Download citation
Download citation
link to html
The two centrosymmetric dinuclear copper paddle-wheel complexes tetra­kis­([mu]-4-hy­droxy­benzoato-[kappa]2O:O')bis­[aqua­copper(II)] di­methyl­formamide disolvate dihydrate, [Cu2(C7H5O3)4(H2O)2]·2C3H7NO·2H2O, (I), and tetra­kis­([mu]-4-meth­oxy­benzoato-[kappa]2O:O')bis­[(di­methyl­formamide-[kappa]O)copper(II)], [Cu2(C8H7O3)4(C3H7NO)2], (II), crystallize with half of the dinuclear paddle-wheel cage unit in the asymmetric unit and, in addition, complex (I) has one di­methyl­formamide (DMF) and one water solvent mol­ecule in the asymmetric unit. In both (I) and (II), two CuII ions are bridged by four syn,syn-[eta]1:[eta]1:[mu] carboxyl­ate groups, showing a paddle-wheel cage-type structure with a square-pyramidal coordination geometry. The equatorial positions of (I) and (II) are occupied by the carboxyl­ate groups of 4-hy­droxy- and 4-meth­oxy­benzoate ligands, and the axial positions are occupied by aqua and DMF ligands, respectively. The three-dimensional supra­molecular metal-organic framework of (I) consists of three different R22(20) and an R44(36) ring motif formed via O-H...O and OW-HW...O hydrogen bonds. Complex (II) simply packs as mol­ecular species.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113031429/ov3037sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113031429/ov3037Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113031429/ov3037IIsup3.hkl
Contains datablock II

CCDC references: 853464; 853465

Introduction top

The coordination chemistry of copper complexes involving carboxyl­ate groups which show flexible coordination modes toward metal cations, such as monodentate, chelate and η1:η1:µ bridging ligands in synsyn, synanti and antianti conformations, has been studied for a long time. Dinuclear copper(II) complexes with carboxyl­ate O:O'-bridges are widely known for intra­molecular magnetic exchange and magneto-structural correlation studies (Kato & Muto, 1988; Melnik, 1982; Sesto et al., 2000). In many examples, copper(II) carboxyl­ates prefer the dinuclear paddle-wheel cage structure. Approximately 250 structures containing the Cu2(RCOO)4 core can be found in the Cambridge Structural Database (Allen, 2002), of which 186 are of the Cu2(RCOO)4(L)2 type, where L is an apical ligand with an O- or N-donor atom (Allen et al., 1983).

Ever since the first tetra­carboxyl­ate-bridged copper(II) dimer structure was reported for copper(II) acetate dihydrate [Cu2(MeCO2)4(H2O)2] (van Niekerk & Schoening, 1953), a variety of carboxyl­ate groups have been used in the design of paddle-wheel cage compounds (Catterick & Thornton, 1977; Porter et al., 1986).

Dimeric copper(II) carboxyl­ates and their adducts are good models for the design of anti-inflammatory drugs (Demertzi et al., 2004; Weder et al., 1999) and for magnetic exchange studies between paramagnetic molecules (Sundberg et al., 1996).

We report two copper dinuclear paddle-wheel complexes, namely tetra­kis(µ2-4-hy­droxy­benzoato-κ2O:O')bis­[aqua­copper(II)] di­methyl­formamide disolvate dihydrate, (I), and tetra­kis(µ2-4-meth­oxy­benzoato-κ2O:O')bis­[(di­methyl­formamide-κO)copper(II)], (II).

Experimental top

Synthesis and crystallization top

Complexes (I) and (II) were prepared by mixing hot aqueous solutions (10 ml) of copper nitrate hexahydrate (Loba; 73.9 mg, 0.25 mmol) with hot ethano­lic solutions (10 ml) of 4-HBA (Loba; 34.5 mg, 0.5 mmol) or 4-MBA (Sisco; 38 mg, 0.5 mmol) in 1:2 ratios. In each case, the resulting reaction mixture was stirred for 20 min. To the hot reaction mixture, di­methyl­formamide (10 ml) was added and stirring was continued for another 30 min at 318 K. After a few weeks, green prismatic crystals of (I) and (II) were obtained from their mother solutions.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The water H atoms for (I) were located in difference Fourier maps and refined freely. Water H atoms were restrained to have O—H distances of 0.89 (2) Å and H···H distances of 1.36 (1) Å. All other H atoms were positioned geometrically and were refined using riding model. The O—H and C—H bond lengths are 0.82 Å for O—H, 0.93 Å for methine C—H and 0.96 Å for methyl C—H. The Uiso(H) values were set at 1.2Ueq(C) for aromatic and at 1.5Ueq(C,O) for methyl and hy­droxy H atoms.

Results and discussion top

The asymmetric unit of (I) contains half a molecule of the dinuclear paddle-wheel unit [the molecules crystallize about an inversion center at (0, 0, 1)], one di­methyl­formamide (DMF) solvent molecule and one water molecule (Fig. 1). The asymmetric unit of (II) contains half a molecule of the dinuclear paddle-wheel unit; the molecules crystalize about an inversion center at (0.5, 0.5, 0) (Fig. 2). In both (I) and (II), the two CuII ions are bridged by four syn,syn-η1:η1:µ carboxyl­ate groups, showing a paddle-wheel cage type with a square-pyramidal geometry (Reger et al.,2012). In each of (I) and (II), the dinuclear copper unit sits about an inversion centre, so that one half of the unit is related to the other.

In complex (I), each CuII ion is coordinated with four different O atoms from the carboxyl­ate groups of 4-hy­droxy­benzoate (4HBA) ligands which occupy the equatorial positions; the axial position is occupied by a water O atom (O1w) to form a paddle-wheel building block. In complex (II), each CuII ion is coordinated with four different carboxyl­ate O atoms of 4-meth­oxy­benzoate (4MBA) ligands in the equatorial positions; the axial position is occupied by DMF atom O5 to form a paddle-wheel cage unit. As expected, the axial Cu—O(H2O) bond length in (I) and Cu—O(4DMF) bond length in (II) are notably longer than the basal distances between the Cu atoms and the carboxyl­ate O atoms of 4HBA and 4MBA (Tables 2 and 3). This clearly indicates that there is a slight distortion from ideal square-pyramidal geometry which is due to Jahn–Teller distortion. In both (I) and (II), the central CuII atom moves above the equatorial (eq) O4 plane towards the axial (ax) H2O ligand in (I) and towards the DMF ligand in (II). The displacement distances of (I) and (II) are 0.149 and 0.158 Å, respectively. This displacement induces deviations from the ideal bond angles of 90 (α) and 180° (β) (where α = Oax—Cu—Oeq and β = Oeq—Cu—Oeq). The values of α and β are 91.59 (5)–99.17 (5) and 168.95 (5)–169.14 (5)° for (I), and 92.83 (9)–98.81 (9) and 168.35 (9)–168.57 (9)° for (II). The deviations of the Cu—Cu—Oax and Cu—Cu—Oeq bond angles from 180 and 90°, respectively, are also evidence for Jahn–Teller distortion. The corresponding values are 177.34 (4) and 83.00 (4)–86.28 (4)° for (I), and 173.20 (7) and 81.14 (7)–87.47 (6)° for (II), respectively. Jahn–Teller distortion is quite common for a series of copper(II) carboxyl­ate-type complexes reported in the literature (reference?).

The Cu···Cu separations in the dinuclear copper units in (I) and (II) are 2.6047 (3) and 2.6279 (7) Å, respectively, and these values are in close agreement with reported values (Youngme et al., 2008; Luo et al., 2008; Burrows et al., 2008). There are some general trends that can be seen by comparison of several copper acetate-type complexes from the literature (Reinen & Friebel, 1984; Sundberg et al., 1996). Both (I) and (II) agree with this general trend. We have tabulated (Table 4) some copper acetate-type complexes and verified the generalization with complexes (I) and (II). From the table, we concluded that if the Cu···Cu distance decreases, the Cu—Oax distance increases and vice versa. For dimeric copper paddle-wheel complexes, a shortening or lengthening of the Cu···Cu distance is compensated by an elongation or compression of the Cu—Oax bond length. The Oax—Cu···Cu—Oax distance is almost the same as that of sum of the Cu···Cu and Cu—Oax distances. The nature of the substituent on the carboxyl­ate ligand strongly influences the pKa value of the acid, the O—C—O angle in the bridge and the Cu···Cu distance. Electron-withdrawing groups lower the pKa value, increase the acidity (which enhances the Cu···Cu distance), widen the O—C—O angle and increase? the displacement of the CuII atom out of the mean O4 plane, or vice versa for electron-donating groups.

In (I), two centrosymmetric dinuclear paddle-wheel units in the same and adjacent planes are connected by three different R22(20) ring motifs formed via two pairs of Ow—Hw···O and a pair of O—H···O hydrogen bonds (Table 5). The first two R22(20) ring motifs link the coordinated water molecule (O1w) with atoms O6iii and O3iv of 4HBA in the same and adjacent planes, respectively, and the ring motifs extend along the b and c axes [symmetry codes: (iii) x, y+1, z; (iv) x+1, y, z-1]. The formation of the two R22(20) ring motifs are shown Fig. 3. The R22(20) ring motif shown in the middle connects two adjacent planes together. Further neighbouring paddle-wheel units inter­act via O—H···O hydrogen bonds by linking coordinated hy­droxy atom O3 and carboxyl­ate atom O4ii of two different 4HBA ligands which are nearly perpendicular to each other (86.43°) to form the third R22(20) ring motif [symmetry code: (ii) -x, -y, -z+3]. The lattice water molecule O2w links coordinated carboxyl­ate atom O2vi of 4HBA and DMF atom O7 through Ow—Hw···O hydrogen bonds [symmetry code: (vi) -x, -y+1, -z+2]. Hy­droxy atom O6 of 4HBA links the noncoordinated atom O2wv via an O—H···Ow hydrogen bond [symmetry code: (v) -x+1, -y, -z+2]. These hydrogen bonds link the symmetry-related coordinated water molecules and coordinated 4HBA ligands of four paddle-wheel units together to generate an R44(36) ring motif. Two centrosymmetric DMF solvent molecules are in the inter­stitial pockets [R44(36) ring motif]. The alternative occurrence of R22(20) and R44(36) motifs develop an extended three-dimensional supra­molecular metal–organic framework (MOF).

In complex (II), as the hydrogen-bond acceptor sites are blocked by a methyl group, the molecular packing is not governed by standard hydrogen bonds. Complex (II) packs in a regular array of molecules.

Related literature top

For related literature, see: Allen et al. (1983); Bruker (2008); Burrows et al. (2008); Cason (2004); Catterick & Thornton (1977); Demertzi et al. (2004); Kato & Muto (1988); Luo et al. (2008); Macrae et al. (2008); Melnik (1982); Porter et al. (1986); Reger et al. (2012); Sesto et al. (2000); Sheldrick (2008); Spek (2009); Sundberg et al. (1996); Van Niekerk & Schoening (1953); Weder et al. (1999); Westrip (2010); Youngme et al. (2008).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POVRay (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of complex (I), shown with 50% probability displacement ellipsoids. [Symmetry code: (i) -x, -y, -z+2.]
[Figure 2] Fig. 2. The asymmetric unit of complex (II), shown with 50% probability displacement ellipsoids. [Symmetry code: (i) -x+1, -y+1, -z.]
[Figure 3] Fig. 3. Supramolecular extended three-dimensional network of complex (I) formed via O—H···O and Ow—Hw···O hydrogen bonds. [Symmetry codes: (ii) -x, -y, -z+3; (iii) x, y+1, z; (iv) x+1, y, z-1; (v) -x+1, -y, -z+2; (vi) -x, -y+1, -z+2.]
(I) Tetrakis(µ2-4-hydroxybenzoato-κ2O:O')bis[aquacopper(II)] dimethylformamide disolvate dihydrate top
Crystal data top
[Cu2(C7H5O3)4(H2O)2]·2C3H7NO·2H2OZ = 1
Mr = 893.80F(000) = 462
Triclinic, P1Dx = 1.505 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6946 (2) ÅCell parameters from 7410 reflections
b = 10.4874 (2) Åθ = 2.0–34.2°
c = 10.6819 (2) ŵ = 1.16 mm1
α = 82.458 (1)°T = 296 K
β = 66.951 (1)°Prism, green
γ = 81.904 (1)°0.07 × 0.06 × 0.05 mm
V = 985.92 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7410 independent reflections
Radiation source: fine-focus sealed tube6012 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 34.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.923, Tmax = 0.944k = 1615
25865 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.1947P]
where P = (Fo2 + 2Fc2)/3
7410 reflections(Δ/σ)max = 0.001
269 parametersΔρmax = 0.87 e Å3
6 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Cu2(C7H5O3)4(H2O)2]·2C3H7NO·2H2Oγ = 81.904 (1)°
Mr = 893.80V = 985.92 (3) Å3
Triclinic, P1Z = 1
a = 9.6946 (2) ÅMo Kα radiation
b = 10.4874 (2) ŵ = 1.16 mm1
c = 10.6819 (2) ÅT = 296 K
α = 82.458 (1)°0.07 × 0.06 × 0.05 mm
β = 66.951 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7410 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6012 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.944Rint = 0.033
25865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0396 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.87 e Å3
7410 reflectionsΔρmin = 0.46 e Å3
269 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.12523 (2)0.04275 (2)0.98664 (2)0.0231 (1)
O10.02547 (14)0.07665 (14)1.17865 (12)0.0362 (4)
O1W0.32575 (15)0.12007 (15)0.97081 (15)0.0412 (4)
O20.19177 (14)0.00829 (14)1.19902 (12)0.0380 (4)
O30.35748 (14)0.10062 (16)1.81253 (12)0.0417 (4)
O40.18360 (14)0.13767 (12)1.04773 (14)0.0344 (4)
O50.02961 (15)0.20825 (12)1.06350 (15)0.0393 (4)
O60.2989 (2)0.74078 (13)1.19313 (19)0.0515 (5)
C10.10823 (18)0.05123 (15)1.24698 (15)0.0270 (4)
C20.17307 (18)0.07130 (16)1.39481 (16)0.0277 (4)
C30.3109 (2)0.0260 (2)1.47762 (18)0.0412 (6)
C40.3706 (2)0.0372 (2)1.61579 (19)0.0427 (6)
C50.29251 (18)0.09474 (18)1.67455 (16)0.0309 (4)
C60.15588 (19)0.14203 (18)1.59360 (17)0.0333 (5)
C70.09568 (19)0.12926 (18)1.45465 (17)0.0318 (4)
C80.09771 (18)0.22693 (16)1.07056 (16)0.0279 (4)
C90.15242 (19)0.36133 (16)1.10561 (17)0.0299 (4)
C100.2905 (2)0.38989 (18)1.1190 (2)0.0398 (6)
C110.3411 (2)0.51542 (18)1.1498 (2)0.0426 (6)
C120.2537 (2)0.61547 (17)1.1657 (2)0.0374 (5)
C130.1162 (2)0.58870 (19)1.1515 (2)0.0444 (6)
C140.0658 (2)0.46248 (18)1.1226 (2)0.0385 (5)
O70.3696 (5)0.5656 (5)0.7052 (6)0.192 (3)
N10.2926 (3)0.4283 (3)0.6114 (3)0.0798 (10)
C150.3065 (7)0.5469 (5)0.6250 (8)0.160 (3)
C160.2181 (10)0.3964 (13)0.5339 (8)0.326 (7)
C170.3537 (9)0.3237 (7)0.6676 (9)0.253 (5)
O2W0.4439 (2)0.76965 (19)0.7709 (2)0.0675 (7)
H1W0.314 (2)0.158 (2)1.0370 (18)0.0490*
H2W0.4217 (18)0.105 (2)0.927 (2)0.0490*
H30.363500.012501.438700.0490*
H3A0.292800.108401.841800.0630*
H40.462800.006501.669800.0510*
H60.104800.182301.632700.0400*
H6A0.385900.746701.188600.0770*
H70.003100.159501.400800.0380*
H100.350000.323501.107100.0480*
H110.433100.533001.159900.0510*
H130.057900.655401.161300.0530*
H140.027100.444901.114400.0460*
H150.271500.616000.577700.1920*
H16A0.290400.364000.450700.4910*
H16B0.160000.472000.512800.4910*
H16C0.152200.331300.584600.4910*
H17A0.347800.341500.755600.3800*
H17B0.299300.250800.677700.3800*
H17C0.457200.304700.609400.3800*
H3W0.406 (3)0.710 (2)0.751 (3)0.0810*
H4W0.378 (3)0.827 (2)0.801 (3)0.0810*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0228 (1)0.0257 (1)0.0224 (1)0.0018 (1)0.0099 (1)0.0036 (1)
O10.0321 (6)0.0513 (8)0.0250 (6)0.0090 (5)0.0066 (5)0.0110 (5)
O1W0.0288 (6)0.0579 (9)0.0393 (7)0.0110 (6)0.0098 (5)0.0148 (6)
O20.0339 (6)0.0580 (8)0.0248 (6)0.0093 (6)0.0099 (5)0.0114 (5)
O30.0312 (6)0.0736 (10)0.0229 (6)0.0083 (6)0.0101 (5)0.0101 (6)
O40.0362 (6)0.0263 (6)0.0474 (7)0.0019 (5)0.0244 (6)0.0001 (5)
O50.0341 (6)0.0306 (6)0.0572 (8)0.0021 (5)0.0243 (6)0.0037 (6)
O60.0673 (10)0.0266 (7)0.0762 (11)0.0055 (6)0.0469 (9)0.0057 (7)
C10.0307 (7)0.0277 (7)0.0232 (7)0.0010 (6)0.0118 (6)0.0038 (5)
C20.0281 (7)0.0317 (8)0.0240 (7)0.0013 (6)0.0107 (6)0.0039 (6)
C30.0334 (8)0.0682 (13)0.0279 (8)0.0167 (8)0.0125 (7)0.0091 (8)
C40.0321 (8)0.0714 (14)0.0271 (8)0.0189 (9)0.0089 (7)0.0055 (8)
C50.0285 (7)0.0420 (9)0.0235 (7)0.0001 (6)0.0119 (6)0.0046 (6)
C60.0319 (8)0.0437 (9)0.0284 (8)0.0064 (7)0.0128 (6)0.0096 (7)
C70.0296 (7)0.0394 (9)0.0274 (7)0.0070 (6)0.0101 (6)0.0049 (6)
C80.0322 (7)0.0282 (7)0.0251 (7)0.0001 (6)0.0136 (6)0.0034 (6)
C90.0336 (8)0.0261 (7)0.0316 (8)0.0009 (6)0.0157 (6)0.0019 (6)
C100.0373 (9)0.0300 (8)0.0566 (12)0.0022 (7)0.0242 (8)0.0003 (8)
C110.0409 (10)0.0319 (9)0.0615 (13)0.0027 (7)0.0294 (9)0.0013 (8)
C120.0489 (10)0.0275 (8)0.0414 (9)0.0028 (7)0.0249 (8)0.0047 (7)
C130.0510 (11)0.0290 (9)0.0638 (13)0.0043 (8)0.0335 (10)0.0023 (8)
C140.0405 (9)0.0302 (8)0.0539 (11)0.0018 (7)0.0286 (8)0.0024 (8)
O70.163 (4)0.183 (4)0.281 (6)0.025 (3)0.111 (4)0.104 (4)
N10.0809 (18)0.0665 (16)0.0754 (17)0.0111 (14)0.0104 (14)0.0063 (13)
C150.111 (4)0.091 (4)0.199 (7)0.005 (3)0.014 (4)0.008 (4)
C160.173 (7)0.68 (2)0.157 (7)0.111 (11)0.020 (6)0.204 (11)
C170.166 (7)0.162 (6)0.288 (10)0.013 (5)0.012 (6)0.127 (6)
O2W0.0478 (9)0.0554 (11)0.0954 (15)0.0111 (8)0.0288 (10)0.0056 (10)
Geometric parameters (Å, º) top
Cu1—O11.9519 (12)C4—C51.390 (3)
Cu1—O1W2.1484 (16)C5—C61.387 (3)
Cu1—O41.9974 (13)C6—C71.383 (2)
Cu1—O2i1.9533 (12)C8—C91.488 (2)
Cu1—O5i1.9622 (14)C9—C141.394 (3)
O1—C11.261 (2)C9—C101.389 (3)
O2—C11.269 (2)C10—C111.383 (3)
O3—C51.363 (2)C11—C121.392 (3)
O4—C81.277 (2)C12—C131.386 (3)
O5—C81.252 (2)C13—C141.384 (3)
O6—C121.357 (2)C3—H30.9300
O1W—H2W0.86 (2)C4—H40.9300
O1W—H1W0.818 (19)C6—H60.9300
O3—H3A0.8200C7—H70.9300
O6—H6A0.8200C10—H100.9300
O7—C151.279 (9)C11—H110.9300
O2W—H3W0.86 (3)C13—H130.9300
O2W—H4W0.81 (3)C14—H140.9300
N1—C151.302 (6)C15—H150.9300
N1—C161.389 (10)C16—H16B0.9600
N1—C171.355 (9)C16—H16C0.9600
C1—C21.485 (2)C16—H16A0.9600
C2—C71.395 (3)C17—H17C0.9600
C2—C31.392 (3)C17—H17A0.9600
C3—C41.373 (3)C17—H17B0.9600
Cu1···O23.0595 (14)C10···O3ii3.416 (3)
Cu1···O53.0720 (14)C11···C11x3.482 (3)
Cu1···O3ii3.7302 (14)C11···O2Wvii3.376 (3)
Cu1···O4i3.1647 (15)C12···O2Wvii3.406 (3)
Cu1···O1i3.1520 (14)C14···C14xi3.542 (3)
Cu1···H4Wiii3.30 (3)C1···H4Wvi2.95 (3)
Cu1···H17B3.6400C3···H3xii2.9400
Cu1···H3Aii3.0600C4···H3xii2.9100
O1···O1W2.943 (2)C4···H17Cviii3.0600
O1···O42.7448 (19)C5···H2Wviii3.02 (2)
O1···C83.415 (2)C7···H15vi3.0200
O1···Cu1i3.1520 (14)C8···H3Aii2.8900
O1···O5i2.7558 (19)C10···H3Aii3.0400
O1W···O2i3.126 (2)C12···H1Wiii2.78 (2)
O1W···O43.076 (2)C14···H14xi3.0000
O1W···O6iv2.856 (2)C15···H3W2.79 (3)
O1W···O12.943 (2)C15···H17Cxiii3.0700
O1W···O3v2.860 (2)H1W···C12iv2.78 (2)
O1W···O3ii3.124 (2)H1W···H6Aiv2.3700
O1W···O5i3.036 (2)H1W···O6iv2.040 (19)
O2···O2Wvi3.079 (3)H2W···C5v3.02 (2)
O2···O52.7928 (19)H2W···H3Av2.5600
O2···O1Wi3.126 (2)H2W···O3v2.00 (2)
O2···C8i3.344 (2)H3···O22.4500
O2···Cu13.0595 (14)H3···C3xii2.9400
O2···O4i2.7790 (18)H3···H3xii2.4400
O2W···O2vi3.079 (3)H3···C4xii2.9100
O2W···O6vii2.639 (3)H3···H4xii2.3800
O2W···C11vii3.376 (3)H3A···O1Wii2.8800
O2W···O4iv3.206 (2)H3A···O4ii1.9400
O2W···C12vii3.406 (3)H3A···H2Wviii2.5600
O2W···O72.611 (6)H3A···H62.3800
O3···C10ii3.416 (3)H3A···Cu1ii3.0600
O3···Cu1ii3.7302 (14)H3A···C8ii2.8900
O3···O1Wviii2.860 (2)H3A···C10ii3.0400
O3···O4ii2.744 (2)H3A···H10ii2.3300
O3···O1Wii3.124 (2)H3W···C152.79 (3)
O4···O2i2.7790 (18)H3W···H6Avii2.4400
O4···O3ii2.744 (2)H3W···H11vii2.5800
O4···Cu1i3.1647 (15)H3W···O71.77 (2)
O4···C13.357 (2)H4···O2Wxiv2.7100
O4···O1W3.076 (2)H4···H4Wxiv2.5100
O4···O12.7448 (19)H4···H3xii2.3800
O4···O2Wiii3.206 (2)H4W···H6Avii2.3600
O5···O1Wi3.036 (2)H4W···O4iv2.61 (3)
O5···O1i2.7558 (19)H4W···Cu1iv3.30 (3)
O5···Cu13.0720 (14)H4W···C1vi2.95 (3)
O5···C1i3.349 (2)H4W···H4ix2.5100
O5···O22.7928 (19)H4W···O2vi2.32 (3)
O5···C13.387 (2)H6···H3A2.3800
O6···O1Wiii2.856 (2)H6A···H112.3100
O6···O2Wvii2.639 (3)H6A···H4Wvii2.3600
O7···O2W2.611 (6)H6A···H1Wiii2.3700
O1···H72.5300H6A···H3Wvii2.4400
O1···H1W2.80 (2)H6A···O2Wvii1.8400
O1···H13iv2.8500H7···O12.5300
O1W···H3Aii2.8800H10···H3Aii2.3300
O2···H32.4500H10···O3ii2.6100
O2···H4Wvi2.32 (3)H10···O42.5300
O2W···H6Avii1.8400H11···H6A2.3100
O2W···H11vii2.7400H11···O2Wvii2.7400
O2W···H4ix2.7100H11···O7vii2.7700
O3···H10ii2.6100H11···H3Wvii2.5800
O3···H2Wviii2.00 (2)H13···O1iii2.8500
O4···H3Aii1.9400H14···C14xi3.0000
O4···H4Wiii2.61 (3)H14···O52.4700
O4···H102.5300H15···C7vi3.0200
O5···H142.4700H15···H16B2.2900
O6···H1Wiii2.040 (19)H16A···H17B2.5800
O7···H17A2.3600H16B···H152.2900
O7···H11vii2.7700H16C···H17B2.0700
O7···H3W1.77 (2)H17A···O72.3600
C1···C83.592 (2)H17B···Cu13.6400
C6···C7ii3.429 (3)H17B···H16C2.0700
C7···C7ii3.322 (3)H17B···H16A2.5800
C7···C6ii3.429 (3)H17C···C4v3.0600
C8···C13.592 (2)H17C···C15xiii3.0700
O1—Cu1—O1W91.59 (6)C8—C9—C10121.59 (16)
O1—Cu1—O488.05 (6)C8—C9—C14119.89 (17)
O1—Cu1—O2i169.14 (6)C9—C10—C11121.08 (18)
O1—Cu1—O5i89.51 (6)C10—C11—C12119.73 (19)
O1W—Cu1—O495.72 (6)O6—C12—C13117.74 (18)
O1W—Cu1—O2i99.17 (6)C11—C12—C13119.89 (17)
O1W—Cu1—O5i95.12 (6)O6—C12—C11122.4 (2)
O2i—Cu1—O489.40 (6)C12—C13—C14119.85 (19)
O4—Cu1—O5i168.95 (6)C9—C14—C13120.94 (19)
O2i—Cu1—O5i91.00 (6)C2—C3—H3119.00
Cu1—O1—C1121.14 (12)C4—C3—H3119.00
Cu1i—O2—C1124.61 (11)C5—C4—H4120.00
Cu1—O4—C8120.84 (12)C3—C4—H4120.00
Cu1i—O5—C8126.23 (12)C7—C6—H6120.00
H1W—O1W—H2W107 (2)C5—C6—H6120.00
Cu1—O1W—H1W113.1 (14)C6—C7—H7120.00
Cu1—O1W—H2W137.0 (13)C2—C7—H7120.00
C5—O3—H3A109.00C9—C10—H10119.00
C12—O6—H6A110.00C11—C10—H10119.00
H3W—O2W—H4W109 (3)C10—C11—H11120.00
C16—N1—C17113.3 (7)C12—C11—H11120.00
C15—N1—C16123.3 (7)C14—C13—H13120.00
C15—N1—C17123.4 (5)C12—C13—H13120.00
O1—C1—O2124.76 (14)C9—C14—H14120.00
O1—C1—C2118.05 (16)C13—C14—H14120.00
O2—C1—C2117.19 (15)O7—C15—N1118.1 (6)
C3—C2—C7118.76 (15)N1—C15—H15121.00
C1—C2—C3119.62 (16)O7—C15—H15121.00
C1—C2—C7121.55 (16)N1—C16—H16A109.00
C2—C3—C4121.17 (18)N1—C16—H16B109.00
C3—C4—C5119.67 (18)H16A—C16—H16B109.00
C4—C5—C6120.09 (16)H16A—C16—H16C109.00
O3—C5—C4116.40 (16)N1—C16—H16C110.00
O3—C5—C6123.52 (17)H16B—C16—H16C109.00
C5—C6—C7119.93 (17)N1—C17—H17B109.00
C2—C7—C6120.38 (17)N1—C17—H17C109.00
O4—C8—O5123.74 (16)N1—C17—H17A109.00
O4—C8—C9118.34 (17)H17A—C17—H17C109.00
O5—C8—C9117.91 (16)H17B—C17—H17C109.00
C10—C9—C14118.50 (17)H17A—C17—H17B109.00
O1W—Cu1—O1—C1178.42 (14)C7—C2—C3—C40.2 (3)
O4—Cu1—O1—C185.91 (14)C1—C2—C3—C4176.76 (18)
O5i—Cu1—O1—C183.31 (14)C3—C2—C7—C60.5 (3)
O1—Cu1—O4—C889.64 (13)C1—C2—C7—C6177.35 (17)
O1W—Cu1—O4—C8178.96 (13)C2—C3—C4—C50.0 (3)
O2i—Cu1—O4—C879.80 (13)C3—C4—C5—O3178.97 (18)
O1W—Cu1—O2i—C1i174.10 (14)C3—C4—C5—C60.8 (3)
O4—Cu1—O2i—C1i90.21 (14)C4—C5—C6—C71.5 (3)
O1—Cu1—O5i—C8i87.26 (15)O3—C5—C6—C7178.31 (18)
O1W—Cu1—O5i—C8i178.81 (15)C5—C6—C7—C21.3 (3)
Cu1—O1—C1—O23.4 (2)O5—C8—C9—C10178.31 (17)
Cu1—O1—C1—C2175.91 (11)O5—C8—C9—C143.2 (2)
Cu1i—O2—C1—O16.0 (2)O4—C8—C9—C14175.90 (16)
Cu1i—O2—C1—C2173.29 (11)O4—C8—C9—C102.6 (2)
Cu1—O4—C8—O53.6 (2)C8—C9—C14—C13178.21 (17)
Cu1—O4—C8—C9175.43 (11)C8—C9—C10—C11179.12 (17)
Cu1i—O5—C8—O41.3 (2)C14—C9—C10—C110.6 (3)
Cu1i—O5—C8—C9177.75 (11)C10—C9—C14—C130.3 (3)
C17—N1—C15—O76.4 (10)C9—C10—C11—C121.0 (3)
C16—N1—C15—O7176.0 (7)C10—C11—C12—C130.4 (3)
O1—C1—C2—C76.7 (2)C10—C11—C12—O6178.60 (19)
O2—C1—C2—C39.2 (2)O6—C12—C13—C14179.57 (19)
O1—C1—C2—C3170.16 (17)C11—C12—C13—C140.5 (3)
O2—C1—C2—C7173.97 (17)C12—C13—C14—C90.9 (3)
Symmetry codes: (i) x, y, z+2; (ii) x, y, z+3; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1, y, z1; (vi) x, y+1, z+2; (vii) x+1, y, z+2; (viii) x1, y, z+1; (ix) x+1, y+1, z1; (x) x+1, y1, z+2; (xi) x, y1, z+2; (xii) x1, y, z+3; (xiii) x+1, y+1, z+1; (xiv) x1, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O6iv0.818 (19)2.040 (19)2.856 (2)175.7 (16)
O1W—H2W···O3v0.86 (2)2.00 (2)2.860 (2)171 (2)
O3—H3A···O4ii0.821.942.744 (2)165
O2W—H3W···O70.86 (3)1.77 (2)2.611 (6)166 (3)
O2W—H4W···O2vi0.81 (3)2.32 (3)3.079 (3)157 (3)
O6—H6A···O2Wvii0.821.842.639 (3)164
C3—H3···O20.932.452.760 (2)100
Symmetry codes: (ii) x, y, z+3; (iv) x, y+1, z; (v) x+1, y, z1; (vi) x, y+1, z+2; (vii) x+1, y, z+2.
(II) Tetrakis(µ-4-methoxybenzoato-κ2O:O')bis[(dimethylformamide-κO)copper(II)] top
Crystal data top
[Cu2(C8H7O3)4(C3H7NO)2]F(000) = 908
Mr = 877.84Dx = 1.450 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3473 reflections
a = 12.2001 (2) Åθ = 1.7–24.9°
b = 18.1548 (4) ŵ = 1.13 mm1
c = 9.2514 (2) ÅT = 296 K
β = 101.042 (1)°Prism, green
V = 2011.16 (7) Å30.09 × 0.07 × 0.06 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3473 independent reflections
Radiation source: fine-focus sealed tube2564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 24.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1314
Tmin = 0.905, Tmax = 0.936k = 2121
32954 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0481P)2 + 1.0802P]
where P = (Fo2 + 2Fc2)/3
3473 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Cu2(C8H7O3)4(C3H7NO)2]V = 2011.16 (7) Å3
Mr = 877.84Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.2001 (2) ŵ = 1.13 mm1
b = 18.1548 (4) ÅT = 296 K
c = 9.2514 (2) Å0.09 × 0.07 × 0.06 mm
β = 101.042 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3473 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2564 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.936Rint = 0.045
32954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.03Δρmax = 0.57 e Å3
3473 reflectionsΔρmin = 0.23 e Å3
257 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.55072 (3)0.45201 (2)0.09644 (4)0.0597 (2)
O10.5703 (2)0.51884 (14)0.1977 (2)0.0779 (9)
O20.54988 (19)0.61824 (13)0.0277 (3)0.0739 (9)
O30.6394 (2)0.53650 (13)0.1882 (2)0.0736 (9)
O40.65873 (18)0.43842 (12)0.0319 (2)0.0668 (8)
O50.61516 (19)0.36784 (12)0.2586 (2)0.0666 (8)
O60.8945 (3)0.82733 (17)0.4535 (4)0.1168 (14)
O70.9425 (2)0.4022 (2)0.5281 (3)0.1168 (14)
N10.6014 (3)0.31144 (16)0.4744 (3)0.0726 (10)
C10.6227 (3)0.60117 (19)0.1390 (4)0.0640 (11)
C20.6927 (3)0.66211 (19)0.2184 (4)0.0644 (12)
C30.7845 (4)0.6489 (2)0.3284 (5)0.0927 (16)
C40.8480 (4)0.7046 (2)0.4012 (5)0.1026 (17)
C50.8221 (3)0.7752 (2)0.3684 (5)0.0856 (16)
C60.7328 (4)0.7916 (2)0.2640 (6)0.105 (2)
C70.6689 (4)0.7345 (2)0.1865 (5)0.1001 (19)
C80.8634 (4)0.8996 (3)0.4348 (6)0.123 (3)
C90.6465 (3)0.47266 (18)0.1526 (4)0.0614 (11)
C100.7268 (3)0.45676 (17)0.2509 (3)0.0575 (11)
C110.8200 (3)0.41320 (19)0.2048 (4)0.0687 (12)
C120.8919 (3)0.3972 (2)0.2976 (4)0.0830 (16)
C130.8694 (3)0.4237 (2)0.4419 (4)0.0761 (14)
C140.7777 (3)0.46720 (19)0.4891 (4)0.0673 (11)
C150.7082 (3)0.48357 (18)0.3941 (3)0.0633 (11)
C160.9174 (4)0.4211 (3)0.6809 (5)0.130 (2)
C170.5726 (3)0.35971 (18)0.3678 (3)0.0667 (11)
C180.6927 (4)0.2616 (2)0.4730 (4)0.0965 (19)
C190.5465 (4)0.3088 (2)0.6006 (4)0.1023 (18)
H30.803800.600400.353900.1110*
H40.909600.693400.473900.1230*
H60.713300.840500.242900.1260*
H70.609000.746400.111800.1210*
H8A0.919600.930200.492300.1840*
H8B0.793600.906900.466400.1840*
H8C0.855100.912500.332700.1840*
H110.834100.394500.109500.0820*
H120.955300.368900.264700.1000*
H140.762900.485400.584900.0810*
H150.646600.513600.426200.0760*
H16A0.974300.401700.729000.1950*
H16B0.914700.473700.691200.1950*
H16C0.846400.400500.725200.1950*
H170.513800.391000.375900.0800*
H18A0.747800.268100.561200.1450*
H18B0.725500.271700.388700.1450*
H18C0.665700.211800.468100.1450*
H19A0.514700.260800.607100.1540*
H19B0.488400.345200.589300.1540*
H19C0.600100.318600.688900.1540*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0766 (3)0.0623 (3)0.0426 (2)0.0156 (2)0.0175 (2)0.0121 (2)
O10.0916 (17)0.0874 (17)0.0626 (14)0.0321 (15)0.0349 (13)0.0212 (13)
O20.0820 (16)0.0734 (15)0.0649 (15)0.0057 (12)0.0104 (12)0.0175 (12)
O30.0984 (17)0.0638 (15)0.0551 (14)0.0105 (12)0.0056 (12)0.0053 (11)
O40.0788 (15)0.0724 (15)0.0524 (13)0.0143 (12)0.0205 (11)0.0101 (11)
O50.0876 (16)0.0639 (14)0.0488 (13)0.0102 (12)0.0147 (11)0.0113 (11)
O60.114 (2)0.078 (2)0.158 (3)0.0109 (18)0.025 (2)0.011 (2)
O70.100 (2)0.171 (3)0.094 (2)0.042 (2)0.0551 (18)0.021 (2)
N10.100 (2)0.0635 (18)0.0499 (16)0.0109 (16)0.0030 (15)0.0124 (14)
C10.075 (2)0.069 (2)0.0538 (19)0.0150 (18)0.0268 (17)0.0077 (17)
C20.068 (2)0.066 (2)0.065 (2)0.0118 (17)0.0276 (17)0.0068 (17)
C30.111 (3)0.069 (2)0.090 (3)0.014 (2)0.001 (2)0.004 (2)
C40.110 (3)0.080 (3)0.107 (3)0.018 (3)0.006 (3)0.009 (3)
C50.073 (2)0.083 (3)0.102 (3)0.011 (2)0.020 (2)0.009 (2)
C60.112 (4)0.058 (2)0.141 (4)0.005 (2)0.018 (3)0.017 (3)
C70.091 (3)0.078 (3)0.123 (4)0.003 (2)0.000 (3)0.024 (3)
C80.116 (4)0.110 (4)0.148 (5)0.013 (3)0.037 (3)0.014 (3)
C90.070 (2)0.064 (2)0.0528 (19)0.0036 (17)0.0185 (16)0.0000 (16)
C100.0631 (19)0.0606 (19)0.0503 (18)0.0012 (15)0.0150 (14)0.0030 (15)
C110.073 (2)0.078 (2)0.056 (2)0.0074 (18)0.0145 (17)0.0075 (17)
C120.068 (2)0.105 (3)0.080 (3)0.020 (2)0.024 (2)0.010 (2)
C130.073 (2)0.094 (3)0.068 (2)0.001 (2)0.0306 (19)0.000 (2)
C140.068 (2)0.084 (2)0.0511 (19)0.0009 (18)0.0147 (16)0.0056 (17)
C150.066 (2)0.071 (2)0.0534 (19)0.0057 (17)0.0131 (16)0.0024 (16)
C160.138 (4)0.184 (5)0.087 (3)0.035 (4)0.068 (3)0.014 (3)
C170.086 (2)0.063 (2)0.0487 (19)0.0012 (17)0.0072 (17)0.0094 (16)
C180.128 (4)0.072 (3)0.076 (3)0.009 (2)0.014 (2)0.012 (2)
C190.155 (4)0.101 (3)0.052 (2)0.033 (3)0.023 (2)0.015 (2)
Geometric parameters (Å, º) top
Cu1—O31.973 (2)C10—C151.389 (4)
Cu1—O41.951 (2)C11—C121.371 (5)
Cu1—O52.180 (2)C12—C131.396 (5)
Cu1—O1i1.967 (2)C13—C141.371 (5)
Cu1—O2i1.978 (3)C14—C151.366 (5)
O1—C91.262 (4)C3—H30.9300
O2—C11.263 (4)C4—H40.9300
O3—C11.262 (4)C6—H60.9300
O4—C91.262 (4)C7—H70.9300
O5—C171.230 (4)C8—H8A0.9600
O6—C51.425 (5)C8—H8B0.9600
O6—C81.368 (6)C8—H8C0.9600
O7—C131.362 (5)C11—H110.9300
O7—C161.430 (5)C12—H120.9300
N1—C171.316 (4)C14—H140.9300
N1—C181.437 (6)C15—H150.9300
N1—C191.454 (5)C16—H16A0.9600
C1—C21.501 (5)C16—H16B0.9600
C2—C31.382 (6)C16—H16C0.9600
C2—C71.366 (5)C17—H170.9300
C3—C41.370 (6)C18—H18A0.9600
C4—C51.341 (5)C18—H18B0.9600
C5—C61.344 (7)C18—H18C0.9600
C6—C71.408 (6)C19—H19A0.9600
C9—C101.487 (5)C19—H19B0.9600
C10—C111.384 (5)C19—H19C0.9600
Cu1···O13.030 (2)C6···H8B2.8100
Cu1···O23.084 (2)C8···H16Axi3.0000
Cu1···O3i3.165 (2)C8···H62.5300
Cu1···O4i3.203 (2)C9···H8Bviii2.9100
Cu1···H14ii3.5800C10···H19Cix2.9400
Cu1···H18Ciii3.5900C10···H8Cviii2.8700
O1···Cu13.030 (2)C12···H18Aix3.0700
O1···O22.805 (3)C14···H16B2.7400
O1···C13.403 (4)C14···H3ix2.8700
O1···C1i3.328 (4)C14···H16C2.7600
O1···O3i2.766 (3)C16···H142.5200
O1···O5i3.030 (3)C17···H7vi3.0600
O1···C17i3.054 (4)C18···H19Ciii3.0300
O2···O12.805 (3)C19···H7vi2.7000
O2···C9i3.295 (4)H3···O32.5600
O2···Cu13.084 (2)H3···C14ii2.8700
O2···O4i2.752 (3)H3···H14ii2.2400
O2···O5i3.015 (3)H4···O7iv2.4800
O3···C14ii3.378 (4)H6···C82.5300
O3···C93.376 (4)H6···H8B2.4300
O3···O53.156 (3)H6···H8C2.2000
O3···O1i2.766 (3)H7···O22.5100
O3···O42.749 (3)H7···N1v2.8000
O3···Cu1i3.165 (2)H7···C17v3.0600
O4···C13.419 (4)H7···C19v2.7000
O4···O53.114 (3)H7···H19Av2.3000
O4···O2i2.752 (3)H8B···C62.8100
O4···Cu1i3.203 (2)H8B···H62.4300
O4···O32.749 (3)H8B···C1vii2.8600
O5···C14ii3.296 (4)H8B···C9vii2.9100
O5···O2i3.015 (3)H8C···C62.6600
O5···O1i3.030 (3)H8C···H62.2000
O5···O43.114 (3)H8C···H16Axi2.4600
O5···O33.156 (3)H8C···C10vii2.8700
O7···C4iv3.244 (5)H11···O42.5100
O1···H17i2.4100H14···Cu1ix3.5800
O1···H152.4700H14···O3ix2.5200
O2···H19Av2.9200H14···C3ix3.1000
O2···H72.5100H14···C162.5200
O3···H32.5600H14···H3ix2.2400
O3···H14ii2.5200H14···H16B2.2700
O4···H18Ciii2.7300H14···H16C2.3700
O4···H112.5100H15···O12.4700
O5···H18B2.3800H16A···C8xii3.0000
O5···H16Cii2.8600H16A···H8Cxii2.4600
O5···H19Aiii2.8700H16B···C142.7400
O7···H4iv2.4800H16B···H142.2700
N1···H7vi2.8000H16C···O5ix2.8600
C1···C9i3.572 (5)H16C···C142.7600
C4···O7iv3.244 (5)H16C···H142.3700
C8···C9vii3.495 (6)H17···H19B2.2200
C8···C10vii3.381 (6)H17···O1i2.4100
C9···C8viii3.495 (6)H18A···C12ii3.0700
C9···C1i3.572 (5)H18A···H19C2.5100
C10···C8viii3.381 (6)H18B···O52.3800
C10···C19ix3.576 (5)H18C···H19A2.6000
C14···C17ix3.249 (5)H18C···Cu1xiii3.5900
C14···O5ix3.296 (4)H18C···O4xiii2.7300
C14···O3ix3.378 (4)H19A···H18C2.6000
C15···C17ix3.354 (4)H19A···O2vi2.9200
C17···C14ii3.249 (5)H19A···H7vi2.3000
C17···C15ii3.354 (4)H19A···O5xiii2.8700
C19···C10ii3.576 (5)H19B···H172.2200
C1···H8Bviii2.8600H19B···C2x3.0900
C2···H19Bx3.0900H19C···C10ii2.9400
C3···H14ii3.1000H19C···H18A2.5100
C6···H8C2.6600H19C···C18xiii3.0300
O3—Cu1—O488.94 (9)C10—C15—C14122.0 (3)
O3—Cu1—O598.81 (8)O5—C17—N1127.0 (3)
O1i—Cu1—O389.18 (10)C2—C3—H3119.00
O2i—Cu1—O3168.34 (10)C4—C3—H3119.00
O4—Cu1—O597.68 (9)C3—C4—H4120.00
O1i—Cu1—O4168.57 (9)C5—C4—H4120.00
O2i—Cu1—O488.94 (10)C5—C6—H6120.00
O1i—Cu1—O593.76 (9)C7—C6—H6120.00
O2i—Cu1—O592.84 (9)C2—C7—H7119.00
O1i—Cu1—O2i90.64 (10)C6—C7—H7119.00
Cu1i—O1—C9126.4 (2)O6—C8—H8A109.00
Cu1i—O2—C1125.2 (2)O6—C8—H8B110.00
Cu1—O3—C1122.1 (2)O6—C8—H8C109.00
Cu1—O4—C9119.8 (2)H8A—C8—H8B109.00
Cu1—O5—C17119.7 (2)H8A—C8—H8C109.00
C5—O6—C8116.1 (4)H8B—C8—H8C109.00
C13—O7—C16118.0 (3)C10—C11—H11120.00
C17—N1—C18120.6 (3)C12—C11—H11119.00
C17—N1—C19121.7 (3)C11—C12—H12120.00
C18—N1—C19117.6 (3)C13—C12—H12120.00
O2—C1—O3124.2 (3)C13—C14—H14120.00
O2—C1—C2117.6 (3)C15—C14—H14120.00
O3—C1—C2118.2 (3)C10—C15—H15119.00
C1—C2—C3122.5 (3)C14—C15—H15119.00
C1—C2—C7121.7 (4)O7—C16—H16A109.00
C3—C2—C7115.8 (4)O7—C16—H16B109.00
C2—C3—C4122.4 (4)O7—C16—H16C109.00
C3—C4—C5120.5 (4)H16A—C16—H16B109.00
O6—C5—C4114.6 (4)H16A—C16—H16C109.00
O6—C5—C6125.6 (3)H16B—C16—H16C110.00
C4—C5—C6119.9 (4)O5—C17—H17117.00
C5—C6—C7119.8 (4)N1—C17—H17116.00
C2—C7—C6121.6 (4)N1—C18—H18A109.00
O1—C9—O4125.1 (3)N1—C18—H18B109.00
O1—C9—C10117.2 (3)N1—C18—H18C109.00
O4—C9—C10117.7 (3)H18A—C18—H18B110.00
C9—C10—C11121.4 (3)H18A—C18—H18C110.00
C9—C10—C15120.6 (3)H18B—C18—H18C110.00
C11—C10—C15118.0 (3)N1—C19—H19A110.00
C10—C11—C12121.0 (3)N1—C19—H19B110.00
C11—C12—C13119.6 (3)N1—C19—H19C109.00
O7—C13—C12115.5 (3)H19A—C19—H19B109.00
O7—C13—C14124.4 (3)H19A—C19—H19C109.00
C12—C13—C14120.2 (3)H19B—C19—H19C109.00
C13—C14—C15119.3 (3)
O4—Cu1—O3—C189.3 (3)O2—C1—C2—C3170.9 (4)
O5—Cu1—O3—C1173.1 (3)O2—C1—C2—C79.5 (6)
O1i—Cu1—O3—C179.5 (3)O3—C1—C2—C39.8 (6)
O3—Cu1—O4—C988.0 (2)O3—C1—C2—C7169.8 (4)
O5—Cu1—O4—C9173.3 (2)C1—C2—C3—C4179.7 (4)
O2i—Cu1—O4—C980.6 (2)C7—C2—C3—C40.0 (7)
O3—Cu1—O5—C1786.5 (2)C1—C2—C7—C6178.2 (4)
O4—Cu1—O5—C17176.6 (2)C3—C2—C7—C61.5 (7)
O1i—Cu1—O5—C173.3 (2)C2—C3—C4—C50.6 (7)
O2i—Cu1—O5—C1794.1 (2)C3—C4—C5—O6179.4 (4)
O3—Cu1—O1i—C9i85.9 (3)C3—C4—C5—C60.4 (7)
O5—Cu1—O1i—C9i175.3 (3)O6—C5—C6—C7179.2 (4)
O4—Cu1—O2i—C1i89.8 (3)C4—C5—C6—C71.9 (7)
O5—Cu1—O2i—C1i172.6 (3)C5—C6—C7—C22.5 (7)
Cu1i—O1—C9—O41.6 (5)O1—C9—C10—C11172.9 (3)
Cu1i—O1—C9—C10177.4 (2)O1—C9—C10—C159.1 (5)
Cu1i—O2—C1—O31.7 (5)O4—C9—C10—C118.0 (5)
Cu1i—O2—C1—C2179.1 (2)O4—C9—C10—C15170.0 (3)
Cu1—O3—C1—O20.6 (5)C9—C10—C11—C12178.2 (3)
Cu1—O3—C1—C2178.6 (2)C15—C10—C11—C120.2 (5)
Cu1—O4—C9—O12.9 (5)C9—C10—C15—C14177.0 (3)
Cu1—O4—C9—C10176.1 (2)C11—C10—C15—C141.0 (5)
Cu1—O5—C17—N1179.6 (3)C10—C11—C12—C131.6 (5)
C8—O6—C5—C4172.9 (4)C11—C12—C13—O7177.0 (3)
C8—O6—C5—C66.1 (7)C11—C12—C13—C141.9 (5)
C16—O7—C13—C12173.5 (4)O7—C13—C14—C15178.1 (3)
C16—O7—C13—C145.3 (6)C12—C13—C14—C150.7 (5)
C18—N1—C17—O51.2 (6)C13—C14—C15—C100.7 (5)
C19—N1—C17—O5178.1 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1; (iii) x, y+1/2, z1/2; (iv) x+2, y+1, z; (v) x+1, y+1/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x, y+3/2, z+1/2; (viii) x, y+3/2, z1/2; (ix) x, y, z1; (x) x+1, y+1, z+1; (xi) x+2, y+1/2, z1/2; (xii) x+2, y1/2, z1/2; (xiii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O7iv0.932.483.244 (5)139
C14—H14···O3ix0.932.523.378 (4)154
C17—H17···O1i0.932.413.054 (4)126
C18—H18B···O50.962.382.798 (4)105
Symmetry codes: (i) x+1, y+1, z; (iv) x+2, y+1, z; (ix) x, y, z1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu2(C7H5O3)4(H2O)2]·2C3H7NO·2H2O[Cu2(C8H7O3)4(C3H7NO)2]
Mr893.80877.84
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)296296
a, b, c (Å)9.6946 (2), 10.4874 (2), 10.6819 (2)12.2001 (2), 18.1548 (4), 9.2514 (2)
α, β, γ (°)82.458 (1), 66.951 (1), 81.904 (1)90, 101.042 (1), 90
V3)985.92 (3)2011.16 (7)
Z12
Radiation typeMo KαMo Kα
µ (mm1)1.161.13
Crystal size (mm)0.07 × 0.06 × 0.050.09 × 0.07 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Bruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Multi-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.923, 0.9440.905, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
25865, 7410, 6012 32954, 3473, 2564
Rint0.0330.045
(sin θ/λ)max1)0.7910.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.06 0.038, 0.105, 1.03
No. of reflections74103473
No. of parameters269257
No. of restraints60
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.460.57, 0.23

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POVRay (Cason, 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) for (I) top
Cu1—O11.9519 (12)Cu1—O2i1.9533 (12)
Cu1—O1W2.1484 (16)Cu1—O5i1.9622 (14)
Cu1—O41.9974 (13)
O1—Cu1—O1W91.59 (6)O1W—Cu1—O2i99.17 (6)
O1—Cu1—O488.05 (6)O1W—Cu1—O5i95.12 (6)
O1—Cu1—O2i169.14 (6)O2i—Cu1—O489.40 (6)
O1—Cu1—O5i89.51 (6)O4—Cu1—O5i168.95 (6)
O1W—Cu1—O495.72 (6)O2i—Cu1—O5i91.00 (6)
Symmetry code: (i) x, y, z+2.
Selected geometric parameters (Å, º) for (II) top
Cu1—O31.973 (2)Cu1—O1i1.967 (2)
Cu1—O41.951 (2)Cu1—O2i1.978 (3)
Cu1—O52.180 (2)
O3—Cu1—O488.94 (9)O1i—Cu1—O4168.57 (9)
O3—Cu1—O598.81 (8)O2i—Cu1—O488.94 (10)
O1i—Cu1—O389.18 (10)O1i—Cu1—O593.76 (9)
O2i—Cu1—O3168.34 (10)O2i—Cu1—O592.84 (9)
O4—Cu1—O597.68 (9)O1i—Cu1—O2i90.64 (10)
Symmetry code: (i) x+1, y+1, z.
Comparison of bond lengths (Å) and angles (°) of dimeric copper(II) carboxylate paddle-wheel complexes [Cu2(RCOO)4(L)2] where L is an oxygen-donor ligand top
NoComplexpKaCu···CuCu—OaxAverage O—C—OAverage Oax—Cu—Oeq (α)Average Oeq—Cu—Oeq (β)Average Cu—Cu—OeqCu—Cu—OaxReference
1[Cu2(2-NO2C6H4COO)4(H2O)2].2EtOH2.172.6543 (10)2.1331 (15)127.02 (13)95.76 (6)168.45 (5)84.28 (4)172.24 (4)a
2[Cu2(3-OCH3C6H4COO)4(CH3CN)2]4.072.6433 (3)2.1703 (14)125.33 (14)95.94 (6)168.07 (5)84.05 (4)176.58 (5)b
3[Cu2Fe4(C5H5)4(C5H4COO)4(CH3OH)2].2CH3OH4.22.5936 (14)2.154 (4)125.75 (5)95.04 (16)169.83 (16)84.92 (11)170.78 (12)c
4[Cu2(C10H7CH2COO)4(DMF)2]4.242.6485 (6)2.1535 (19)126.05 (3)96.07 (8)167.82 (8)83.92 (6)169.88 (6)d
5[Cu2(4-OCH3C6H4COO)4(DMF)2]4.482.6279 (7)2.810 (2)124.65 (3)95.77 (9)168.46 (9)84.27 (7)173.20 (7)e
6[Cu2(4-OHC6H4COO)4(H2O)2].2DMF.2H2O4.592.6047 (3)2.1484 (13)124.25 (15)95.4 (6)169.05 (5)84.59 (4)177.34 (4)f
References: (a) Moncol et al. (2006); (b) Kar et al. (2011); (c) Artetxe et al. (2011); (d) Yin et al. (2012); (e) present work, (II); (f) present work, (I).
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O6ii0.818 (19)2.040 (19)2.856 (2)175.7 (16)
O1W—H2W···O3iii0.86 (2)2.00 (2)2.860 (2)171 (2)
O3—H3A···O4iv0.82001.94002.744 (2)165.00
O2W—H3W···O70.86 (3)1.77 (2)2.611 (6)166 (3)
O2W—H4W···O2v0.81 (3)2.32 (3)3.079 (3)157 (3)
O6—H6A···O2Wvi0.82001.84002.639 (3)164.00
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y, z1; (iv) x, y, z+3; (v) x, y+1, z+2; (vi) x+1, y, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds