (2)
H15C0.10060.01000.43470.066*
C15F0.0330 (10)0.1460 (8)0.3548 (5)0.045 (2)
H15D0.00100.08920.31690.054*
C15G0.2072 (13)0.1235 (12)0.5578 (7)0.078 (3)
H15E0.24940.02520.54360.118*
H15F0.28970.16030.56370.118*
H15G0.12500.15100.61580.118*
C20A0.1696 (8)0.1341 (7)0.1408 (4)0.0300 (15)
C20B0.1484 (9)0.0106 (7)0.1496 (5)0.0379 (17)
H20A0.06380.00310.10790.046*
C20C0.2478 (9)0.0937 (8)0.2182 (5)0.0403 (18)
H20B0.23090.17820.22230.048*
C20D0.3714 (9)0.0779 (7)0.2809 (5)0.0368 (17)
C20E0.3929 (9)0.0475 (8)0.2703 (6)0.048 (2)
H20C0.47730.06200.31180.058*
C20F0.2934 (9)0.1513 (8)0.2004 (5)0.045 (2)
H20D0.31160.23520.19400.054*
C20G0.4733 (11)0.1885 (9)0.3571 (6)0.058 (2)
H20E0.43570.26580.35460.087*
H20F0.47240.15790.41640.087*
H20G0.57900.21470.35090.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0314 (3)0.0193 (3)0.0410 (4)0.0156 (2)0.0084 (2)0.0088 (2)
N210.042 (3)0.024 (3)0.044 (4)0.021 (3)0.016 (3)0.016 (3)
N220.036 (3)0.025 (3)0.058 (4)0.015 (3)0.016 (3)0.012 (3)
N230.035 (3)0.027 (3)0.033 (3)0.015 (3)0.002 (3)0.003 (2)
N240.029 (3)0.020 (3)0.035 (3)0.012 (2)0.005 (2)0.010 (2)
C10.045 (4)0.042 (4)0.027 (4)0.028 (4)0.014 (3)0.013 (3)
C20.050 (5)0.051 (5)0.038 (4)0.031 (4)0.014 (4)0.015 (4)
C30.066 (6)0.043 (5)0.046 (5)0.034 (4)0.027 (4)0.026 (4)
C40.049 (5)0.039 (4)0.046 (5)0.028 (4)0.022 (4)0.024 (3)
C50.047 (5)0.035 (4)0.063 (5)0.027 (4)0.034 (4)0.036 (4)
C60.047 (5)0.023 (4)0.066 (5)0.020 (3)0.019 (4)0.022 (3)
C70.036 (4)0.035 (4)0.078 (7)0.012 (4)0.019 (4)0.019 (4)
C80.034 (4)0.029 (4)0.086 (7)0.009 (3)0.015 (4)0.014 (4)
C90.034 (4)0.026 (4)0.068 (6)0.015 (3)0.011 (4)0.006 (4)
C100.035 (4)0.026 (4)0.060 (5)0.011 (3)0.001 (4)0.000 (3)
C110.035 (4)0.020 (3)0.053 (5)0.013 (3)0.000 (3)0.001 (3)
C120.043 (5)0.040 (4)0.043 (5)0.015 (4)0.005 (4)0.005 (3)
C130.042 (4)0.038 (4)0.041 (4)0.022 (4)0.002 (3)0.003 (3)
C140.041 (4)0.024 (4)0.037 (4)0.020 (3)0.002 (3)0.001 (3)
C150.039 (4)0.027 (4)0.030 (4)0.022 (3)0.004 (3)0.004 (3)
C160.037 (4)0.027 (3)0.029 (4)0.024 (3)0.004 (3)0.006 (3)
C170.035 (4)0.030 (4)0.032 (4)0.018 (3)0.005 (3)0.012 (3)
C180.031 (4)0.026 (4)0.040 (4)0.015 (3)0.003 (3)0.009 (3)
C190.035 (4)0.025 (3)0.032 (4)0.020 (3)0.005 (3)0.007 (3)
C200.033 (4)0.026 (3)0.038 (4)0.021 (3)0.007 (3)0.009 (3)
Br10.0591 (6)0.0552 (6)0.0867 (7)0.0359 (5)0.0412 (5)0.0468 (5)
Br20.0462 (6)0.0632 (7)0.0708 (7)0.0011 (5)0.0046 (5)0.0039 (5)
C15A0.039 (4)0.031 (4)0.023 (3)0.015 (3)0.002 (3)0.004 (3)
C15B0.048 (5)0.036 (4)0.039 (4)0.019 (4)0.007 (4)0.004 (3)
C15C0.045 (5)0.069 (6)0.039 (5)0.020 (4)0.007 (4)0.009 (4)
C15D0.051 (5)0.057 (6)0.033 (4)0.011 (4)0.003 (4)0.012 (4)
C15E0.074 (6)0.043 (5)0.042 (5)0.016 (4)0.007 (4)0.010 (4)
C15F0.067 (6)0.044 (5)0.033 (4)0.028 (4)0.013 (4)0.008 (3)
C15G0.070 (7)0.105 (9)0.055 (6)0.017 (6)0.016 (5)0.024 (6)
C20A0.038 (4)0.034 (4)0.026 (3)0.021 (3)0.010 (3)0.009 (3)
C20B0.041 (4)0.042 (4)0.043 (4)0.032 (4)0.008 (3)0.013 (3)
C20C0.047 (5)0.033 (4)0.049 (5)0.025 (4)0.012 (4)0.004 (3)
C20D0.044 (4)0.036 (4)0.036 (4)0.017 (3)0.016 (3)0.008 (3)
C20E0.043 (4)0.050 (5)0.053 (5)0.030 (4)0.003 (4)0.008 (4)
C20F0.057 (5)0.039 (4)0.051 (5)0.035 (4)0.011 (4)0.007 (4)
C20G0.075 (7)0.051 (5)0.047 (5)0.028 (5)0.007 (5)0.004 (4)
Geometric parameters (Å, º) top
Pd1—N212.001 (6)C15—C15A1.502 (10)
Pd1—N232.012 (6)C16—C171.426 (10)
Pd1—N222.012 (6)C17—C181.366 (10)
Pd1—N242.011 (5)C17—H17A0.9500
N21—C11.375 (9)C18—C191.430 (10)
N21—C41.382 (9)C18—H18A0.9500
N22—C61.372 (10)C19—C201.399 (10)
N22—C91.384 (10)C20—C20A1.492 (9)
N23—C141.367 (10)C15A—C15F1.352 (11)
N23—C111.398 (9)C15A—C15B1.384 (10)
N24—C191.361 (8)C15B—C15C1.385 (12)
N24—C161.373 (9)C15B—H15A0.9500
C1—C201.396 (10)C15C—C15D1.377 (13)
C1—C21.456 (10)C15C—H15B0.9500
C2—C31.329 (12)C15D—C15E1.370 (13)
C2—H2A0.9500C15D—C15G1.496 (13)
C3—C41.419 (11)C15E—C15F1.381 (12)
C3—H3A0.9500C15E—H15C0.9500
C4—C51.386 (11)C15F—H15D0.9500
C5—C61.384 (12)C15G—H15E0.9800
C5—Br11.904 (7)C15G—H15F0.9800
C6—C71.422 (11)C15G—H15G0.9800
C7—C81.331 (12)C20A—C20F1.366 (10)
C7—H7A0.9500C20A—C20B1.375 (9)
C8—C91.423 (11)C20B—C20C1.380 (11)
C8—H8A0.9500C20B—H20A0.9500
C9—C101.396 (12)C20C—C20D1.381 (11)
C10—C111.350 (11)C20C—H20B0.9500
C10—Br21.911 (7)C20D—C20E1.398 (10)
C11—C121.423 (11)C20D—C20G1.483 (11)
C12—C131.339 (11)C20E—C20F1.388 (11)
C12—H12A0.9500C20E—H20C0.9500
C13—C141.453 (10)C20F—H20D0.9500
C13—H13A0.9500C20G—H20E0.9800
C14—C151.380 (10)C20G—H20F0.9800
C15—C161.413 (9)C20G—H20G0.9800
N21—Pd1—N23178.3 (2)N24—C16—C15125.5 (7)
N21—Pd1—N2289.9 (3)N24—C16—C17110.1 (6)
N23—Pd1—N2290.2 (2)C15—C16—C17124.4 (7)
N21—Pd1—N2490.2 (2)C18—C17—C16106.7 (6)
N23—Pd1—N2489.7 (2)C18—C17—H17A126.6
N22—Pd1—N24178.4 (2)C16—C17—H17A126.6
C1—N21—C4106.0 (6)C17—C18—C19106.6 (6)
C1—N21—Pd1126.4 (5)C17—C18—H18A126.7
C4—N21—Pd1127.6 (5)C19—C18—H18A126.7
C6—N22—C9105.5 (7)N24—C19—C20126.2 (6)
C6—N22—Pd1127.6 (6)N24—C19—C18110.4 (6)
C9—N22—Pd1126.8 (5)C20—C19—C18123.4 (6)
C14—N23—C11106.6 (6)C1—C20—C19123.2 (6)
C14—N23—Pd1126.7 (5)C1—C20—C20A118.5 (6)
C11—N23—Pd1126.7 (5)C19—C20—C20A118.2 (6)
C19—N24—C16106.2 (6)C15F—C15A—C15B119.2 (7)
C19—N24—Pd1126.6 (5)C15F—C15A—C15121.4 (6)
C16—N24—Pd1127.2 (5)C15B—C15A—C15119.2 (6)
N21—C1—C20126.3 (6)C15A—C15B—C15C119.8 (8)
N21—C1—C2109.3 (6)C15A—C15B—H15A120.1
C20—C1—C2124.4 (7)C15C—C15B—H15A120.1
C3—C2—C1106.2 (7)C15D—C15C—C15B121.8 (8)
C3—C2—H2A126.9C15D—C15C—H15B119.1
C1—C2—H2A126.9C15B—C15C—H15B119.1
C2—C3—C4109.2 (7)C15E—C15D—C15C116.3 (8)
C2—C3—H3A125.4C15E—C15D—C15G122.4 (9)
C4—C3—H3A125.4C15C—C15D—C15G121.3 (9)
N21—C4—C5123.2 (7)C15D—C15E—C15F123.0 (8)
N21—C4—C3109.2 (7)C15D—C15E—H15C118.5
C5—C4—C3127.5 (7)C15F—C15E—H15C118.5
C6—C5—C4127.9 (7)C15A—C15F—C15E119.8 (8)
C6—C5—Br1115.6 (6)C15A—C15F—H15D120.1
C4—C5—Br1116.3 (6)C15E—C15F—H15D120.1
N22—C6—C5123.3 (7)C15D—C15G—H15E109.5
N22—C6—C7109.5 (8)C15D—C15G—H15F109.5
C5—C6—C7127.1 (8)H15E—C15G—H15F109.5
C8—C7—C6108.1 (8)C15D—C15G—H15G109.5
C8—C7—H7A125.9H15E—C15G—H15G109.5
C6—C7—H7A125.9H15F—C15G—H15G109.5
C7—C8—C9107.2 (8)C20F—C20A—C20B118.6 (7)
C7—C8—H8A126.4C20F—C20A—C20122.6 (6)
C9—C8—H8A126.4C20B—C20A—C20118.7 (6)
N22—C9—C10123.2 (7)C20A—C20B—C20C121.1 (7)
N22—C9—C8109.6 (8)C20A—C20B—H20A119.4
C10—C9—C8127.1 (8)C20C—C20B—H20A119.4
C11—C10—C9128.4 (7)C20D—C20C—C20B121.4 (7)
C11—C10—Br2115.8 (6)C20D—C20C—H20B119.3
C9—C10—Br2115.9 (6)C20B—C20C—H20B119.3
C10—C11—N23123.7 (7)C20C—C20D—C20E116.9 (7)
C10—C11—C12127.5 (7)C20C—C20D—C20G121.1 (7)
N23—C11—C12108.8 (7)C20E—C20D—C20G122.0 (7)
C13—C12—C11108.5 (7)C20F—C20E—C20D121.3 (7)
C13—C12—H12A125.8C20F—C20E—H20C119.4
C11—C12—H12A125.8C20D—C20E—H20C119.4
C12—C13—C14107.1 (8)C20A—C20F—C20E120.6 (7)
C12—C13—H13A126.4C20A—C20F—H20D119.7
C14—C13—H13A126.4C20E—C20F—H20D119.7
N23—C14—C15127.0 (6)C20D—C20G—H20E109.5
N23—C14—C13109.0 (6)C20D—C20G—H20F109.5
C15—C14—C13123.7 (7)H20E—C20G—H20F109.5
C14—C15—C16123.3 (7)C20D—C20G—H20G109.5
C14—C15—C15A118.0 (6)H20E—C20G—H20G109.5
C16—C15—C15A118.5 (6)H20F—C20G—H20G109.5
(VI) [5,10-Dibromo-15,20-bis(4-methylphenyl)porphyrinato](methanol)zinc(II) top
Crystal data top
[Zn(C34H22Br2N4)(CH4O)]Z = 2
Mr = 743.79F(000) = 744
Triclinic, P1Dx = 1.664 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 10.280 (3) ÅCell parameters from 4552 reflections
b = 11.637 (4) Åθ = 2.0–31.4°
c = 14.052 (4) ŵ = 3.56 mm1
α = 110.195 (2)°T = 108 K
β = 95.785 (2)°Block, red
γ = 105.564 (4)°0.60 × 0.40 × 0.30 mm
V = 1484.6 (8) Å3
Data collection top
Rigaku Saturn724 (2x2 bin mode)
diffractometer
5140 independent reflections
Radiation source: Sealed Tube4320 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.086
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 2.9°
ϕ and ω scansh = 1212
Absorption correction: ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.224, Tmax = 0.415l = 1616
22765 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0553P)2]
where P = (Fo2 + 2Fc2)/3
5140 reflections(Δ/σ)max = 0.014
391 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
[Zn(C34H22Br2N4)(CH4O)]γ = 105.564 (4)°
Mr = 743.79V = 1484.6 (8) Å3
Triclinic, P1Z = 2
a = 10.280 (3) ÅMo Kα radiation
b = 11.637 (4) ŵ = 3.56 mm1
c = 14.052 (4) ÅT = 108 K
α = 110.195 (2)°0.60 × 0.40 × 0.30 mm
β = 95.785 (2)°
Data collection top
Rigaku Saturn724 (2x2 bin mode)
diffractometer
5140 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
4320 reflections with I > 2σ(I)
Tmin = 0.224, Tmax = 0.415Rint = 0.086
22765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.01Δρmax = 0.90 e Å3
5140 reflectionsΔρmin = 0.94 e Å3
391 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. No hydrogen atom was included in the refinement for the OH group of the axial methanol molecule. High thermal motion of the axial methanol molecule.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.03286 (4)0.75655 (4)0.29939 (3)0.02211 (14)
N210.1691 (3)0.8666 (3)0.4403 (2)0.0216 (7)
N220.0258 (3)0.9139 (3)0.3056 (2)0.0237 (7)
N230.1290 (3)0.6412 (3)0.1739 (2)0.0230 (7)
N240.0611 (3)0.5942 (3)0.3089 (2)0.0221 (7)
C10.2469 (4)0.8233 (4)0.4963 (3)0.0248 (9)
C20.3438 (4)0.9328 (4)0.5824 (3)0.0277 (9)
H2A0.40980.92970.63310.033*
C30.3230 (4)1.0397 (4)0.5771 (3)0.0303 (10)
H3A0.37241.12640.62310.036*
C40.2120 (4)0.9990 (4)0.4890 (3)0.0246 (9)
C50.1503 (4)1.0772 (4)0.4571 (3)0.0247 (9)
C60.0404 (4)1.0399 (4)0.3738 (3)0.0262 (9)
C70.0245 (4)1.1233 (4)0.3481 (3)0.0290 (9)
H7A0.00181.21460.38300.035*
C80.1285 (4)1.0493 (4)0.2665 (3)0.0296 (10)
H8A0.18951.07830.23230.036*
C90.1316 (4)0.9169 (4)0.2395 (3)0.0258 (9)
C100.2233 (4)0.8069 (4)0.1596 (3)0.0267 (9)
C110.2212 (4)0.6799 (4)0.1251 (3)0.0252 (9)
C120.3047 (4)0.5728 (4)0.0323 (3)0.0299 (9)
H12A0.37720.57350.01500.036*
C130.2613 (4)0.4721 (4)0.0250 (3)0.0293 (9)
H13A0.29560.38870.02970.035*
C140.1535 (4)0.5127 (4)0.1144 (3)0.0222 (8)
C150.0883 (4)0.4323 (4)0.1415 (3)0.0220 (8)
C160.0078 (4)0.4705 (4)0.2342 (3)0.0218 (8)
C170.0579 (4)0.3841 (4)0.2682 (3)0.0246 (9)
H17A0.03630.29360.23100.030*
C180.1415 (4)0.4557 (4)0.3630 (3)0.0240 (9)
H18A0.18850.42470.40550.029*
C190.1460 (4)0.5869 (4)0.3874 (3)0.0216 (8)
C200.2311 (4)0.6927 (4)0.4760 (3)0.0235 (8)
Br10.21914 (4)1.25772 (4)0.54326 (3)0.03094 (14)
Br20.36981 (4)0.83434 (4)0.08457 (4)0.03688 (15)
C15A0.1294 (4)0.2928 (4)0.0681 (3)0.0224 (8)
C15B0.2640 (4)0.2095 (4)0.0433 (3)0.0263 (9)
H15A0.33250.24020.07420.032*
C15C0.2995 (4)0.0826 (4)0.0258 (3)0.0307 (10)
H15B0.39280.02770.04330.037*
C15D0.1998 (4)0.0336 (4)0.0703 (3)0.0305 (10)
C15E0.0649 (4)0.1168 (4)0.0431 (3)0.0313 (10)
H15C0.00470.08520.07130.038*
C15F0.0297 (4)0.2453 (4)0.0245 (3)0.0280 (9)
H15D0.06300.30090.04100.034*
C15G0.2387 (5)0.1045 (4)0.1467 (4)0.0447 (12)
H15E0.19040.10740.20380.067*
H15F0.33880.13870.17440.067*
H15G0.21230.15710.11170.067*
C20A0.3132 (4)0.6617 (4)0.5519 (3)0.0230 (8)
C20B0.2476 (4)0.6073 (4)0.6153 (3)0.0300 (9)
H20A0.15200.59500.61280.036*
C20C0.3196 (5)0.5707 (4)0.6820 (3)0.0313 (10)
H20B0.27280.53500.72540.038*
C20D0.4584 (4)0.5851 (4)0.6869 (3)0.0284 (9)
C20E0.5247 (4)0.6423 (4)0.6251 (3)0.0341 (10)
H20C0.62080.65620.62880.041*
C20F0.4528 (4)0.6796 (4)0.5580 (3)0.0332 (10)
H20D0.50000.71770.51610.040*
C20G0.5351 (5)0.5398 (5)0.7563 (3)0.0416 (12)
H20E0.47450.51020.79860.062*
H20F0.61710.61140.80180.062*
H20G0.56360.46820.71360.062*
C1A0.3335 (5)0.8294 (8)0.2530 (4)0.100 (3)
H1AA0.38670.80790.19910.149*
H1AB0.35140.79110.30290.149*
H1AC0.36110.92370.28890.149*
O1A0.1919 (3)0.7802 (3)0.2069 (2)0.0319 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0248 (3)0.0197 (2)0.0237 (3)0.0070 (2)0.00448 (19)0.0109 (2)
N210.0251 (17)0.0187 (16)0.0218 (17)0.0053 (14)0.0063 (14)0.0097 (14)
N220.0254 (18)0.0210 (17)0.0267 (18)0.0080 (14)0.0075 (14)0.0108 (15)
N230.0271 (18)0.0226 (17)0.0234 (17)0.0105 (14)0.0045 (14)0.0122 (14)
N240.0216 (17)0.0201 (17)0.0244 (17)0.0062 (14)0.0037 (14)0.0092 (14)
C10.027 (2)0.025 (2)0.022 (2)0.0088 (17)0.0074 (17)0.0079 (17)
C20.025 (2)0.027 (2)0.027 (2)0.0056 (18)0.0008 (17)0.0082 (18)
C30.032 (2)0.022 (2)0.031 (2)0.0027 (18)0.0048 (19)0.0086 (18)
C40.022 (2)0.023 (2)0.027 (2)0.0033 (17)0.0084 (17)0.0105 (17)
C50.025 (2)0.0171 (19)0.032 (2)0.0047 (16)0.0115 (18)0.0096 (17)
C60.029 (2)0.021 (2)0.035 (2)0.0091 (17)0.0167 (19)0.0161 (18)
C70.034 (2)0.022 (2)0.036 (2)0.0115 (19)0.011 (2)0.0147 (19)
C80.029 (2)0.028 (2)0.042 (2)0.0141 (19)0.013 (2)0.021 (2)
C90.024 (2)0.029 (2)0.032 (2)0.0116 (18)0.0113 (18)0.0182 (19)
C100.022 (2)0.035 (2)0.032 (2)0.0122 (18)0.0091 (18)0.0210 (19)
C110.025 (2)0.028 (2)0.027 (2)0.0075 (17)0.0061 (17)0.0166 (18)
C120.027 (2)0.034 (2)0.030 (2)0.0073 (19)0.0012 (18)0.0180 (19)
C130.031 (2)0.025 (2)0.025 (2)0.0002 (18)0.0036 (18)0.0096 (18)
C140.022 (2)0.023 (2)0.0205 (19)0.0040 (17)0.0028 (16)0.0110 (17)
C150.023 (2)0.0183 (19)0.025 (2)0.0040 (16)0.0067 (16)0.0094 (16)
C160.021 (2)0.026 (2)0.0219 (19)0.0077 (17)0.0048 (16)0.0124 (17)
C170.028 (2)0.020 (2)0.030 (2)0.0110 (17)0.0092 (18)0.0111 (17)
C180.026 (2)0.025 (2)0.028 (2)0.0116 (17)0.0048 (17)0.0158 (18)
C190.020 (2)0.023 (2)0.025 (2)0.0065 (16)0.0070 (16)0.0129 (17)
C200.019 (2)0.027 (2)0.027 (2)0.0061 (17)0.0043 (16)0.0141 (18)
Br10.0368 (3)0.0191 (2)0.0350 (3)0.00582 (18)0.01124 (19)0.00970 (18)
Br20.0335 (3)0.0394 (3)0.0457 (3)0.0165 (2)0.0032 (2)0.0238 (2)
C15A0.029 (2)0.022 (2)0.0162 (18)0.0064 (17)0.0001 (16)0.0096 (16)
C15B0.028 (2)0.025 (2)0.030 (2)0.0091 (18)0.0070 (18)0.0139 (18)
C15C0.032 (2)0.026 (2)0.031 (2)0.0046 (19)0.0038 (19)0.0112 (19)
C15D0.039 (3)0.026 (2)0.026 (2)0.0078 (19)0.0057 (19)0.0108 (18)
C15E0.038 (3)0.034 (2)0.028 (2)0.016 (2)0.0129 (19)0.0142 (19)
C15F0.028 (2)0.029 (2)0.030 (2)0.0076 (18)0.0102 (18)0.0161 (18)
C15G0.055 (3)0.027 (2)0.042 (3)0.008 (2)0.013 (2)0.004 (2)
C20A0.024 (2)0.020 (2)0.022 (2)0.0050 (17)0.0033 (16)0.0070 (16)
C20B0.029 (2)0.034 (2)0.030 (2)0.0102 (19)0.0088 (18)0.0145 (19)
C20C0.043 (3)0.028 (2)0.024 (2)0.009 (2)0.0076 (19)0.0127 (18)
C20D0.033 (2)0.025 (2)0.025 (2)0.0068 (18)0.0010 (18)0.0096 (18)
C20E0.022 (2)0.049 (3)0.041 (3)0.016 (2)0.0066 (19)0.026 (2)
C20F0.030 (2)0.041 (3)0.035 (2)0.012 (2)0.0089 (19)0.022 (2)
C20G0.040 (3)0.050 (3)0.039 (3)0.011 (2)0.000 (2)0.027 (2)
C1A0.031 (3)0.190 (9)0.037 (3)0.011 (4)0.001 (3)0.032 (4)
O1A0.0264 (16)0.0405 (18)0.0328 (16)0.0101 (14)0.0103 (13)0.0183 (14)
Geometric parameters (Å, º) top
Zn1—N242.033 (3)C17—C181.352 (5)
Zn1—N222.053 (3)C17—H17A0.9500
Zn1—N212.061 (3)C18—C191.431 (5)
Zn1—N232.063 (3)C18—H18A0.9500
Zn1—O1A2.207 (3)C19—C201.405 (5)
N21—C11.371 (5)C20—C20A1.492 (5)
N21—C41.372 (5)C15A—C15B1.387 (5)
N22—C91.373 (5)C15A—C15F1.389 (5)
N22—C61.376 (5)C15B—C15C1.381 (5)
N23—C111.372 (5)C15B—H15A0.9500
N23—C141.375 (5)C15C—C15D1.401 (6)
N24—C161.376 (5)C15C—H15B0.9500
N24—C191.378 (5)C15D—C15E1.387 (6)
C1—C201.406 (5)C15D—C15G1.508 (5)
C1—C21.446 (5)C15E—C15F1.389 (6)
C2—C31.343 (6)C15E—H15C0.9500
C2—H2A0.9500C15F—H15D0.9500
C3—C41.441 (6)C15G—H15E0.9800
C3—H3A0.9500C15G—H15F0.9800
C4—C51.402 (5)C15G—H15G0.9800
C5—C61.399 (6)C20A—C20F1.382 (6)
C5—Br11.911 (4)C20A—C20B1.390 (6)
C6—C71.434 (5)C20B—C20C1.382 (5)
C7—C81.333 (6)C20B—H20A0.9500
C7—H7A0.9500C20C—C20D1.383 (6)
C8—C91.444 (5)C20C—H20B0.9500
C8—H8A0.9500C20D—C20E1.391 (6)
C9—C101.391 (6)C20D—C20G1.508 (5)
C10—C111.394 (6)C20E—C20F1.392 (6)
C10—Br21.911 (4)C20E—H20C0.9500
C11—C121.438 (5)C20F—H20D0.9500
C12—C131.338 (6)C20G—H20E0.9800
C12—H12A0.9500C20G—H20F0.9800
C13—C141.435 (5)C20G—H20G0.9800
C13—H13A0.9500C1A—O1A1.405 (6)
C14—C151.413 (5)C1A—H1AA0.9800
C15—C161.406 (5)C1A—H1AB0.9800
C15—C15A1.505 (5)C1A—H1AC0.9800
C16—C171.437 (5)
N24—Zn1—N22168.66 (13)C15—C16—C17124.9 (4)
N24—Zn1—N2189.77 (12)C18—C17—C16107.2 (3)
N22—Zn1—N2189.85 (12)C18—C17—H17A126.4
N24—Zn1—N2389.12 (12)C16—C17—H17A126.4
N22—Zn1—N2389.27 (13)C17—C18—C19107.1 (3)
N21—Zn1—N23169.90 (12)C17—C18—H18A126.5
N24—Zn1—O1A93.27 (12)C19—C18—H18A126.5
N22—Zn1—O1A98.06 (12)N24—C19—C20125.5 (3)
N21—Zn1—O1A94.45 (12)N24—C19—C18110.0 (3)
N23—Zn1—O1A95.64 (12)C20—C19—C18124.4 (4)
C1—N21—C4106.9 (3)C1—C20—C19125.2 (4)
C1—N21—Zn1126.3 (3)C1—C20—C20A118.5 (3)
C4—N21—Zn1126.3 (3)C19—C20—C20A116.3 (3)
C9—N22—C6106.3 (3)C15B—C15A—C15F118.8 (4)
C9—N22—Zn1127.5 (3)C15B—C15A—C15122.0 (3)
C6—N22—Zn1126.1 (3)C15F—C15A—C15119.2 (4)
C11—N23—C14106.4 (3)C15C—C15B—C15A120.8 (4)
C11—N23—Zn1127.3 (3)C15C—C15B—H15A119.6
C14—N23—Zn1125.8 (2)C15A—C15B—H15A119.6
C16—N24—C19105.9 (3)C15B—C15C—C15D120.9 (4)
C16—N24—Zn1126.8 (2)C15B—C15C—H15B119.6
C19—N24—Zn1127.1 (2)C15D—C15C—H15B119.6
N21—C1—C20125.4 (3)C15E—C15D—C15C117.9 (4)
N21—C1—C2109.3 (3)C15E—C15D—C15G121.2 (4)
C20—C1—C2125.3 (4)C15C—C15D—C15G120.9 (4)
C3—C2—C1107.1 (4)C15D—C15E—C15F121.3 (4)
C3—C2—H2A126.5C15D—C15E—H15C119.3
C1—C2—H2A126.5C15F—C15E—H15C119.3
C2—C3—C4107.6 (4)C15E—C15F—C15A120.3 (4)
C2—C3—H3A126.2C15E—C15F—H15D119.9
C4—C3—H3A126.2C15A—C15F—H15D119.9
N21—C4—C5123.3 (3)C15D—C15G—H15E109.5
N21—C4—C3109.1 (3)C15D—C15G—H15F109.5
C5—C4—C3127.5 (4)H15E—C15G—H15F109.5
C6—C5—C4128.6 (4)C15D—C15G—H15G109.5
C6—C5—Br1115.7 (3)H15E—C15G—H15G109.5
C4—C5—Br1115.6 (3)H15F—C15G—H15G109.5
N22—C6—C5124.0 (4)C20F—C20A—C20B118.2 (4)
N22—C6—C7109.5 (4)C20F—C20A—C20122.0 (4)
C5—C6—C7126.4 (4)C20B—C20A—C20119.7 (4)
C8—C7—C6107.5 (4)C20C—C20B—C20A120.9 (4)
C8—C7—H7A126.2C20C—C20B—H20A119.5
C6—C7—H7A126.2C20A—C20B—H20A119.5
C7—C8—C9107.5 (4)C20D—C20C—C20B121.3 (4)
C7—C8—H8A126.2C20D—C20C—H20B119.3
C9—C8—H8A126.2C20B—C20C—H20B119.3
N22—C9—C10123.4 (4)C20C—C20D—C20E117.7 (4)
N22—C9—C8109.1 (4)C20C—C20D—C20G121.2 (4)
C10—C9—C8127.5 (4)C20E—C20D—C20G121.1 (4)
C9—C10—C11128.9 (4)C20D—C20E—C20F121.2 (4)
C9—C10—Br2115.5 (3)C20D—C20E—H20C119.4
C11—C10—Br2115.5 (3)C20F—C20E—H20C119.4
N23—C11—C10123.3 (4)C20A—C20F—C20E120.6 (4)
N23—C11—C12109.5 (3)C20A—C20F—H20D119.7
C10—C11—C12127.1 (4)C20E—C20F—H20D119.7
C13—C12—C11107.1 (4)C20D—C20G—H20E109.5
C13—C12—H12A126.4C20D—C20G—H20F109.5
C11—C12—H12A126.4H20E—C20G—H20F109.5
C12—C13—C14107.7 (4)C20D—C20G—H20G109.5
C12—C13—H13A126.1H20E—C20G—H20G109.5
C14—C13—H13A126.1H20F—C20G—H20G109.5
N23—C14—C15124.8 (3)O1A—C1A—H1AA109.5
N23—C14—C13109.2 (3)O1A—C1A—H1AB109.5
C15—C14—C13125.9 (4)H1AA—C1A—H1AB109.5
C16—C15—C14125.2 (4)O1A—C1A—H1AC109.5
C16—C15—C15A116.8 (3)H1AA—C1A—H1AC109.5
C14—C15—C15A117.9 (3)H1AB—C1A—H1AC109.5
N24—C16—C15125.3 (3)C1A—O1A—Zn1121.5 (3)
N24—C16—C17109.8 (3)
N24—Zn1—N21—C16.1 (3)C9—C10—C11—N236.1 (7)
N22—Zn1—N21—C1174.8 (3)Br2—C10—C11—N23175.7 (3)
N23—Zn1—N21—C189.8 (7)C9—C10—C11—C12169.4 (4)
O1A—Zn1—N21—C187.2 (3)Br2—C10—C11—C128.8 (6)
N24—Zn1—N21—C4177.2 (3)N23—C11—C12—C131.0 (5)
N22—Zn1—N21—C414.1 (3)C10—C11—C12—C13175.0 (4)
N23—Zn1—N21—C499.2 (7)C11—C12—C13—C142.0 (5)
O1A—Zn1—N21—C483.9 (3)C11—N23—C14—C15174.6 (4)
N24—Zn1—N22—C984.5 (7)Zn1—N23—C14—C1513.1 (5)
N21—Zn1—N22—C9172.6 (3)C11—N23—C14—C131.6 (4)
N23—Zn1—N22—C92.6 (3)Zn1—N23—C14—C13170.6 (3)
O1A—Zn1—N22—C993.0 (3)C12—C13—C14—N232.3 (5)
N24—Zn1—N22—C6100.3 (7)C12—C13—C14—C15173.9 (4)
N21—Zn1—N22—C612.2 (3)N23—C14—C15—C162.0 (6)
N23—Zn1—N22—C6177.8 (3)C13—C14—C15—C16173.6 (4)
O1A—Zn1—N22—C682.2 (3)N23—C14—C15—C15A178.8 (3)
N24—Zn1—N23—C11171.4 (3)C13—C14—C15—C15A3.2 (6)
N22—Zn1—N23—C112.6 (3)C19—N24—C16—C15177.7 (4)
N21—Zn1—N23—C1187.7 (8)Zn1—N24—C16—C157.0 (6)
O1A—Zn1—N23—C1195.4 (3)C19—N24—C16—C171.5 (4)
N24—Zn1—N23—C1418.0 (3)Zn1—N24—C16—C17176.8 (2)
N22—Zn1—N23—C14173.3 (3)C14—C15—C16—N245.5 (6)
N21—Zn1—N23—C14101.7 (7)C15A—C15—C16—N24177.7 (3)
O1A—Zn1—N23—C1475.2 (3)C14—C15—C16—C17170.2 (4)
N22—Zn1—N24—C1697.0 (7)C15A—C15—C16—C176.6 (6)
N21—Zn1—N24—C16174.9 (3)N24—C16—C17—C180.1 (4)
N23—Zn1—N24—C1615.1 (3)C15—C16—C17—C18176.4 (4)
O1A—Zn1—N24—C1680.5 (3)C16—C17—C18—C191.2 (4)
N22—Zn1—N24—C1988.7 (7)C16—N24—C19—C20174.5 (4)
N21—Zn1—N24—C190.6 (3)Zn1—N24—C19—C200.8 (5)
N23—Zn1—N24—C19170.5 (3)C16—N24—C19—C182.2 (4)
O1A—Zn1—N24—C1993.9 (3)Zn1—N24—C19—C18177.5 (3)
C4—N21—C1—C20176.5 (4)C17—C18—C19—N242.2 (4)
Zn1—N21—C1—C2011.0 (6)C17—C18—C19—C20174.5 (4)
C4—N21—C1—C21.0 (4)N21—C1—C20—C199.0 (6)
Zn1—N21—C1—C2171.5 (2)C2—C1—C20—C19173.9 (4)
N21—C1—C2—C30.1 (5)N21—C1—C20—C20A172.9 (3)
C20—C1—C2—C3177.4 (4)C2—C1—C20—C20A4.2 (6)
C1—C2—C3—C40.8 (5)N24—C19—C20—C12.6 (6)
C1—N21—C4—C5176.3 (4)C18—C19—C20—C1173.6 (4)
Zn1—N21—C4—C511.2 (5)N24—C19—C20—C20A179.2 (3)
C1—N21—C4—C31.5 (4)C18—C19—C20—C20A4.6 (6)
Zn1—N21—C4—C3171.0 (3)C16—C15—C15A—C15B116.4 (4)
C2—C3—C4—N211.5 (5)C14—C15—C15A—C15B60.7 (5)
C2—C3—C4—C5176.2 (4)C16—C15—C15A—C15F62.9 (5)
N21—C4—C5—C60.8 (6)C14—C15—C15A—C15F120.0 (4)
C3—C4—C5—C6178.2 (4)C15F—C15A—C15B—C15C1.9 (6)
N21—C4—C5—Br1175.6 (3)C15—C15A—C15B—C15C178.8 (4)
C3—C4—C5—Br11.8 (5)C15A—C15B—C15C—C15D1.8 (6)
C9—N22—C6—C5176.6 (4)C15B—C15C—C15D—C15E0.3 (6)
Zn1—N22—C6—C57.4 (5)C15B—C15C—C15D—C15G179.2 (4)
C9—N22—C6—C71.0 (4)C15C—C15D—C15E—C15F1.2 (6)
Zn1—N22—C6—C7175.0 (3)C15G—C15D—C15E—C15F177.7 (4)
C4—C5—C6—N221.2 (7)C15D—C15E—C15F—C15A1.2 (6)
Br1—C5—C6—N22177.6 (3)C15B—C15A—C15F—C15E0.4 (6)
C4—C5—C6—C7175.9 (4)C15—C15A—C15F—C15E179.7 (4)
Br1—C5—C6—C70.5 (5)C1—C20—C20A—C20F75.5 (5)
N22—C6—C7—C80.4 (5)C19—C20—C20A—C20F102.8 (5)
C5—C6—C7—C8177.1 (4)C1—C20—C20A—C20B107.7 (4)
C6—C7—C8—C90.4 (5)C19—C20—C20A—C20B74.0 (5)
C6—N22—C9—C10179.5 (4)C20F—C20A—C20B—C20C0.7 (6)
Zn1—N22—C9—C104.6 (6)C20—C20A—C20B—C20C176.2 (4)
C6—N22—C9—C81.2 (4)C20A—C20B—C20C—C20D1.0 (6)
Zn1—N22—C9—C8174.7 (3)C20B—C20C—C20D—C20E2.4 (6)
C7—C8—C9—N221.0 (5)C20B—C20C—C20D—C20G177.3 (4)
C7—C8—C9—C10179.7 (4)C20C—C20D—C20E—C20F2.2 (6)
N22—C9—C10—C116.1 (7)C20G—C20D—C20E—C20F177.5 (4)
C8—C9—C10—C11173.0 (4)C20B—C20A—C20F—C20E0.8 (6)
N22—C9—C10—Br2175.7 (3)C20—C20A—C20F—C20E176.0 (4)
C8—C9—C10—Br25.2 (6)C20D—C20E—C20F—C20A0.6 (7)
C14—N23—C11—C10176.6 (4)N24—Zn1—O1A—C1A76.6 (5)
Zn1—N23—C11—C104.5 (6)N22—Zn1—O1A—C1A103.9 (5)
C14—N23—C11—C120.4 (4)N21—Zn1—O1A—C1A13.4 (5)
Zn1—N23—C11—C12171.7 (3)N23—Zn1—O1A—C1A166.1 (5)

Experimental details

(V)(VI)
Crystal data
Chemical formula[Pd(C34H22Br2N4)][Zn(C34H22Br2N4)(CH4O)]
Mr752.78743.79
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)123108
a, b, c (Å)9.396 (4), 10.558 (5), 15.129 (7)10.280 (3), 11.637 (4), 14.052 (4)
α, β, γ (°)95.157 (8), 103.433 (8), 107.007 (8)110.195 (2), 95.785 (2), 105.564 (4)
V3)1375.7 (10)1484.6 (8)
Z22
Radiation typeMo KαMo Kα
µ (mm1)3.613.56
Crystal size (mm)0.35 × 0.25 × 0.070.60 × 0.40 × 0.30
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Rigaku Saturn724 (2x2 bin mode)
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker, 2005)
ψ scan
(North et al., 1968)
Tmin, Tmax0.365, 0.7860.224, 0.415
No. of measured, independent and
observed [I > 2σ(I)] reflections
10757, 4833, 3628 22765, 5140, 4320
Rint0.0410.086
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.180, 1.06 0.041, 0.110, 1.01
No. of reflections48335140
No. of parameters372391
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.50, 1.360.90, 0.94

Computer programs: APEX2 (Bruker, 2005), CrystalClear (Rigaku/MSC, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometrical parameters (Å, °) top
(IV)(V)(VI)
M—N212.001 (6)2.061 (3)
M—N222.012 (6)2.053 (3)
M—N232.012 (6)2.063 (3)
M—N242.011 (5)2.033 (3)
Ca—C5—Ca127.9 (6)127.9 (7)128.6 (4)
Ca—C10—Ca127.0 (6)128.4 (7)128.9 (4)
Ca—C15—Ca125.7 (6)123.3 (7)125.2 (4)
Ca—C20—Ca125.5 (6)123.2 (7)125.2 (4)
Dip0.20950.02910.1759
Doop0.89560.7320.6363
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds