Download citation
Download citation
link to html
Two new symmetric double-armed oxa­diazole-bridged ligands, 4-methyl-{5-[5-methyl-2-(pyridin-3-yl­carbon­yl­oxy)­phen­yl]-1,3,4-oxa­diazol-2-yl}phenyl pyridine-3-carboxyl­ate (L1) and 4-methyl-{5-[5-methyl-2-(pyridin-4-yl­carbon­yl­oxy)­phen­yl]-1,3,4-oxa­diazol-2-yl}phenyl pyridine-4-carboxyl­ate (L2), were prepared by the reaction of 2,5-bis­(2-hy­droxy-5-methyl­phen­yl)-1,3,4-oxa­diazole with nicotinoyl chloride and iso­nicotinoyl chloride, respectively. Ligand L1 can be used as an organic clip to bind CuII cations and generate a mol­ecular complex, bis­(4-methyl-{5-[5-methyl-2-(pyridin-3-yl­carbon­yl­oxy)phen­yl]-1,3,4-oxa­diazol-2-yl}phenyl pyridine-3-carboxyl­ate)bis­(perchlorato)­copper(II), [Cu(ClO4)2(C28H20N4O5)2], (I). In com­pound (I), the CuII cation is located on an inversion centre and is hexa­coordinated in a distorted octa­hedral geometry, with the pyridine N atoms of two L1 ligands in the equatorial positions and two weakly coordinating perchlorate counter-ions in the axial positions. The two arms of the L1 ligands bend inward and converge at the CuII coordination point to give rise to a spirometallocycle. Ligand L2 binds CuI cations to generate a supra­molecule, diaceto­nitrile­di-[mu]3-iodido-di-[mu]2-iodido-bis­(4-methyl-{5-[5-methyl-2-(pyridin-4-yl­carbon­yl­oxy)­phen­yl]-1,3,4-oxa­diazol-2-yl}phenyl pyridine-4-carboxyl­ate)tetracopper(I), [Cu4I4(CH3CN)2(C28H20N4O5)2], (II). The asymmetric unit of (II) indicates that it contains two CuI atoms, one L2 ligand, one aceto­nitrile ligand and two iodide ligands. Both of the CuI atoms are four-coordinated in an approximately tetra­hedral environment. The molecule is centrosymmetric and the four I atoms and four CuI atoms form a rope-ladder-type [Cu4I4] unit. Discrete units are linked into one-dimensional chains through [pi]-[pi] inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113010913/ov3026sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113010913/ov3026Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113010913/ov3026IIsup3.hkl
Contains datablock II

CCDC references: 950428; 950429

Comment top

In recent years, research into the design and synthesis of metal–organic frameworks (MOFs) has become an active area in the fields of crystal engineering and supramolecular chemistry, not only because of their tremendous potential applications in gas storage (Thallapally et al., 2008; Rowsell & Yaghi, 2005), selective absorption (Dong et al., 2007; Xiao et al., 2011), catalysis (Wu & Lin, 2007), luminescent materials (Chen et al., 2012) and heterogeneous catalysis (Dang et al., 2010), but also because of their intriguing variety of architectures and topologies (Biradha et al., 2006). Numerous supramolecular networks based on metal-containing molecular building blocks linked through C—H···π (Munshi et al., 2004) and ππ (Khavasi & Fard, 2010) interactions have recently been shown to have a dramatic effect on molecular packing features.

Oxadiazole-bridged compounds are very important organic ligands in organometallic chemistry. The bridging five-membered oxadiazole rings ensure that the geometries of these ligands are not linear. The specific geometry of this type of ligand may result in coordination polymers with novel network patterns not achievable by other rigid linear organic ligands. They are widely used in the construction of organometallic complexes (Fang et al., 2011; Du et al., 2011). During the past decade, the design and construction of both rigid and flexible organic ligands bridged by 1,3,4-oxadiazole have been pursued, due to their diversity in coordination chemistry and model applications as functional materials (Jabbour et al., 2002; Hughes & Bryce, 2005; Du et al., 2010). As a result of the bent shape of the oxadiazole-containing ligands and their use in electroluminescent and sensitizing applications, our group has been exploring coordination chemistry based on oxadiazole-bridged bent organic ligands (Dong et al., 2003). It is well known that N-donor ligands, such as those containing pyridyl groups, are good condidates for the assembly of versatile structures (Fujita et al., 2007). As part of our continuing study of coordination compounds with oxadiazole-bridged ligands, we incorporated pyridyl groups into the ligands 4-methyl-{5-[5-methyl-2-(pyridin-3-ylcarbonyloxy)phenyl]-1,3,4-oxadiazol-2-yl}phenyl pyridine-3-carboxylate (L1) and 4-methyl-{5-[5-methyl-2-(pyridin-4-ylcarbonyloxy)phenyl]-1,3,4-oxadiazol-2-yl}phenyl pyridine-4-carboxylate (L2), and two new complexes, [Cu(ClO4)2(L1)2], (I), and [Cu4I4(L2)2(CH3CN)2], (II), were obtained.

Complex (I) is generated from the assembly of L1 and copper perchlorate (Fig. 1; relevant bond distances and angles are provided in Table 1) and crystallizes in the triclinic space group P1. Our group reported a study of the copper perchlorate coordination chemistry of 2,5-bis[2-(4-pyridylcarbonyl)phenyl]-1,3,4-oxadiazole [···2-(4-pyridylcarbonyloxy)phenyl···?] (Dong et al., 2006). In that study, the CuII centre in compound (III) (see scheme) lies in a six-coordinate 4+2 pseudo-octahedral geometry, defined by four pyridyl N-donors from two ligands and two O atoms from two weakly coordinated ClO4- anions. In complex (I), the CuII centre shows a coordination environment similar to that of (III). The CuII centre in (I) is located on an inversion centre at (1,0,1) and is coordinated in a distorted octahedral geometry by the pyridyl N atoms of two L1 ligands in the equatorial positions and by two weakly coordinating perchlorate counter-ions in the apical positions. The torsion angles for the two benzene rings are -25.6 (6) (C7—C12—C14—N2) and 28.1 (6)° (N3—C15—C16—C21). The corresponding dihedral angles formed by the planes of the three rings are 26.5 (1) (C7–C12 and O1/N2–N3/C1–C15), 29.0 (1) (C16–C21 and O1/N2/N3/C14–C15) and 32.3 (1)° (C7–C12 and C16–C21). The dihedral angle between the two pyridine rings is 76.9 (1)° (N1-plane and N4-plane).

In (I), the two flexible pyridine-3-carboxylate arms on each L1 ligand bend inward, and the CuII centre links two ligands into a spirometallocycle consisting of two 19-membered rings. The two coordinated ClO4- counter-ions are located on both sides of the ring plane. Two ClO4- anions display anion···π interactions through atoms O7 and O7i [symmetry code: (i) -x + 2, -y, -z + 2] to the N2i/N3i and N2/N3 oxadiazole rings, respectively, of the two L1 ligands (Fig. 2). The centroid···O distances are both 2.95 (3) Å, shorter than the corresponding distance of 3.26 (1) Å reported in the literature (Mastropietro et al., 2012). This type of noncovalent supramolecular interaction involving anions and aromatic heterocyclic nitrogen systems is a subject of increasing interest from both theoretical and experimental points of view because of their relevance in chemistry and structral biology, and also because of their potential role in the design of anion receptors (Mascal et al., 2002; Ahuja & Samuelson, 2003).

Compound (II) is generated from the assembly of L2 and copper iodide (Fig. 3; relevant bond distances are provided in Table 2), and it crystallizes in the triclinic space group P1 as well. Crystallographic analysis of (II) indicates that it contains two CuI cations, one L2 ligand, one acetonitrile ligand and two iodide ligands. There are two types of CuI centre and they are located on an inversion centre at (1/2,1/2,0). Atoms Cu1 and Cu2 are both four-coordinate in an appoximately tetrahedral environment. Atom Cu1 lies in a {CuNI3} coordination environment consisting of one pyridyl N-donor and three iodide anions. Atom Cu2 lies in a {CuN2I2} coordination environment consisting of one pyridyl N-donor from L2, one acetonitrile N-donor and two iodide anions. The two benzene rings and the central oxadiazole ring are almost coplanar. The corresponding dihedral angles formed by the planes of the three rings are 7.5 (2) (C16–C22 and O1/N2–N3/C14–C15), 1.0 (1) (C7–C13 and O1/N2–N3/C14–C15) and 7.8 (1)° (C7–C13 and C16–C22). The dihedral angle between the two pyridyl rings is 72.3 (2)° (N1-plane and N4-plane). The two pyridyl N atoms of the ligand chelate to two CuI cations alternately (Yang et al., 2007; Addison & Rao, 1984). In addition, four I atoms and four CuI cations form a rope-ladder type [Cu4I4] unit extending along the (021) plane (Fig. 5). One [Cu4I4] unit and two ligands form two malposed 23-member bimetallic rings in a head-to-head fashion. Two acetonitrile molecules, which act as terminal functional groups, prevent the rope ladder from extending.

In the solid state, complex (II) assembles into a one-dimensional structure through weak ππ interactions (Fig. 4), which occur between pairs of oxadiazole rings and phenyl rings. The centroid-to-centroid distance for these ππ interactions is 3.5 (6) Å for pairs of rings involving atoms O1i/N2i–N3i/C14i–C15i [symmetry code: (i) -x + 1, -y + 1, -z] and atoms C7–C10/C12–C13, which is close to the corresponding distance of 3.49 Å reported in the literature (Choudhury et al., 2008). The perpendicular distance is 3.3 (2) Å.

In summary, through the assembly of similar ligands with copper salts, two types of compound have been obtained. Compound (I) is a discrete metal complex with an `8'-shaped structure, while (II) has a different structure of a [Cu4I4] unit; one [Cu4I4] unit and two ligands form two bimetallic rings in a head-to-head fashion. It is clearly demonstrated that these types of ligand can act as distinct building blocks, leading to different complexes. We are currently extending this research by preparing new symmetric and nonsymmetric oxadiazole-containing ligands of this type containing different coordination functional groups and having different orientations of the terminal coordination sites. We anticipate that such organic ligands will result in a variety of new coordination polymers with novel polymeric patterns and interesting chemical and physical properties.

Related literature top

For related literature, see: Addison & Rao (1984); Ahuja & Samuelson (2003); Biradha et al. (2006); Chen et al. (2012); Choudhury et al. (2008); Dang et al. (2010); Dong et al. (2003, 2006, 2007); Du et al. (2010, 2011); Fang et al. (2011); Fujita et al. (2007); Hughes & Bryce (2005); Jabbour et al. (2002); Khavasi & Fard (2010); Mascal et al. (2002); Mastropietro et al. (2012); Munshi et al. (2004); Rowsell & Yaghi (2005); Thallapally et al. (2008); Wu & Lin (2007); Xiao et al. (2011); Yang et al. (2007).

Experimental top

For the preparation of L1, 2,5-bis(2-hydroxy-5-methylphenyl)-1,3,4-oxadiazole (1.41 g, 5.00 mmol), nicotinoyl chloride (1.96 g, 11.00 mmol) and triethylamine (2.00 ml, 15.00 mmol) were combined in dry tetrahydrofuran (50 ml) with stirring at ambient temperature for 6 h. The reaction was monitored by thin-layer chromatography (TLC). After removal of the solvent under vacuum, the residue was purified by silica-gel column chromatography using dichloromethane and tetrahydrofuran (1:1 v/v) as eluent to afford L1 as a white solid (yield 2.20 g, 4.50 mmol, 89.52%). Spectroscopic analysis: 1H NMR (300 MHz, CDCl3, 298 K, TMS, δ, p.p.m.): 9.48 (t, 2H, –C5H4N), 8.85 (d, 2H, –C5H4N), 8.50 (d, 2H, –C5H4N), 7.65 (s, 2H, –C6H4), 7.45 (d, 2H, –C6H4), 7.35 (d, 2H, –C6H4), 7.23 (d, 2H, –C6H4), 2.26 (s, 6H, –CH3); 13C NMR (150 MHz, CDCl3, δ, p.p.m.): 164.09, 161.60, 153.93, 151.57, 146.04, 137.97, 136.83, 133.61, 129.54, 125.52, 123.82, 123.53, 116.74, 20.74; IR (KBr pellet, ν, cm-1): 3420 (m), 2930 (m), 1740 (vs), 1635 (m), 1592 (m), 1510 (m), 1419 (m), 1273 (vs), 1207 (s), 1084 (s), 1020 (s), 875 (m), 727 (m). Elemental analysis, calculated for C28H20N4O5: C 68.29, H 4.09, N 11.38%; found: C 68.21, H 4.13, N 11.33%.

For the preparation of L2, 2,5-bis(2-hydroxy-5-methylphenyl)-1,3,4-oxadiazole (1.41 g, 5.00 mmol), isonicotinoyl chloride (1.96 g, 11.00 mmol) and triethylamine (2.00 ml, 15.00 mmol) were combined in dry tetrahydrofuran (50 ml) with stirring at ambient temperature for 6 h. The reaction was monitored by TLC. After removal of the solvent under vacuum, the residue was purified by silica-gel column chromatography using dichloromethane and tetrahydrofuran (1:1 v/v) as eluent to afford L2 as a white solid (yield 2.00 g, 4.50 mmol, 81.53%). Spectroscopic analysis: 1H NMR (300 MHz, CDCl3, 298 K, TMS, δ, p.p.m.): 8.87 (s, 4H, –C5H4N), 8.07 (d, 4H, –C5H4N), 7.63 (s, 2H, –C6H3), 7.39 (s, 2H, –C6H3), 7.23 (d, 2H, –C6H3), 2.25 (s, 6H, –CH3); 13C NMR (150 MHz, CDCl3, δ, p.p.m.): 164.02, 161.54, 150.76, 145.97, 137.01, 136.70, 133.71, 129.53, 123.66, 123.47, 116.55, 20.66; IR (KBr pellet, ν, cm-1): 3445 (m), 2927 (m), 1749 (vs), 1635 (m), 1542 (m), 1509 (m), 1293 (vs), 1274 (vs), 1231 (m), 1101 (m), 1062 (m), 874 (m), 726 (m), 749 (s), 694 (s). Elemental analysis, calculated for C28H20N4O5: C 68.29, H 4.09, N 11.38%; found: C 68.19, H 4.16, N 11.36%.

For the preparation of complex (I), a solution of Cu(ClO4)2.6H2O (11.11 mg, 0.030 mmol) in CH3OH and CH3CH2OH (1:1 v/v, 8 ml) was layered onto a solution of L1 (14.82 mg, 0.030 mmol) in CH2Cl2 (8 ml). The system was left for about one week at room temperature and purple crystals of (I) were obtained (yield 18.71 mg, 75.32%). Spectroscopic analysis: IR (KBr pellet, ν, cm-1): 3420 (m), 2930 (m), 1740 (vs), 1635 (m), 1592 (m), 1510 (m), 1419 (m), 1273 (vs), 1207 (s), 1084 (s), 1020 (s), 875 (m), 727 (m).

For the preparation of complex (II), a solution of CuI (5.73 mg, 0.030 mmol) in CH3CN (8 ml) was layered on to a solution of L2 (14.84 mg, 0.030 mmol) in tetrahydrofuran (8 ml). The system was left for about one week at room temperature and yellow crystals of (II) were obtained (yield 10.82 mg, 79.21%). Spectroscopic analysis: IR (KBr pellet, ν, cm-1): 3445 (m), 2927 (m), 1749 (vs), 1635 (m), 1542 (m), 1509 (m), 1293 (vs), 1274 (vs), 1231 (m), 1101 (m), 1062 (m), 874 (m), 726 (m), 749 (s), 694 (s).

Refinement top

For complex (I), atoms C1, C2 and C3 were disordered over two orientations, with refined site-occupancy factors of 0.30 (4) and 0.70 (4), and the C3—C4 and C3'—C4 bonds were restrained to be the same within a standard deviation of 0.01 Å. The C2—C3 and C2'—C3' bonds were also restrained to be the same within a standard deviation of 0.01 Å. In total, two restraints were used in modelling the disorder. H atoms attached to C atoms were placed in geometrically idealized positions and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

For complex (II), H atoms attached to C atoms were placed in geometrically idealized positions and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

For both compounds, data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008), POV-RAY (Cason, 2003) and DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x + 2, -y, -z + 2.]
[Figure 2] Fig. 2. A view of symmetric unit of (I), showing the atom-numbering scheme. The anion···π interactions between the perchlorate anion and the two L1 ligands are shown as dashed lines. [Symmetry code: (i) -x + 2, -y, -z + 2.]
[Figure 3] Fig. 3. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x + 1, -y + 1, -z.]
[Figure 4] Fig. 4. The packing of (II), showing the one-dimensional chains driven by ππ interactions (dashed lines).
[Figure 5] Fig. 5. The [Cu4I4] unit in (II), extending along the (021) plane. [Symmetry code: (i) -x + 1, -y + 1, -z.]
(I) Bis(4-methyl-{5-[5-methyl-2-(pyridin-3-ylcarbonyloxy)phenyl]-1,3,4-oxadiazol-2-yl}phenyl pyridine-3-carboxylate)bis(perchlorato)copper(II) top
Crystal data top
[Cu(ClO4)2(C28H20N4O5)2]Z = 1
Mr = 1247.40F(000) = 639
Triclinic, P1Dx = 1.485 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.342 (8) ÅCell parameters from 1591 reflections
b = 10.408 (8) Åθ = 2.3–22.2°
c = 15.633 (12) ŵ = 0.57 mm1
α = 72.226 (11)°T = 298 K
β = 82.736 (12)°Block, purple
γ = 60.549 (9)°0.21 × 0.11 × 0.08 mm
V = 1394.7 (18) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5104 independent reflections
Radiation source: fine-focus sealed tube3514 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1212
Tmin = 0.890, Tmax = 0.956k = 1211
7366 measured reflectionsl = 1218
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0726P)2 + 0.2788P]
where P = (Fo2 + 2Fc2)/3
5104 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 0.49 e Å3
2 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu(ClO4)2(C28H20N4O5)2]γ = 60.549 (9)°
Mr = 1247.40V = 1394.7 (18) Å3
Triclinic, P1Z = 1
a = 10.342 (8) ÅMo Kα radiation
b = 10.408 (8) ŵ = 0.57 mm1
c = 15.633 (12) ÅT = 298 K
α = 72.226 (11)°0.21 × 0.11 × 0.08 mm
β = 82.736 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5104 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3514 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.956Rint = 0.026
7366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0592 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.02Δρmax = 0.49 e Å3
5104 reflectionsΔρmin = 0.36 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C40.6373 (4)0.0343 (4)0.8700 (3)0.0511 (10)
C50.7758 (4)0.0069 (4)0.9000 (2)0.0456 (9)
H50.85760.09160.88710.055*
C60.6158 (4)0.0464 (5)0.8141 (3)0.0551 (10)
C70.7395 (4)0.2706 (4)0.7659 (3)0.0486 (9)
C80.6761 (5)0.3652 (5)0.7851 (3)0.0642 (12)
H80.61780.36910.83530.077*
C90.7001 (5)0.4551 (5)0.7285 (3)0.0676 (12)
H90.65820.52000.74190.081*
C100.7843 (4)0.4501 (5)0.6535 (3)0.0584 (11)
C110.8434 (4)0.3520 (5)0.6353 (3)0.0544 (10)
H110.89890.34620.58400.065*
C120.8239 (4)0.2612 (4)0.6900 (3)0.0474 (9)
C130.8087 (5)0.5484 (6)0.5934 (4)0.0826 (15)
H13A0.83930.65230.62920.124*
H13B0.88450.54620.55150.124*
H13C0.71790.50940.56110.124*
C140.8965 (4)0.1662 (4)0.6714 (3)0.0451 (9)
C151.0684 (4)0.1085 (4)0.6241 (3)0.0448 (9)
C161.2096 (4)0.1293 (4)0.5830 (2)0.0462 (9)
C171.2653 (4)0.2022 (4)0.5147 (3)0.0517 (10)
H171.20920.23430.49350.062*
C181.4018 (4)0.2279 (4)0.4781 (3)0.0541 (10)
C191.4847 (5)0.1822 (5)0.5125 (3)0.0601 (11)
H191.57710.19940.48900.072*
C201.4338 (4)0.1120 (5)0.5806 (3)0.0593 (11)
H201.49230.08420.60330.071*
C211.2969 (4)0.0835 (4)0.6144 (3)0.0484 (9)
C221.4585 (5)0.3024 (5)0.4030 (3)0.0714 (13)
H22A1.49800.41160.42710.107*
H22B1.53520.28050.37290.107*
H22C1.37850.26270.36110.107*
C231.1989 (4)0.1327 (5)0.6685 (3)0.0501 (10)
C241.1406 (4)0.1844 (4)0.7505 (3)0.0464 (9)
C251.1310 (4)0.3182 (5)0.7572 (3)0.0574 (11)
H251.16090.37720.71030.069*
C261.0769 (5)0.3626 (5)0.8337 (3)0.0663 (12)
H261.07050.45160.83990.080*
C271.0327 (4)0.2743 (5)0.9005 (3)0.0572 (10)
H270.99510.30580.95200.069*
C281.0929 (4)0.1006 (4)0.8204 (2)0.0456 (9)
H281.09710.01190.81530.055*
Cl10.79045 (12)0.35642 (12)1.11101 (8)0.0620 (3)
Cu11.00000.00001.00000.0462 (2)
N10.7987 (3)0.0684 (4)0.9468 (2)0.0507 (8)
N20.8640 (3)0.0468 (4)0.6954 (2)0.0511 (8)
N30.9776 (3)0.0077 (4)0.6642 (2)0.0509 (8)
N41.0405 (3)0.1439 (3)0.8958 (2)0.0479 (8)
O11.0239 (3)0.2121 (3)0.62421 (17)0.0474 (6)
O20.7295 (3)0.1906 (3)0.82628 (17)0.0495 (6)
O30.5107 (3)0.0069 (4)0.7652 (2)0.0818 (10)
O41.2472 (3)0.0193 (3)0.68617 (17)0.0483 (6)
O51.2029 (3)0.2143 (3)0.5975 (2)0.0743 (9)
O60.6445 (4)0.3796 (5)1.1170 (4)0.151 (2)
O70.8322 (6)0.3522 (5)1.1930 (3)0.1442 (19)
O80.7933 (5)0.4778 (4)1.0446 (3)0.1182 (16)
O90.8848 (3)0.2139 (3)1.0887 (2)0.0764 (9)
C10.700 (4)0.209 (5)0.940 (3)0.064 (8)0.30 (4)
H10.72380.27160.95930.076*0.30 (4)
C20.561 (3)0.267 (4)0.905 (4)0.080 (11)0.30 (4)
H20.48610.36330.90820.096*0.30 (4)
C30.532 (3)0.186 (2)0.865 (3)0.080 (11)0.30 (4)
H30.44210.23030.83490.096*0.30 (4)
C1'0.6731 (19)0.1792 (18)0.9743 (13)0.066 (4)0.70 (4)
H1'0.68480.22871.01090.079*0.70 (4)
C2'0.5315 (15)0.2208 (18)0.9507 (13)0.082 (4)0.70 (4)
H2'0.44970.29770.97000.098*0.70 (4)
C3'0.5132 (11)0.1480 (15)0.8991 (11)0.066 (4)0.70 (4)
H3'0.41820.17350.88290.079*0.70 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.040 (2)0.057 (2)0.057 (3)0.0185 (19)0.0036 (18)0.024 (2)
C50.0377 (19)0.053 (2)0.051 (2)0.0215 (17)0.0060 (17)0.0239 (19)
C60.041 (2)0.076 (3)0.062 (3)0.035 (2)0.006 (2)0.024 (2)
C70.044 (2)0.056 (2)0.056 (2)0.0274 (18)0.0025 (19)0.022 (2)
C80.061 (3)0.083 (3)0.073 (3)0.050 (2)0.016 (2)0.030 (3)
C90.070 (3)0.076 (3)0.085 (3)0.052 (3)0.006 (3)0.033 (3)
C100.051 (2)0.071 (3)0.072 (3)0.034 (2)0.002 (2)0.036 (2)
C110.045 (2)0.069 (3)0.058 (3)0.029 (2)0.0022 (19)0.026 (2)
C120.0383 (19)0.058 (2)0.054 (2)0.0256 (18)0.0030 (18)0.022 (2)
C130.080 (3)0.085 (3)0.110 (4)0.043 (3)0.002 (3)0.054 (3)
C140.040 (2)0.057 (2)0.046 (2)0.0269 (18)0.0023 (17)0.0192 (19)
C150.043 (2)0.050 (2)0.048 (2)0.0269 (18)0.0035 (18)0.0127 (18)
C160.047 (2)0.054 (2)0.043 (2)0.0296 (18)0.0072 (18)0.0145 (18)
C170.058 (2)0.058 (2)0.050 (2)0.035 (2)0.005 (2)0.019 (2)
C180.053 (2)0.056 (2)0.053 (2)0.027 (2)0.015 (2)0.018 (2)
C190.052 (2)0.068 (3)0.067 (3)0.034 (2)0.021 (2)0.025 (2)
C200.051 (2)0.074 (3)0.068 (3)0.040 (2)0.011 (2)0.024 (2)
C210.054 (2)0.055 (2)0.043 (2)0.0320 (19)0.0068 (19)0.0144 (18)
C220.079 (3)0.080 (3)0.069 (3)0.045 (3)0.022 (3)0.034 (3)
C230.0360 (19)0.056 (2)0.057 (3)0.0234 (18)0.0069 (19)0.014 (2)
C240.0364 (19)0.052 (2)0.051 (2)0.0219 (17)0.0005 (17)0.0136 (19)
C250.053 (2)0.056 (2)0.068 (3)0.033 (2)0.000 (2)0.012 (2)
C260.073 (3)0.049 (2)0.084 (3)0.032 (2)0.008 (3)0.019 (2)
C270.063 (3)0.060 (3)0.058 (3)0.029 (2)0.001 (2)0.030 (2)
C280.046 (2)0.050 (2)0.047 (2)0.0250 (18)0.0055 (18)0.0192 (18)
Cl10.0616 (6)0.0505 (6)0.0743 (8)0.0240 (5)0.0045 (6)0.0206 (6)
Cu10.0479 (4)0.0619 (4)0.0419 (4)0.0314 (3)0.0045 (3)0.0240 (3)
N10.0465 (18)0.0529 (19)0.061 (2)0.0241 (16)0.0020 (16)0.0272 (17)
N20.0413 (17)0.058 (2)0.062 (2)0.0279 (15)0.0086 (16)0.0243 (17)
N30.0443 (17)0.057 (2)0.061 (2)0.0294 (16)0.0076 (16)0.0231 (17)
N40.0468 (18)0.0517 (19)0.053 (2)0.0255 (15)0.0009 (15)0.0215 (16)
O10.0426 (14)0.0593 (16)0.0548 (16)0.0309 (13)0.0088 (12)0.0263 (13)
O20.0446 (14)0.0597 (17)0.0532 (16)0.0282 (13)0.0038 (12)0.0228 (14)
O30.0514 (17)0.096 (2)0.108 (3)0.0283 (17)0.0227 (18)0.044 (2)
O40.0534 (15)0.0577 (16)0.0467 (15)0.0355 (13)0.0084 (13)0.0187 (13)
O50.081 (2)0.0655 (19)0.0581 (19)0.0322 (17)0.0236 (17)0.0081 (16)
O60.067 (2)0.154 (4)0.272 (7)0.056 (3)0.045 (3)0.126 (5)
O70.234 (6)0.121 (4)0.090 (3)0.091 (4)0.038 (3)0.020 (3)
O80.152 (4)0.057 (2)0.102 (3)0.029 (2)0.037 (3)0.016 (2)
O90.0608 (18)0.0482 (16)0.114 (3)0.0201 (14)0.0094 (18)0.0284 (18)
C10.051 (12)0.076 (18)0.09 (2)0.035 (11)0.011 (14)0.050 (17)
C20.038 (11)0.046 (12)0.15 (3)0.007 (8)0.011 (14)0.054 (17)
C30.028 (9)0.10 (2)0.09 (2)0.007 (11)0.008 (12)0.040 (15)
C1'0.059 (8)0.060 (6)0.086 (10)0.021 (4)0.003 (6)0.045 (7)
C2'0.049 (5)0.069 (7)0.115 (10)0.007 (5)0.005 (6)0.049 (7)
C3'0.049 (5)0.065 (5)0.087 (8)0.021 (4)0.001 (4)0.037 (6)
Geometric parameters (Å, º) top
C4—C51.379 (5)C22—H22A0.9600
C4—C31.390 (10)C22—H22B0.9600
C4—C3'1.394 (7)C22—H22C0.9600
C4—C61.482 (5)C23—O51.184 (5)
C5—N11.334 (4)C23—O41.350 (4)
C5—H50.9300C23—C241.484 (5)
C6—O31.197 (5)C24—C281.380 (5)
C6—O21.349 (5)C24—C251.382 (5)
C7—C81.377 (5)C25—C261.368 (6)
C7—C121.389 (5)C25—H250.9300
C7—O21.402 (4)C26—C271.360 (6)
C8—C91.393 (6)C26—H260.9300
C8—H80.9300C27—N41.344 (5)
C9—C101.374 (6)C27—H270.9300
C9—H90.9300C28—N41.345 (5)
C10—C111.374 (5)C28—H280.9300
C10—C131.506 (6)Cl1—O81.379 (4)
C11—C121.388 (5)Cl1—O71.385 (4)
C11—H110.9300Cl1—O61.402 (4)
C12—C141.458 (5)Cl1—O91.442 (3)
C13—H13A0.9600Cu1—N42.006 (3)
C13—H13B0.9600Cu1—N4i2.006 (3)
C13—H13C0.9600Cu1—N1i2.038 (3)
C14—N21.280 (5)Cu1—N12.038 (3)
C14—O11.363 (4)Cu1—O92.676 (3)
C15—N31.289 (4)N1—C11.29 (4)
C15—O11.364 (4)N1—C1'1.375 (17)
C15—C161.459 (5)N2—N31.410 (4)
C16—C171.398 (5)C1—C21.38 (4)
C16—C211.400 (5)C1—H10.9300
C17—C181.382 (5)C2—C31.342 (11)
C17—H170.9300C2—H20.9300
C18—C191.386 (6)C3—H30.9300
C18—C221.503 (6)C1'—C2'1.373 (19)
C19—C201.378 (6)C1'—H1'0.9300
C19—H190.9300C2'—C3'1.346 (9)
C20—C211.366 (5)C2'—H2'0.9300
C20—H200.9300C3'—H3'0.9300
C21—O41.395 (4)
C5—C4—C3113.6 (12)O5—C23—C24124.3 (4)
C5—C4—C3'118.3 (6)O4—C23—C24110.8 (3)
C5—C4—C6122.3 (3)C28—C24—C25119.2 (4)
C3—C4—C6119.7 (12)C28—C24—C23120.3 (3)
C3'—C4—C6119.2 (6)C25—C24—C23120.5 (4)
N1—C5—C4123.4 (3)C26—C25—C24119.1 (4)
N1—C5—H5118.3C26—C25—H25120.4
C4—C5—H5118.3C24—C25—H25120.4
O3—C6—O2123.4 (4)C27—C26—C25118.8 (4)
O3—C6—C4125.2 (4)C27—C26—H26120.6
O2—C6—C4111.4 (3)C25—C26—H26120.6
C8—C7—C12120.9 (4)N4—C27—C26123.4 (4)
C8—C7—O2120.4 (4)N4—C27—H27118.3
C12—C7—O2118.6 (3)C26—C27—H27118.3
C7—C8—C9119.3 (4)N4—C28—C24121.7 (3)
C7—C8—H8120.4N4—C28—H28119.2
C9—C8—H8120.4C24—C28—H28119.2
C10—C9—C8121.4 (4)O8—Cl1—O7109.8 (3)
C10—C9—H9119.3O8—Cl1—O6108.5 (3)
C8—C9—H9119.3O7—Cl1—O6108.2 (4)
C11—C10—C9117.8 (4)O8—Cl1—O9110.4 (2)
C11—C10—C13121.8 (4)O7—Cl1—O9111.5 (3)
C9—C10—C13120.4 (4)O6—Cl1—O9108.3 (2)
C10—C11—C12123.0 (4)N4—Cu1—N4i180.000 (1)
C10—C11—H11118.5N4—Cu1—N1i87.39 (13)
C12—C11—H11118.5N4i—Cu1—N1i92.61 (13)
C11—C12—C7117.6 (3)N4—Cu1—N192.61 (13)
C11—C12—C14121.2 (3)N4i—Cu1—N187.39 (13)
C7—C12—C14121.1 (3)N1i—Cu1—N1180.0
C10—C13—H13A109.5N4—Cu1—O989.96 (12)
C10—C13—H13B109.5N4i—Cu1—O990.04 (12)
H13A—C13—H13B109.5N1i—Cu1—O986.95 (11)
C10—C13—H13C109.5N1—Cu1—O993.05 (11)
H13A—C13—H13C109.5C1—N1—C5118.3 (16)
H13B—C13—H13C109.5C5—N1—C1'115.8 (7)
N2—C14—O1112.6 (3)C1—N1—Cu1115.5 (16)
N2—C14—C12130.6 (3)C5—N1—Cu1124.0 (3)
O1—C14—C12116.8 (3)C1'—N1—Cu1118.9 (7)
N3—C15—O1112.8 (3)C14—N2—N3106.6 (3)
N3—C15—C16129.8 (3)C15—N3—N2105.7 (3)
O1—C15—C16117.4 (3)C27—N4—C28117.8 (3)
C17—C16—C21118.1 (3)C27—N4—Cu1123.3 (3)
C17—C16—C15121.3 (3)C28—N4—Cu1118.5 (2)
C21—C16—C15120.5 (3)C14—O1—C15102.3 (3)
C18—C17—C16121.5 (4)C6—O2—C7117.8 (3)
C18—C17—H17119.2C23—O4—C21117.6 (3)
C16—C17—H17119.2Cl1—O9—Cu1161.1 (2)
C17—C18—C19118.0 (4)N1—C1—C2120 (3)
C17—C18—C22121.0 (4)N1—C1—H1119.9
C19—C18—C22121.0 (4)C2—C1—H1119.9
C20—C19—C18121.9 (4)C3—C2—C1120 (2)
C20—C19—H19119.1C3—C2—H2119.9
C18—C19—H19119.1C1—C2—H2119.9
C21—C20—C19119.5 (4)C2—C3—C4120.2 (19)
C21—C20—H20120.3C2—C3—H3119.9
C19—C20—H20120.3C4—C3—H3119.9
C20—C21—O4120.0 (3)C2'—C1'—N1123.5 (12)
C20—C21—C16121.0 (4)C2'—C1'—H1'118.2
O4—C21—C16118.8 (3)N1—C1'—H1'118.2
C18—C22—H22A109.5C3'—C2'—C1'118.7 (11)
C18—C22—H22B109.5C3'—C2'—H2'120.6
H22A—C22—H22B109.5C1'—C2'—H2'120.6
C18—C22—H22C109.5C2'—C3'—C4119.8 (10)
H22A—C22—H22C109.5C2'—C3'—H3'120.1
H22B—C22—H22C109.5C4—C3'—H3'120.1
O5—C23—O4124.9 (4)
C3—C4—C5—N120 (2)N4i—Cu1—N1—C1'83.8 (10)
C3'—C4—C5—N18.2 (11)O9—Cu1—N1—C1'6.1 (10)
C6—C4—C5—N1176.8 (4)C12—C14—N2—N3175.8 (4)
C5—C4—C6—O3157.1 (4)C16—C15—N3—N2176.5 (4)
C3—C4—C6—O32 (3)C26—C27—N4—Cu1171.9 (3)
C3'—C4—C6—O327.9 (11)C24—C28—N4—Cu1171.8 (3)
C5—C4—C6—O224.0 (5)N1i—Cu1—N4—C2774.4 (3)
C3'—C4—C6—O2151.0 (9)N1—Cu1—N4—C27105.6 (3)
O2—C7—C8—C9173.7 (4)O9—Cu1—N4—C2712.6 (3)
C10—C11—C12—C14176.0 (4)N1i—Cu1—N4—C2898.5 (3)
O2—C7—C12—C11174.4 (3)N1—Cu1—N4—C2881.5 (3)
C8—C7—C12—C14177.4 (4)O9—Cu1—N4—C28174.6 (3)
O2—C7—C12—C142.1 (5)C12—C14—O1—C15175.8 (3)
C11—C12—C14—N2158.0 (4)C16—C15—O1—C14176.3 (3)
C7—C12—C14—N225.6 (6)O3—C6—O2—C713.1 (6)
C11—C12—C14—O125.3 (5)C4—C6—O2—C7167.9 (3)
C7—C12—C14—O1151.1 (3)C8—C7—O2—C693.1 (4)
N3—C15—C16—C17155.3 (4)C12—C7—O2—C691.7 (4)
O1—C15—C16—C1727.2 (5)O5—C23—O4—C214.3 (6)
N3—C15—C16—C2128.1 (6)C24—C23—O4—C21176.1 (3)
O1—C15—C16—C21149.4 (3)C20—C21—O4—C2376.7 (4)
C15—C16—C17—C18177.3 (4)C16—C21—O4—C23108.5 (4)
C19—C20—C21—O4176.9 (4)O8—Cl1—O9—Cu157.8 (6)
C19—C20—C21—C162.2 (6)O6—Cl1—O9—Cu160.9 (6)
C15—C16—C21—C20175.5 (4)N4—Cu1—O9—Cl159.6 (6)
C17—C16—C21—O4176.0 (3)N4i—Cu1—O9—Cl1120.4 (6)
O5—C23—C24—C28157.9 (4)N1i—Cu1—O9—Cl1147.0 (6)
O4—C23—C24—C2822.4 (5)N1—Cu1—O9—Cl133.0 (6)
O5—C23—C24—C2521.0 (6)C5—N1—C1—C216 (3)
O4—C23—C24—C25158.6 (3)C1'—N1—C1—C276 (4)
C4—C5—N1—C123 (2)N1—C1—C2—C310 (4)
C4—C5—N1—C1'8.3 (11)C1—C2—C3—C48 (4)
C4—C5—N1—Cu1175.1 (3)C5—C4—C3—C213 (3)
N4—Cu1—N1—C165 (2)C3'—C4—C3—C294 (4)
N4i—Cu1—N1—C1115 (2)C6—C4—C3—C2170 (2)
O9—Cu1—N1—C125 (2)C1—N1—C1'—C2'97 (5)
N4—Cu1—N1—C597.4 (3)C5—N1—C1'—C2'4.8 (15)
N4i—Cu1—N1—C582.6 (3)Cu1—N1—C1'—C2'172.3 (9)
O9—Cu1—N1—C5172.5 (3)C5—C4—C3'—C2'4.0 (14)
N4—Cu1—N1—C1'96.2 (10)C3—C4—C3'—C2'82 (3)
Symmetry code: (i) x+2, y, z+2.
(II) Diacetonitriledi-µ3-iodido-di-µ2-iodido-bis(4-methyl-{5-[5-methyl-2-(pyridin-4-ylcarbonyloxy)phenyl]-1,3,4-oxadiazol-2-yl}phenyl pyridine-4-carboxylate)tetracopper(I) top
Crystal data top
[Cu4I4(C2H3N)2(C28H20N4O5)2]Z = 1
Mr = 1828.82F(000) = 884
Triclinic, P1Dx = 1.840 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.260 (2) ÅCell parameters from 2048 reflections
b = 12.597 (3) Åθ = 2.4–22.5°
c = 15.623 (4) ŵ = 3.20 mm1
α = 96.709 (4)°T = 298 K
β = 102.843 (4)°Plate, yellow
γ = 108.464 (4)°0.17 × 0.11 × 0.05 mm
V = 1650.6 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5713 independent reflections
Radiation source: fine-focus sealed tube4168 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1110
Tmin = 0.612, Tmax = 0.856k = 1114
8387 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0458P)2]
where P = (Fo2 + 2Fc2)/3
5713 reflections(Δ/σ)max = 0.001
400 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Cu4I4(C2H3N)2(C28H20N4O5)2]γ = 108.464 (4)°
Mr = 1828.82V = 1650.6 (7) Å3
Triclinic, P1Z = 1
a = 9.260 (2) ÅMo Kα radiation
b = 12.597 (3) ŵ = 3.20 mm1
c = 15.623 (4) ÅT = 298 K
α = 96.709 (4)°0.17 × 0.11 × 0.05 mm
β = 102.843 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5713 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4168 reflections with I > 2σ(I)
Tmin = 0.612, Tmax = 0.856Rint = 0.025
8387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 0.98Δρmax = 0.82 e Å3
5713 reflectionsΔρmin = 0.44 e Å3
400 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9617 (8)0.6776 (6)0.0882 (5)0.073 (2)
H10.95830.61660.04710.087*
C21.1085 (7)0.7516 (6)0.1438 (5)0.078 (2)
H21.20070.73810.14120.094*
C31.1151 (6)0.8435 (5)0.2013 (4)0.0435 (15)
C40.9796 (7)0.8580 (6)0.2062 (4)0.0582 (18)
H40.98070.91970.24570.070*
C50.8375 (7)0.7788 (6)0.1509 (4)0.064 (2)
H50.74380.78820.15570.077*
C61.2743 (6)0.9201 (5)0.2605 (4)0.0441 (15)
C71.4026 (6)1.0930 (5)0.3665 (4)0.0382 (14)
C81.5275 (7)1.1676 (5)0.3451 (4)0.0442 (15)
H81.52611.16890.28550.053*
C91.6555 (7)1.2409 (5)0.4137 (4)0.0475 (15)
H91.74141.29030.39960.057*
C101.6583 (6)1.2422 (5)0.5023 (4)0.0439 (15)
C111.7980 (7)1.3248 (5)0.5778 (4)0.0622 (19)
H11A1.85061.28240.61180.093*
H11B1.76031.36830.61620.093*
H11C1.87091.37550.55270.093*
C121.5301 (6)1.1664 (5)0.5217 (4)0.0404 (14)
H121.53071.16660.58130.049*
C131.4007 (6)1.0902 (5)0.4548 (4)0.0387 (14)
C141.2701 (6)1.0114 (5)0.4782 (4)0.0382 (14)
C151.1444 (6)0.9331 (5)0.5667 (4)0.0378 (13)
C161.1188 (6)0.9110 (5)0.6532 (3)0.0378 (13)
C171.2406 (7)0.9653 (5)0.7316 (4)0.0468 (15)
H171.33581.01700.72870.056*
C181.2214 (8)0.9433 (6)0.8139 (4)0.0563 (17)
C191.3567 (9)0.9998 (8)0.8978 (5)0.099 (3)
H19A1.31551.00430.94880.148*
H19B1.41621.07540.89260.148*
H19C1.42460.95560.90530.148*
C201.0785 (8)0.8694 (6)0.8174 (4)0.064 (2)
H201.06380.85540.87250.077*
C210.9559 (7)0.8154 (5)0.7402 (4)0.0552 (18)
H210.85960.76570.74350.066*
C220.9775 (6)0.8356 (5)0.6590 (4)0.0398 (14)
C230.8430 (7)0.6764 (5)0.5428 (4)0.0487 (16)
C240.7189 (7)0.6311 (5)0.4547 (4)0.0427 (14)
C250.6337 (8)0.5165 (6)0.4302 (4)0.066 (2)
H250.65100.46790.46850.080*
C260.5222 (9)0.4739 (6)0.3484 (4)0.072 (2)
H260.46460.39580.33280.087*
C270.5750 (7)0.6496 (5)0.3157 (4)0.0566 (18)
H270.55540.69680.27660.068*
C280.6887 (7)0.6984 (6)0.3972 (4)0.0575 (18)
H280.74370.77680.41210.069*
C290.0016 (9)0.4369 (7)0.1978 (5)0.070 (2)
C300.1524 (9)0.4270 (9)0.2189 (6)0.124 (4)
H30A0.13450.44280.28280.185*
H30B0.22730.35100.19430.185*
H30C0.19350.48080.19350.185*
Cu10.61992 (8)0.59952 (7)0.00532 (5)0.0504 (2)
Cu20.32599 (9)0.46142 (7)0.16747 (5)0.0577 (2)
I10.63518 (5)0.73364 (4)0.12381 (3)0.05890 (16)
I20.37871 (5)0.60721 (3)0.05724 (3)0.04790 (14)
N10.8283 (5)0.6913 (4)0.0923 (3)0.0485 (13)
N21.1401 (5)0.9364 (4)0.4280 (3)0.0483 (13)
N31.0559 (5)0.8835 (4)0.4861 (3)0.0503 (13)
N40.4931 (6)0.5385 (4)0.2911 (3)0.0515 (14)
N50.1113 (7)0.4465 (5)0.1829 (4)0.0656 (16)
O11.2817 (4)1.0159 (3)0.5673 (2)0.0382 (9)
O20.9247 (6)0.6263 (4)0.5744 (3)0.0799 (16)
O30.8535 (4)0.7809 (3)0.5805 (2)0.0404 (9)
O41.2693 (4)1.0209 (3)0.2971 (2)0.0442 (10)
O51.3878 (5)0.8942 (4)0.2758 (3)0.0699 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (4)0.079 (5)0.070 (5)0.024 (4)0.003 (4)0.031 (4)
C20.029 (3)0.086 (5)0.093 (5)0.023 (3)0.007 (3)0.041 (5)
C30.032 (3)0.053 (4)0.038 (3)0.014 (3)0.002 (3)0.001 (3)
C40.043 (4)0.062 (4)0.056 (4)0.019 (3)0.002 (3)0.020 (3)
C50.033 (3)0.082 (5)0.061 (4)0.015 (3)0.005 (3)0.021 (4)
C60.027 (3)0.055 (4)0.045 (4)0.013 (3)0.006 (3)0.000 (3)
C70.036 (3)0.034 (3)0.040 (3)0.013 (3)0.000 (3)0.009 (3)
C80.044 (3)0.038 (3)0.047 (4)0.013 (3)0.009 (3)0.008 (3)
C90.039 (3)0.040 (4)0.062 (4)0.009 (3)0.018 (3)0.011 (3)
C100.031 (3)0.033 (3)0.058 (4)0.008 (3)0.005 (3)0.002 (3)
C110.053 (4)0.046 (4)0.068 (4)0.003 (3)0.010 (3)0.008 (4)
C120.040 (3)0.036 (3)0.038 (3)0.010 (3)0.005 (3)0.000 (3)
C130.034 (3)0.035 (3)0.044 (3)0.012 (3)0.005 (3)0.005 (3)
C140.035 (3)0.037 (3)0.038 (3)0.010 (3)0.006 (3)0.004 (3)
C150.031 (3)0.035 (3)0.043 (3)0.011 (3)0.004 (3)0.003 (3)
C160.038 (3)0.033 (3)0.037 (3)0.010 (3)0.007 (3)0.001 (3)
C170.037 (3)0.054 (4)0.042 (3)0.013 (3)0.006 (3)0.002 (3)
C180.055 (4)0.063 (4)0.039 (4)0.016 (3)0.003 (3)0.000 (3)
C190.082 (6)0.129 (8)0.051 (5)0.019 (5)0.014 (4)0.005 (5)
C200.077 (5)0.074 (5)0.037 (4)0.021 (4)0.015 (3)0.015 (4)
C210.052 (4)0.058 (4)0.043 (4)0.003 (3)0.012 (3)0.010 (3)
C220.038 (3)0.042 (4)0.036 (3)0.014 (3)0.006 (3)0.002 (3)
C230.047 (4)0.042 (4)0.046 (4)0.010 (3)0.004 (3)0.005 (3)
C240.044 (3)0.037 (3)0.041 (3)0.015 (3)0.005 (3)0.003 (3)
C250.078 (5)0.039 (4)0.059 (4)0.006 (4)0.004 (4)0.009 (3)
C260.087 (5)0.045 (4)0.049 (4)0.005 (4)0.002 (4)0.004 (4)
C270.058 (4)0.047 (4)0.050 (4)0.012 (3)0.003 (3)0.008 (3)
C280.057 (4)0.047 (4)0.052 (4)0.009 (3)0.000 (3)0.003 (3)
C290.055 (5)0.089 (6)0.068 (5)0.018 (4)0.023 (4)0.025 (4)
C300.061 (5)0.207 (12)0.120 (8)0.048 (6)0.047 (5)0.056 (8)
Cu10.0402 (4)0.0557 (5)0.0432 (4)0.0094 (4)0.0046 (3)0.0016 (4)
Cu20.0468 (5)0.0644 (6)0.0478 (5)0.0077 (4)0.0079 (4)0.0015 (4)
I10.0690 (3)0.0581 (3)0.0483 (3)0.0177 (2)0.0198 (2)0.0121 (2)
I20.0453 (2)0.0494 (3)0.0498 (3)0.01617 (19)0.01843 (18)0.0049 (2)
N10.035 (3)0.058 (3)0.042 (3)0.014 (2)0.002 (2)0.004 (3)
N20.039 (3)0.052 (3)0.036 (3)0.001 (2)0.005 (2)0.005 (2)
N30.033 (3)0.057 (3)0.042 (3)0.001 (2)0.000 (2)0.001 (3)
N40.051 (3)0.046 (3)0.040 (3)0.004 (3)0.001 (2)0.003 (3)
N50.049 (4)0.081 (4)0.067 (4)0.017 (3)0.026 (3)0.014 (3)
O10.031 (2)0.034 (2)0.034 (2)0.0001 (17)0.0004 (16)0.0024 (17)
O20.085 (4)0.057 (3)0.072 (3)0.030 (3)0.024 (3)0.010 (3)
O30.035 (2)0.039 (2)0.037 (2)0.0073 (18)0.0021 (17)0.0012 (19)
O40.035 (2)0.049 (3)0.040 (2)0.0107 (19)0.0014 (17)0.004 (2)
O50.038 (3)0.069 (3)0.084 (3)0.021 (2)0.004 (2)0.019 (3)
Geometric parameters (Å, º) top
C1—N11.315 (8)C19—H19B0.9600
C1—C21.398 (8)C19—H19C0.9600
C1—H10.9300C20—C211.385 (8)
C2—C31.356 (8)C20—H200.9300
C2—H20.9300C21—C221.368 (8)
C3—C41.341 (8)C21—H210.9300
C3—C61.499 (7)C22—O31.404 (6)
C4—C51.390 (8)C23—O21.193 (7)
C4—H40.9300C23—O31.342 (7)
C5—N11.316 (8)C23—C241.496 (8)
C5—H50.9300C24—C281.348 (8)
C6—O51.179 (7)C24—C251.367 (8)
C6—O41.348 (7)C25—C261.374 (8)
C7—C81.375 (7)C25—H250.9300
C7—C131.389 (7)C26—N41.319 (8)
C7—O41.410 (6)C26—H260.9300
C8—C91.384 (8)C27—N41.324 (7)
C8—H80.9300C27—C281.385 (8)
C9—C101.378 (8)C27—H270.9300
C9—H90.9300C28—H280.9300
C10—C121.386 (7)C29—N51.095 (8)
C10—C111.525 (7)C29—C301.476 (11)
C11—H11A0.9600C30—H30A0.9600
C11—H11B0.9600C30—H30B0.9600
C11—H11C0.9600C30—H30C0.9600
C12—C131.389 (7)Cu1—N12.062 (4)
C12—H120.9300Cu1—I2i2.6406 (11)
C13—C141.450 (7)Cu1—I12.6452 (10)
C14—N21.282 (6)Cu1—I22.6532 (10)
C14—O11.365 (6)Cu1—Cu2i2.7589 (13)
C15—N31.297 (6)Cu1—Cu1i2.8252 (16)
C15—O11.363 (6)Cu2—N52.007 (6)
C15—C161.465 (7)Cu2—N42.085 (5)
C16—C221.382 (7)Cu2—I1i2.6287 (12)
C16—C171.394 (7)Cu2—I22.6688 (10)
C17—C181.384 (8)Cu2—Cu1i2.7589 (13)
C17—H170.9300I1—Cu2i2.6287 (12)
C18—C201.372 (9)I2—Cu1i2.6406 (11)
C18—C191.510 (8)N2—N31.415 (6)
C19—H19A0.9600
N1—C1—C2122.1 (6)C21—C22—C16120.8 (5)
N1—C1—H1118.9C21—C22—O3119.7 (5)
C2—C1—H1118.9C16—C22—O3119.4 (5)
C3—C2—C1119.3 (6)O2—C23—O3124.3 (5)
C3—C2—H2120.3O2—C23—C24123.9 (6)
C1—C2—H2120.3O3—C23—C24111.8 (6)
C4—C3—C2118.9 (5)C28—C24—C25118.2 (5)
C4—C3—C6123.2 (6)C28—C24—C23122.8 (5)
C2—C3—C6117.8 (6)C25—C24—C23119.0 (6)
C3—C4—C5118.6 (6)C24—C25—C26119.4 (6)
C3—C4—H4120.7C24—C25—H25120.3
C5—C4—H4120.7C26—C25—H25120.3
N1—C5—C4123.6 (6)N4—C26—C25123.0 (6)
N1—C5—H5118.2N4—C26—H26118.5
C4—C5—H5118.2C25—C26—H26118.5
O5—C6—O4124.4 (5)N4—C27—C28122.9 (6)
O5—C6—C3124.5 (6)N4—C27—H27118.6
O4—C6—C3111.1 (5)C28—C27—H27118.6
C8—C7—C13121.8 (5)C24—C28—C27119.4 (6)
C8—C7—O4119.3 (5)C24—C28—H28120.3
C13—C7—O4118.9 (5)C27—C28—H28120.3
C7—C8—C9118.9 (6)N5—C29—C30178.6 (10)
C7—C8—H8120.5C29—C30—H30A109.5
C9—C8—H8120.5C29—C30—H30B109.5
C10—C9—C8121.4 (6)H30A—C30—H30B109.5
C10—C9—H9119.3C29—C30—H30C109.5
C8—C9—H9119.3H30A—C30—H30C109.5
C9—C10—C12118.3 (5)H30B—C30—H30C109.5
C9—C10—C11121.3 (5)N1—Cu1—I2i108.43 (15)
C12—C10—C11120.4 (6)N1—Cu1—I1100.39 (14)
C10—C11—H11A109.5I2i—Cu1—I1116.89 (3)
C10—C11—H11B109.5N1—Cu1—I2108.77 (15)
H11A—C11—H11B109.5I2i—Cu1—I2115.49 (3)
C10—C11—H11C109.5I1—Cu1—I2105.64 (3)
H11A—C11—H11C109.5N1—Cu1—Cu2i111.69 (15)
H11B—C11—H11C109.5I2i—Cu1—Cu2i59.19 (3)
C10—C12—C13122.0 (5)I1—Cu1—Cu2i58.17 (3)
C10—C12—H12119.0I2—Cu1—Cu2i138.45 (3)
C13—C12—H12119.0N1—Cu1—Cu1i126.70 (15)
C7—C13—C12117.6 (5)I2i—Cu1—Cu1i57.96 (3)
C7—C13—C14122.2 (5)I1—Cu1—Cu1i132.53 (4)
C12—C13—C14120.2 (5)I2—Cu1—Cu1i57.53 (3)
N2—C14—O1112.6 (5)Cu2i—Cu1—Cu1i102.95 (4)
N2—C14—C13130.3 (5)N5—Cu2—N4108.2 (2)
O1—C14—C13117.1 (4)N5—Cu2—I1i114.74 (18)
N3—C15—O1112.3 (5)N4—Cu2—I1i104.17 (16)
N3—C15—C16129.8 (5)N5—Cu2—I2105.38 (17)
O1—C15—C16117.9 (4)N4—Cu2—I2107.49 (15)
C22—C16—C17118.8 (5)I1i—Cu2—I2116.48 (4)
C22—C16—C15121.6 (5)N5—Cu2—Cu1i123.96 (16)
C17—C16—C15119.6 (5)N4—Cu2—Cu1i127.77 (15)
C18—C17—C16120.8 (6)I1i—Cu2—Cu1i58.75 (3)
C18—C17—H17119.6I2—Cu2—Cu1i58.19 (3)
C16—C17—H17119.6Cu2i—I1—Cu163.08 (3)
C20—C18—C17118.8 (5)Cu1i—I2—Cu164.51 (3)
C20—C18—C19121.2 (6)Cu1i—I2—Cu262.61 (3)
C17—C18—C19119.9 (6)Cu1—I2—Cu2110.35 (3)
C18—C19—H19A109.5C1—N1—C5117.3 (5)
C18—C19—H19B109.5C1—N1—Cu1120.8 (4)
H19A—C19—H19B109.5C5—N1—Cu1120.8 (4)
C18—C19—H19C109.5C14—N2—N3106.5 (4)
H19A—C19—H19C109.5C15—N3—N2105.8 (4)
H19B—C19—H19C109.5C26—N4—C27117.2 (5)
C18—C20—C21121.2 (6)C26—N4—Cu2118.9 (4)
C18—C20—H20119.4C27—N4—Cu2123.9 (4)
C21—C20—H20119.4C29—N5—Cu2174.4 (6)
C22—C21—C20119.5 (6)C15—O1—C14102.8 (4)
C22—C21—H21120.2C23—O3—C22116.1 (5)
C20—C21—H21120.2C6—O4—C7117.1 (4)
N1—C1—C2—C32.7 (12)N5—Cu2—I2—Cu1165.57 (17)
C1—C2—C3—C42.9 (11)N4—Cu2—I2—Cu179.24 (16)
C6—C3—C4—C5177.1 (6)I1i—Cu2—I2—Cu137.11 (4)
C4—C3—C6—O5158.3 (7)Cu1i—Cu2—I2—Cu144.83 (3)
C2—C3—C6—O518.0 (10)C2—C1—N1—Cu1168.6 (6)
C4—C3—C6—O419.1 (8)C4—C5—N1—Cu1166.4 (5)
C2—C3—C6—O4164.7 (6)I2i—Cu1—N1—C136.0 (6)
O4—C7—C8—C9177.8 (5)I1—Cu1—N1—C187.1 (5)
O4—C7—C13—C12176.7 (5)I2—Cu1—N1—C1162.3 (5)
O4—C7—C13—C143.4 (8)Cu2i—Cu1—N1—C127.3 (6)
N3—C15—C16—C227.1 (10)Cu1i—Cu1—N1—C199.3 (5)
O1—C15—C16—C22174.4 (5)I2i—Cu1—N1—C5156.1 (5)
N3—C15—C16—C17171.5 (6)I1—Cu1—N1—C580.9 (5)
O1—C15—C16—C176.9 (8)I2—Cu1—N1—C529.7 (5)
C15—C16—C17—C18177.9 (6)Cu2i—Cu1—N1—C5140.6 (5)
C16—C17—C18—C19177.8 (6)Cu1i—Cu1—N1—C592.7 (5)
O2—C23—C24—C28143.0 (7)C16—C15—N3—N2178.2 (6)
O3—C23—C24—C2835.5 (8)C25—C26—N4—Cu2177.9 (6)
O2—C23—C24—C2536.0 (10)N5—Cu2—N4—C2685.9 (6)
O3—C23—C24—C25145.6 (6)I1i—Cu2—N4—C2636.6 (6)
N1—Cu1—I1—Cu2i109.17 (16)I2—Cu2—N4—C26160.8 (5)
I2i—Cu1—I1—Cu2i7.79 (3)Cu1i—Cu2—N4—C2697.9 (5)
I2—Cu1—I1—Cu2i137.81 (3)N5—Cu2—N4—C2795.2 (6)
Cu1i—Cu1—I1—Cu2i77.79 (7)I1i—Cu2—N4—C27142.3 (5)
N1—Cu1—I2—Cu1i122.13 (16)I2—Cu2—N4—C2718.1 (6)
I1—Cu1—I2—Cu1i130.83 (4)Cu1i—Cu2—N4—C2781.0 (6)
Cu2i—Cu1—I2—Cu1i71.49 (5)C16—C15—O1—C14177.9 (5)
N1—Cu1—I2—Cu278.22 (16)O2—C23—O3—C224.7 (9)
I2i—Cu1—I2—Cu243.91 (4)C24—C23—O3—C22173.7 (5)
I1—Cu1—I2—Cu2174.74 (2)C21—C22—O3—C2386.2 (7)
Cu2i—Cu1—I2—Cu2115.40 (5)C16—C22—O3—C2395.1 (6)
Cu1i—Cu1—I2—Cu243.91 (4)O5—C6—O4—C78.5 (9)
N5—Cu2—I2—Cu1i120.74 (17)C3—C6—O4—C7168.9 (4)
N4—Cu2—I2—Cu1i124.07 (16)C8—C7—O4—C686.8 (7)
I1i—Cu2—I2—Cu1i7.72 (3)C13—C7—O4—C696.1 (6)
Symmetry code: (i) x+1, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(ClO4)2(C28H20N4O5)2][Cu4I4(C2H3N)2(C28H20N4O5)2]
Mr1247.401828.82
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)298298
a, b, c (Å)10.342 (8), 10.408 (8), 15.633 (12)9.260 (2), 12.597 (3), 15.623 (4)
α, β, γ (°)72.226 (11), 82.736 (12), 60.549 (9)96.709 (4), 102.843 (4), 108.464 (4)
V3)1394.7 (18)1650.6 (7)
Z11
Radiation typeMo KαMo Kα
µ (mm1)0.573.20
Crystal size (mm)0.21 × 0.11 × 0.080.17 × 0.11 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Multi-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.890, 0.9560.612, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
7366, 5104, 3514 8387, 5713, 4168
Rint0.0260.025
(sin θ/λ)max1)0.6060.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.155, 1.02 0.045, 0.104, 0.98
No. of reflections51045713
No. of parameters415400
No. of restraints20
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.360.82, 0.44

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), POV-RAY (Cason, 2003) and DIAMOND (Brandenburg, 2009), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (I) top
Cu1—N42.006 (3)Cu1—N12.038 (3)
Cu1—N4i2.006 (3)Cu1—O92.676 (3)
Cu1—N1i2.038 (3)
C7—C12—C14—N225.6 (6)N3—C15—C16—C2128.1 (6)
Symmetry code: (i) x+2, y, z+2.
Selected bond lengths (Å) for (II) top
Cu1—N12.062 (4)Cu2—N52.007 (6)
Cu1—I2i2.6406 (11)Cu2—N42.085 (5)
Cu1—I12.6452 (10)Cu2—I1i2.6287 (12)
Cu1—I22.6532 (10)Cu2—I22.6688 (10)
Symmetry code: (i) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds