Download citation
Download citation
link to html
In the title complex salt, [Ir(C5H4O)(C16H22N6)(CO)](CF3O3S), the IrIII centre adopts a distorted octa­hedral geometry with a facial coordination of the tris­(3,5-dimethyl-1H-pyrazol-1-yl)methane ligand. The C—C distances of the iridacycle are in agreement with its iridacyclo­hexa-2,5-dien-4-one nature, which presents a nonsymmetric boat-like conformation with the C—Ir—C vertex more bent than the C—C(=O)—C vertex. The supra­molecular architecture is mainly directed by CO...CO and CO...π and Csp3—H...O inter­actions, the arrangement of which depends on the anion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011204499X/ov3018sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011204499X/ov3018Isup2.hkl
Contains datablock I

CCDC reference: 915098

Comment top

Tris(pyrazolyl)methane (Tpm) is a versatile ligand that complexes with most metals (Bigmore et al., 2005; Pettinari & Pettinari, 2005). Several of these complexes are potent catalysts for reactions such as olefin polymerization (Bigmore et al., 2006), carbene transfer (Rodríguez et al., 2006) and alkane oxidation (Silva et al., 2008). The steric and isoelectronic properties of the Tpm ligand can be finely tuned by selecting the proper substituents. This ligand is isosteric, isoelectronic and isolobal with the established anionic tris(pyrazolyl)borate (Tp), developed and termed the scorpionate ligand by Trofimenko (1993, 1996, 1999). In this paper, the novel complex carbonyl(3-oxopenta-1,4-diene-1,5,-diyl)[tris(3,5-dimethyl-1H-pyrazol-1-yl-κN2)methane]iridium(III) trifluoromethanesulfonate, [Ir(C5H4O)(TpmMe2)(CO)](CF3O3S) [TpmMe2 = tris(3,5-dimethyl-1H-pyrazol-1-yl)methane], (I), has been prepared and characterized by X-ray crystallography and 1H and 13C NMR analyses.

Compound (I) was crystallized from an acetone solution of the dicationic complex [κ3-TpmMe2Ir(1,5-η-CHCH–C(OH)–CH CH–)(CO)](CF3SO3)2, (II) (Hernández-Juárez et al., 2012), which loses one molecule of HSO3CF3 in solution to shift the equilibrium from the dicationic iridaphenol complex, (II), to the iridacyclohexa-2,5-dien-4-one complex, (I).

The solid-state structure of (I) has been determined at 298 K. This compound crystallizes in the monoclinic space group P21/c with one molecule in the asymmetric unit (Fig. 1 and Table 1). The TpmMe2 ligand is κ3-coordinated to the IrIII centre. The Ir1—N12 apical bond length is 2.118 (5) Å, shorter than the average equatorial Ir1—N(14,16) bond length, probably due to the π-acceptor ability of the apical CO group which favours electronic release from atom N12. The average Ir1—C(2,6) bond length of 2.027 (8) Å is also shorter than the accepted average value for an Ir—Csp2 σ bond of 2.071 (44) Å (Orpen et al., 1995); this points to a relatively strong Ir–olefin bond. The short–long–long–short pattern for the C—C bonds of the iridacycle [C2C3—C4( O4)—C5 C6] are consistent with its iridacyclohexa-2,5-dien-4-one nature, compared with standard double Csp2Csp2 and single Csp2—CO bonds of 1.34 and 1.478 Å, respectively (Allen et al., 1995). The C2—Ir1—C6 angle is the closest in the iridacycle and very near to the expected value for adjacent equatorial positions, whereas the average linear N—Ir—C and almost orthogonal N—Ir—N angles values of 176 (2) and 84 (2)°, respectively, are in agreement with a distorted octahedral geometry around the IrIII centre. In general, the bond lengths and angles found in (I) are similar to the cationic iridacyclohexa-3,5-dien-2-one complex [(PMe3)4Ir[1,5-η-C(O)–C(Me)–CH–C(Me)–CH–]](CF3SO3), although that complex is almost planar (Bleeke & Behm, 1997). The iridacycle in (I) presents a boat-like conformation, according to the ring-puckering parameters (Cremer & Pople, 1975) of Q = 0.309 (6) Å, θ = 73.1 (15)° and φ = 359.9 (15)°. However, the bending of the Ir vertex (C6/Ir1/C2) from the central diolefin plane (C2/C3/C5/C6) is larger [16.2 (3)°] than the bending of the CO vertex (C3/C4/C5) [11.1 (5)°], although the CO tip is almost coplanar with the C3/C4/C5 fragment [2.9 (3)°]. The large bending of the Ir vertex could be attributed to the steric effect exerted by the TpmMe2 ligand, whereas the CO vertex could be forced to bend due to its partcipation in intermolecular noncovalent interactions.

Carbonyl–carbonyl dipolar interactions are strong enough to direct the crystal packing in the absence of stronger hydrogen bonding. CO···CO interactions have been characterized in both organic (Allen et al., 1998) and organometallic carbonyl (Hazel et al., 2006) compounds but, to the best of our knowledge, there is no study where both kinds of carbonyls are present in the same organometallic molecule. In (I), the organic carbonyl (C4O4) behaves as a donor, whereas the metallic carbonyl (C1O1) acts as an acceptor. This behaviour contrasts with that found in the tricarbonyl(formylcyclopentadienyl)M (M = Mn, Re) complexes, where the metal CO acts as a donor and the formyl CO as an acceptor (Romanov et al., 2012). Nevertheless, it is in agreement with the scheme found in tricarbonyl(Cp)(η1-maleimidato)M (M = Mo, W; Cp is cyclopentadienyl) complexes, where the metal CO acts as an acceptor and maleimidate CO as a donor (Palusiak et al., 2006). These differences in behaviour could be attributed to the metal oxidation state, the metal hardness, the geometry of the complex and the atomic charges, among other factors. With regard to atomic charges, when organic (COorg) and metal (COMet) carbonyls are in the same complex, COorg···CMet interactions are more likely to occur than COMet···Corg due to the larger calculated negative charge (Palusiak et al., 2006) on the O atom of COorg than on COMet. In the (I), both carbonyls form perpendicular C4O4···C1 interactions (Allen et al., 1998) [O4···C1i = 3.063 (8) Å and C4O4···C1i = 168.4 (3)°; symmetry code: (i) x, -y + 1/2, z + 1/2] which form C(6) chains (Etter, 1990; Bernstein et al., 1985) along the c crystallographic axis (Fig. 2). The first dimension is also built up by the participation of the quinone carbonyl in two CO···π interactions with the two equatorial pyrazole rings [O4···Cg1i = 3.765 (8) Å and C4O4···Cg1i = 96.4 (6)°; O4···Cg2i = 3.634 (7) Å and C4O4···Cg2i = 102.3 (5)°; Cg1 and Cg2 are the centroids of the N13/N/14/C16–C18 and N15/N16/C21–C23 rings, respectively].

The trifluoromethanesulfonate anion acts, mostly, as a space-filling entity and is weakly bonded to the iridium complex cation through a C22—H22···O7ii soft interaction [C22···O7ii = 3.250 (10) Å and C22—H22···O7ii = 153°; symmetry code: (ii) x - 1, -y + 1/2, z - 1/2].

The molecular structure of the analogous tetrafluoroborate salt, (III), has been reported recently (Hernández-Juárez et al., 2012). However, the supramolecular structure is missing, so a comparison of the two salts is appropriate. [If the supramolecular structure is missing, how can the two be compared?] The cations in (III) and (I) are isostructural, despite the fact that their respective counteranions are different in volume and geometry. The supramolecular structure of (III) [See query above] consists of perpendicular CO···CO interactions [O4···C1iii = 3.027 (6) Å and C4 O4···C1iii = 153.6 (4)°; symmetry code: (iii) x, -y + 1/2, z - 1/2], forming C(6) chains running along the c axis, and CO···π interactions [O1···Cg1iii = 3.420 (5) Å and C1 O1···Cg1iii = 135.1 (4)°; O1···Cg2iii = 3.482 (4) Å and C1O1···Cg2iii = 129.9 (4)°; Cg2 and Cg3 are the centroids of the ??? and ??? rings, respectively], but in this case with the participation of the metallic carbonyl as a donor, instead of the organic carbonyl in (I).

Related literature top

For related literature, see: Allen et al. (1995, 1998); Bernstein et al. (1985); Bigmore et al. (2005, 2006); Bleeke & Behm (1997); Cremer & Pople (1975); Etter (1990); Hazel et al. (2006); Hernández-Juárez, Salazar, García-Báez, Padilla-Martínez, Höpfl & Rosales-Hoz (2012); Orpen et al. (1995); Palusiak et al. (2006); Pettinari & Pettinari (2005); Rodríguez et al. (2006); Romanov et al. (2012); Silva et al. (2008); Trofimenko (1993, 1996, 1999).

Experimental top

Crystals of (I) were obtained by slow diffusion of Et2O into an acetone solution of the dicationic complex [κ3-TpmMe2Ir(1,5-η-CH CH–C(OH)–CHCH–)(CO)](CF3SO3)2 (Hernández-Juárez et al., 2012). Spectroscopic analysis: 1H NMR (CDCl3, Frequency?, δ, p.p.m.): 8.73 (2H, d, 3JH2—H3 = 9.0 Hz, H2, H6), 8.23 [1H, s, CH(pz)3], 6.89 (2H, d, 3JH3—H2 = 9.0 Hz, H3, H5], 6.31, 6.10 [3H, s, CHpz (2:1)], 2.79, 2.76, 2.39, 2.19 [6 × Mepz, s (2:1:2:1)]; 13C{1H} NMR (CDCl3, Frequency?, δ, p.p.m.): 197.5 (Ir—CO) 158.8 (CO), 158.4, 154.8, 144.4, 136.6 [6 × Cqpz (2:1:2:1)], 136.7 (C3, C5), 135.8 (C2, C6), 110.8, 109.9 [3 × CHpz (1:2)], 69.8 [CH(pz)3], 14.2, 14.1, 11.2, 11.1, [6 × Mepz (2:1:2:1)].

Refinement top

C-bound H atoms were positioned geometrically and treated as riding, with aromatic C—H = 0.93 Å and methyl C—H = 0.96 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms or 1.5Ueq(C) for methyl H atoms.

Structure description top

Tris(pyrazolyl)methane (Tpm) is a versatile ligand that complexes with most metals (Bigmore et al., 2005; Pettinari & Pettinari, 2005). Several of these complexes are potent catalysts for reactions such as olefin polymerization (Bigmore et al., 2006), carbene transfer (Rodríguez et al., 2006) and alkane oxidation (Silva et al., 2008). The steric and isoelectronic properties of the Tpm ligand can be finely tuned by selecting the proper substituents. This ligand is isosteric, isoelectronic and isolobal with the established anionic tris(pyrazolyl)borate (Tp), developed and termed the scorpionate ligand by Trofimenko (1993, 1996, 1999). In this paper, the novel complex carbonyl(3-oxopenta-1,4-diene-1,5,-diyl)[tris(3,5-dimethyl-1H-pyrazol-1-yl-κN2)methane]iridium(III) trifluoromethanesulfonate, [Ir(C5H4O)(TpmMe2)(CO)](CF3O3S) [TpmMe2 = tris(3,5-dimethyl-1H-pyrazol-1-yl)methane], (I), has been prepared and characterized by X-ray crystallography and 1H and 13C NMR analyses.

Compound (I) was crystallized from an acetone solution of the dicationic complex [κ3-TpmMe2Ir(1,5-η-CHCH–C(OH)–CH CH–)(CO)](CF3SO3)2, (II) (Hernández-Juárez et al., 2012), which loses one molecule of HSO3CF3 in solution to shift the equilibrium from the dicationic iridaphenol complex, (II), to the iridacyclohexa-2,5-dien-4-one complex, (I).

The solid-state structure of (I) has been determined at 298 K. This compound crystallizes in the monoclinic space group P21/c with one molecule in the asymmetric unit (Fig. 1 and Table 1). The TpmMe2 ligand is κ3-coordinated to the IrIII centre. The Ir1—N12 apical bond length is 2.118 (5) Å, shorter than the average equatorial Ir1—N(14,16) bond length, probably due to the π-acceptor ability of the apical CO group which favours electronic release from atom N12. The average Ir1—C(2,6) bond length of 2.027 (8) Å is also shorter than the accepted average value for an Ir—Csp2 σ bond of 2.071 (44) Å (Orpen et al., 1995); this points to a relatively strong Ir–olefin bond. The short–long–long–short pattern for the C—C bonds of the iridacycle [C2C3—C4( O4)—C5 C6] are consistent with its iridacyclohexa-2,5-dien-4-one nature, compared with standard double Csp2Csp2 and single Csp2—CO bonds of 1.34 and 1.478 Å, respectively (Allen et al., 1995). The C2—Ir1—C6 angle is the closest in the iridacycle and very near to the expected value for adjacent equatorial positions, whereas the average linear N—Ir—C and almost orthogonal N—Ir—N angles values of 176 (2) and 84 (2)°, respectively, are in agreement with a distorted octahedral geometry around the IrIII centre. In general, the bond lengths and angles found in (I) are similar to the cationic iridacyclohexa-3,5-dien-2-one complex [(PMe3)4Ir[1,5-η-C(O)–C(Me)–CH–C(Me)–CH–]](CF3SO3), although that complex is almost planar (Bleeke & Behm, 1997). The iridacycle in (I) presents a boat-like conformation, according to the ring-puckering parameters (Cremer & Pople, 1975) of Q = 0.309 (6) Å, θ = 73.1 (15)° and φ = 359.9 (15)°. However, the bending of the Ir vertex (C6/Ir1/C2) from the central diolefin plane (C2/C3/C5/C6) is larger [16.2 (3)°] than the bending of the CO vertex (C3/C4/C5) [11.1 (5)°], although the CO tip is almost coplanar with the C3/C4/C5 fragment [2.9 (3)°]. The large bending of the Ir vertex could be attributed to the steric effect exerted by the TpmMe2 ligand, whereas the CO vertex could be forced to bend due to its partcipation in intermolecular noncovalent interactions.

Carbonyl–carbonyl dipolar interactions are strong enough to direct the crystal packing in the absence of stronger hydrogen bonding. CO···CO interactions have been characterized in both organic (Allen et al., 1998) and organometallic carbonyl (Hazel et al., 2006) compounds but, to the best of our knowledge, there is no study where both kinds of carbonyls are present in the same organometallic molecule. In (I), the organic carbonyl (C4O4) behaves as a donor, whereas the metallic carbonyl (C1O1) acts as an acceptor. This behaviour contrasts with that found in the tricarbonyl(formylcyclopentadienyl)M (M = Mn, Re) complexes, where the metal CO acts as a donor and the formyl CO as an acceptor (Romanov et al., 2012). Nevertheless, it is in agreement with the scheme found in tricarbonyl(Cp)(η1-maleimidato)M (M = Mo, W; Cp is cyclopentadienyl) complexes, where the metal CO acts as an acceptor and maleimidate CO as a donor (Palusiak et al., 2006). These differences in behaviour could be attributed to the metal oxidation state, the metal hardness, the geometry of the complex and the atomic charges, among other factors. With regard to atomic charges, when organic (COorg) and metal (COMet) carbonyls are in the same complex, COorg···CMet interactions are more likely to occur than COMet···Corg due to the larger calculated negative charge (Palusiak et al., 2006) on the O atom of COorg than on COMet. In the (I), both carbonyls form perpendicular C4O4···C1 interactions (Allen et al., 1998) [O4···C1i = 3.063 (8) Å and C4O4···C1i = 168.4 (3)°; symmetry code: (i) x, -y + 1/2, z + 1/2] which form C(6) chains (Etter, 1990; Bernstein et al., 1985) along the c crystallographic axis (Fig. 2). The first dimension is also built up by the participation of the quinone carbonyl in two CO···π interactions with the two equatorial pyrazole rings [O4···Cg1i = 3.765 (8) Å and C4O4···Cg1i = 96.4 (6)°; O4···Cg2i = 3.634 (7) Å and C4O4···Cg2i = 102.3 (5)°; Cg1 and Cg2 are the centroids of the N13/N/14/C16–C18 and N15/N16/C21–C23 rings, respectively].

The trifluoromethanesulfonate anion acts, mostly, as a space-filling entity and is weakly bonded to the iridium complex cation through a C22—H22···O7ii soft interaction [C22···O7ii = 3.250 (10) Å and C22—H22···O7ii = 153°; symmetry code: (ii) x - 1, -y + 1/2, z - 1/2].

The molecular structure of the analogous tetrafluoroborate salt, (III), has been reported recently (Hernández-Juárez et al., 2012). However, the supramolecular structure is missing, so a comparison of the two salts is appropriate. [If the supramolecular structure is missing, how can the two be compared?] The cations in (III) and (I) are isostructural, despite the fact that their respective counteranions are different in volume and geometry. The supramolecular structure of (III) [See query above] consists of perpendicular CO···CO interactions [O4···C1iii = 3.027 (6) Å and C4 O4···C1iii = 153.6 (4)°; symmetry code: (iii) x, -y + 1/2, z - 1/2], forming C(6) chains running along the c axis, and CO···π interactions [O1···Cg1iii = 3.420 (5) Å and C1 O1···Cg1iii = 135.1 (4)°; O1···Cg2iii = 3.482 (4) Å and C1O1···Cg2iii = 129.9 (4)°; Cg2 and Cg3 are the centroids of the ??? and ??? rings, respectively], but in this case with the participation of the metallic carbonyl as a donor, instead of the organic carbonyl in (I).

For related literature, see: Allen et al. (1995, 1998); Bernstein et al. (1985); Bigmore et al. (2005, 2006); Bleeke & Behm (1997); Cremer & Pople (1975); Etter (1990); Hazel et al. (2006); Hernández-Juárez, Salazar, García-Báez, Padilla-Martínez, Höpfl & Rosales-Hoz (2012); Orpen et al. (1995); Palusiak et al. (2006); Pettinari & Pettinari (2005); Rodríguez et al. (2006); Romanov et al. (2012); Silva et al. (2008); Trofimenko (1993, 1996, 1999).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), WinGX2003 (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The components of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Carbonyl C4O4···Cg interactions [Cg1 and Cg2 are the centroids of the N13/N/14/C16–C18 and N15/N16/C21–C23 rings, respectively] and quinonoid carbonyl–metallic carbonyl C4O4···C1 interactions forming C(6) chains along the c axis. Interactions are indicated by dotted lines. [Symmetry code: (i) x, -y + 1/2, z + 1/2.]
carbonyl(3-oxopenta-1,4-diene-1,5,-diyl)[tris(3,5-dimethyl-1H- pyrazol-1-yl-κN2)methane]iridium(III) trifluoromethanesulfonate top
Crystal data top
[Ir(C5H4O)(C16H22N6)(CO)](CF3O3S)F(000) = 1464
Mr = 747.76Dx = 1.830 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 600 reflections
a = 13.1441 (3) Åθ = 20–25°
b = 16.2686 (2) ŵ = 10.80 mm1
c = 14.0631 (3) ÅT = 298 K
β = 115.506 (3)°Block, purple
V = 2714.12 (11) Å30.20 × 0.15 × 0.09 × 0.09 (radius) mm
Z = 4
Data collection top
Oxford Xcalibur Ruby Gemini
diffractometer
5390 independent reflections
Graphite monochromator4347 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.058
ω scansθmax = 73.7°, θmin = 3.7°
Absorption correction: for a sphere
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1615
Tmin = 0.243, Tmax = 0.324k = 2020
26335 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.050P)2 + 5.0864P]
where P = (Fo2 + 2Fc2)/3
5390 reflections(Δ/σ)max < 0.001
357 parametersΔρmax = 2.02 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Ir(C5H4O)(C16H22N6)(CO)](CF3O3S)V = 2714.12 (11) Å3
Mr = 747.76Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.1441 (3) ŵ = 10.80 mm1
b = 16.2686 (2) ÅT = 298 K
c = 14.0631 (3) Å0.20 × 0.15 × 0.09 × 0.09 (radius) mm
β = 115.506 (3)°
Data collection top
Oxford Xcalibur Ruby Gemini
diffractometer
5390 independent reflections
Absorption correction: for a sphere
(CrysAlis RED; Oxford Diffraction, 2009)
4347 reflections with I > 2σ(I)
Tmin = 0.243, Tmax = 0.324Rint = 0.058
26335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 2.02 e Å3
5390 reflectionsΔρmin = 0.77 e Å3
357 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.20980 (2)0.36344 (1)0.56269 (2)0.0401 (1)
O10.1836 (5)0.1866 (3)0.6029 (5)0.084 (2)
O40.1813 (6)0.3242 (4)0.8796 (4)0.095 (3)
N110.2349 (4)0.5169 (3)0.4549 (4)0.0445 (14)
N120.2348 (4)0.4905 (3)0.5477 (3)0.0437 (14)
N130.3220 (4)0.4008 (3)0.4190 (4)0.0442 (14)
N140.3329 (4)0.3507 (3)0.5012 (4)0.0437 (14)
N150.1210 (4)0.4166 (3)0.3331 (3)0.0446 (16)
N160.0955 (4)0.3672 (3)0.3976 (4)0.0441 (14)
C10.1922 (6)0.2535 (4)0.5822 (5)0.057 (3)
C20.0882 (5)0.3851 (4)0.6118 (5)0.053 (2)
C30.0908 (7)0.3708 (4)0.7059 (6)0.063 (3)
C40.1910 (8)0.3446 (4)0.7998 (6)0.068 (3)
C50.3016 (7)0.3504 (4)0.7996 (5)0.059 (2)
C60.3221 (6)0.3625 (3)0.7166 (5)0.0503 (19)
C100.2282 (5)0.4579 (3)0.3757 (4)0.0446 (19)
C110.2512 (5)0.5570 (3)0.6070 (5)0.0462 (19)
C120.2602 (6)0.6252 (3)0.5518 (5)0.053 (2)
C130.2498 (5)0.5995 (3)0.4561 (5)0.0471 (19)
C140.2616 (7)0.5561 (4)0.7172 (5)0.065 (3)
C150.2510 (7)0.6457 (4)0.3650 (6)0.064 (2)
C160.4191 (5)0.3015 (3)0.5172 (5)0.0476 (19)
C170.4637 (5)0.3202 (4)0.4458 (5)0.053 (2)
C180.4019 (5)0.3833 (4)0.3845 (5)0.0501 (19)
C190.4562 (6)0.2356 (4)0.5998 (5)0.061 (2)
C200.4133 (7)0.4285 (5)0.2971 (6)0.073 (3)
C210.0002 (5)0.3289 (4)0.3358 (5)0.0506 (19)
C220.0339 (6)0.3538 (4)0.2321 (5)0.055 (2)
C230.0429 (6)0.4095 (4)0.2313 (4)0.0509 (19)
C240.0514 (6)0.2661 (4)0.3786 (6)0.062 (2)
C250.0433 (6)0.4600 (4)0.1425 (5)0.062 (2)
S10.70489 (16)0.12695 (10)0.40517 (13)0.0584 (5)
F10.5956 (8)0.0941 (6)0.5152 (7)0.173 (5)
F20.5698 (7)0.0088 (5)0.4004 (6)0.161 (4)
F30.7223 (7)0.0124 (5)0.5371 (7)0.175 (4)
O50.7566 (9)0.0748 (5)0.3595 (8)0.153 (5)
O60.6157 (7)0.1697 (7)0.3353 (8)0.168 (5)
O70.7832 (8)0.1717 (5)0.4890 (6)0.145 (4)
C80.6480 (9)0.0547 (6)0.4663 (7)0.084 (4)
H20.021910.408080.561980.0629*
H30.024090.377810.712790.0759*
H50.363930.345100.864300.0698*
H60.396970.371640.730400.0606*
H100.234580.487990.318190.0535*
H120.271350.679150.576010.0642*
H14A0.327520.525610.761670.0973*
H14B0.267950.611510.742770.0973*
H14C0.196020.530760.717960.0973*
H15A0.317820.631990.356900.0958*
H15B0.185690.631300.302030.0958*
H15C0.250170.703680.377550.0958*
H170.524450.294340.441030.0627*
H19A0.463210.258320.665310.0913*
H19B0.401450.192170.578350.0913*
H19C0.527760.214150.608530.0913*
H20A0.355160.469400.269200.1095*
H20B0.485730.454680.323580.1095*
H20C0.406230.390530.242370.1095*
H220.097540.335710.173940.0660*
H24A0.039050.281320.448740.0925*
H24B0.130950.262970.334510.0925*
H24C0.017550.213500.380310.0925*
H25A0.016760.442290.077410.0931*
H25B0.032890.516870.154220.0931*
H25C0.114120.453220.138850.0931*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.0492 (2)0.0359 (1)0.0394 (1)0.0009 (1)0.0230 (1)0.0032 (1)
O10.129 (5)0.045 (3)0.095 (4)0.014 (3)0.065 (4)0.012 (3)
O40.134 (6)0.105 (4)0.066 (3)0.025 (4)0.061 (4)0.008 (3)
N110.057 (3)0.035 (2)0.043 (2)0.000 (2)0.023 (2)0.0035 (18)
N120.055 (3)0.037 (2)0.045 (2)0.002 (2)0.027 (2)0.0024 (19)
N130.053 (3)0.042 (2)0.044 (2)0.003 (2)0.027 (2)0.005 (2)
N140.052 (3)0.041 (2)0.043 (2)0.006 (2)0.025 (2)0.0055 (19)
N150.049 (3)0.046 (3)0.038 (2)0.000 (2)0.018 (2)0.0030 (19)
N160.049 (3)0.044 (2)0.041 (2)0.003 (2)0.021 (2)0.0006 (19)
C10.070 (5)0.057 (4)0.054 (4)0.002 (3)0.037 (3)0.006 (3)
C20.045 (4)0.066 (4)0.057 (4)0.000 (3)0.032 (3)0.003 (3)
C30.067 (5)0.075 (5)0.063 (4)0.007 (4)0.043 (4)0.002 (3)
C40.102 (6)0.059 (4)0.058 (4)0.013 (4)0.048 (4)0.001 (3)
C50.074 (5)0.055 (4)0.044 (3)0.000 (3)0.023 (3)0.008 (3)
C60.059 (4)0.045 (3)0.041 (3)0.002 (3)0.016 (3)0.008 (2)
C100.056 (4)0.040 (3)0.042 (3)0.003 (3)0.025 (3)0.007 (2)
C110.051 (4)0.041 (3)0.051 (3)0.001 (3)0.026 (3)0.005 (2)
C120.066 (4)0.036 (3)0.065 (4)0.003 (3)0.035 (3)0.003 (3)
C130.050 (4)0.034 (3)0.059 (3)0.000 (3)0.025 (3)0.005 (2)
C140.099 (6)0.049 (3)0.058 (4)0.004 (4)0.044 (4)0.007 (3)
C150.086 (5)0.046 (3)0.061 (4)0.007 (3)0.034 (4)0.011 (3)
C160.051 (4)0.040 (3)0.050 (3)0.000 (3)0.020 (3)0.002 (2)
C170.051 (4)0.052 (3)0.061 (4)0.008 (3)0.030 (3)0.003 (3)
C180.053 (4)0.058 (3)0.048 (3)0.001 (3)0.030 (3)0.001 (3)
C190.069 (5)0.050 (3)0.066 (4)0.013 (3)0.031 (4)0.009 (3)
C200.093 (6)0.076 (5)0.077 (5)0.007 (4)0.061 (5)0.017 (4)
C210.049 (4)0.051 (3)0.052 (3)0.003 (3)0.022 (3)0.008 (3)
C220.050 (4)0.061 (4)0.048 (3)0.007 (3)0.015 (3)0.005 (3)
C230.057 (4)0.052 (3)0.043 (3)0.011 (3)0.021 (3)0.002 (3)
C240.056 (4)0.063 (4)0.069 (4)0.016 (3)0.030 (4)0.007 (3)
C250.071 (5)0.069 (4)0.043 (3)0.007 (4)0.021 (3)0.008 (3)
S10.0696 (11)0.0480 (8)0.0530 (9)0.0032 (8)0.0222 (8)0.0039 (7)
F10.240 (9)0.193 (8)0.167 (7)0.016 (7)0.165 (7)0.006 (6)
F20.209 (8)0.167 (7)0.140 (6)0.114 (6)0.106 (6)0.054 (5)
F30.178 (8)0.142 (6)0.208 (8)0.033 (5)0.085 (7)0.118 (6)
O50.225 (10)0.110 (6)0.213 (10)0.019 (6)0.178 (9)0.029 (6)
O60.097 (6)0.218 (10)0.153 (8)0.023 (6)0.021 (5)0.113 (7)
O70.213 (9)0.100 (5)0.081 (5)0.070 (6)0.024 (5)0.002 (4)
C80.121 (8)0.079 (5)0.065 (5)0.002 (6)0.052 (5)0.000 (4)
Geometric parameters (Å, º) top
Ir1—N122.118 (5)C16—C171.397 (10)
Ir1—N142.148 (6)C16—C191.500 (9)
Ir1—N162.156 (5)C17—C181.362 (9)
Ir1—C11.839 (7)C18—C201.494 (11)
Ir1—C22.026 (7)C21—C221.389 (9)
Ir1—C62.028 (7)C21—C241.489 (10)
S1—O51.404 (11)C22—C231.360 (11)
S1—O61.353 (11)C23—C251.497 (9)
S1—O71.391 (9)C2—H20.9300
S1—C81.798 (11)C3—H30.9300
F1—C81.329 (15)C5—H50.9300
F2—C81.286 (13)C6—H60.9300
F3—C81.258 (13)C10—H100.9800
O1—C11.145 (8)C12—H120.9300
O4—C41.228 (11)C14—H14A0.9600
N11—N121.375 (7)C14—H14B0.9600
N11—C101.444 (7)C14—H14C0.9600
N11—C131.357 (7)C15—H15A0.9600
N12—C111.326 (7)C15—H15B0.9600
N13—N141.371 (7)C15—H15C0.9600
N13—C101.452 (8)C17—H170.9300
N13—C181.363 (9)C19—H19A0.9600
N14—C161.325 (8)C19—H19B0.9600
N15—C231.361 (7)C19—H19C0.9600
N15—N161.358 (7)C20—H20C0.9600
N15—C101.438 (8)C20—H20A0.9600
N16—C211.332 (9)C20—H20B0.9600
C2—C31.330 (10)C22—H220.9300
C3—C41.471 (12)C24—H24A0.9600
C4—C51.458 (15)C24—H24B0.9600
C5—C61.321 (10)C24—H24C0.9600
C11—C121.388 (8)C25—H25A0.9600
C11—C141.496 (9)C25—H25B0.9600
C12—C131.359 (9)C25—H25C0.9600
C13—C151.491 (10)
N12—Ir1—N1483.00 (19)N16—C21—C24121.4 (6)
N12—Ir1—N1686.05 (17)N16—C21—C22109.7 (6)
N12—Ir1—C1177.4 (2)C21—C22—C23107.3 (6)
N12—Ir1—C292.5 (2)C22—C23—C25129.9 (6)
N12—Ir1—C692.34 (18)N15—C23—C25124.0 (6)
N14—Ir1—N1682.3 (2)N15—C23—C22105.9 (5)
N14—Ir1—C197.5 (3)Ir1—C2—H2116.00
N14—Ir1—C2174.5 (2)C3—C2—H2116.00
N14—Ir1—C695.8 (3)C2—C3—H3117.00
N16—Ir1—C196.6 (2)C4—C3—H3118.00
N16—Ir1—C294.4 (2)C6—C5—H5117.00
N16—Ir1—C6177.6 (3)C4—C5—H5117.00
C1—Ir1—C287.1 (3)Ir1—C6—H6116.00
C1—Ir1—C685.1 (2)C5—C6—H6116.00
C2—Ir1—C687.5 (3)N11—C10—H10108.00
O7—S1—C8104.2 (5)N13—C10—H10108.00
O5—S1—C8101.9 (5)N15—C10—H10108.00
O5—S1—O6114.7 (6)C13—C12—H12126.00
O5—S1—O7112.1 (6)C11—C12—H12126.00
O6—S1—O7116.1 (6)C11—C14—H14B109.00
O6—S1—C8105.9 (6)C11—C14—H14A110.00
N12—N11—C13110.9 (5)H14A—C14—H14C110.00
N12—N11—C10120.0 (4)C11—C14—H14C110.00
C10—N11—C13128.9 (5)H14A—C14—H14B109.00
Ir1—N12—C11136.4 (4)H14B—C14—H14C109.00
Ir1—N12—N11117.6 (3)C13—C15—H15C109.00
N11—N12—C11106.0 (5)C13—C15—H15A109.00
C10—N13—C18129.0 (5)C13—C15—H15B109.00
N14—N13—C10119.7 (5)H15A—C15—H15B110.00
N14—N13—C18111.1 (5)H15A—C15—H15C109.00
Ir1—N14—N13117.3 (4)H15B—C15—H15C109.00
Ir1—N14—C16136.7 (4)C18—C17—H17126.00
N13—N14—C16105.9 (5)C16—C17—H17126.00
C10—N15—C23129.6 (5)C16—C19—H19C109.00
N16—N15—C23111.2 (5)H19A—C19—H19B110.00
N16—N15—C10118.5 (4)C16—C19—H19B109.00
N15—N16—C21105.9 (5)C16—C19—H19A109.00
Ir1—N16—C21135.5 (4)H19A—C19—H19C109.00
Ir1—N16—N15118.6 (4)H19B—C19—H19C109.00
Ir1—C1—O1174.3 (6)H20A—C20—H20C109.00
Ir1—C2—C3128.5 (6)C18—C20—H20A109.00
C2—C3—C4125.0 (9)C18—C20—H20B109.00
C3—C4—C5119.2 (7)C18—C20—H20C109.00
O4—C4—C3119.6 (10)H20A—C20—H20B109.00
O4—C4—C5121.0 (8)H20B—C20—H20C110.00
C4—C5—C6126.5 (7)C21—C22—H22126.00
Ir1—C6—C5127.8 (6)C23—C22—H22126.00
N11—C10—N13110.1 (5)H24A—C24—H24B109.00
N11—C10—N15110.8 (5)H24A—C24—H24C109.00
N13—C10—N15112.2 (4)C21—C24—H24A109.00
C12—C11—C14126.5 (5)C21—C24—H24B110.00
N12—C11—C14124.1 (5)C21—C24—H24C110.00
N12—C11—C12109.3 (5)H24B—C24—H24C109.00
C11—C12—C13108.2 (5)H25B—C25—H25C109.00
C12—C13—C15131.5 (5)C23—C25—H25A110.00
N11—C13—C12105.6 (5)C23—C25—H25B110.00
N11—C13—C15122.9 (6)C23—C25—H25C109.00
C17—C16—C19128.0 (6)H25A—C25—H25B109.00
N14—C16—C17109.8 (5)H25A—C25—H25C109.00
N14—C16—C19122.2 (6)S1—C8—F1110.3 (7)
C16—C17—C18107.4 (6)S1—C8—F2113.8 (7)
C17—C18—C20130.4 (7)S1—C8—F3113.3 (9)
N13—C18—C17105.9 (6)F1—C8—F2102.8 (10)
N13—C18—C20123.8 (6)F1—C8—F3104.7 (9)
C22—C21—C24128.9 (6)F2—C8—F3111.1 (9)
C2—Ir1—N16—N15128.6 (4)N11—N12—C11—C14177.5 (7)
N12—Ir1—N16—C21146.5 (7)Ir1—N12—C11—C142.9 (11)
N14—Ir1—N16—C21130.1 (7)N11—N12—C11—C120.8 (8)
C1—Ir1—N16—C2133.3 (7)C10—N13—N14—Ir11.5 (6)
N14—Ir1—N12—N1146.6 (4)C18—N13—C10—N11123.0 (6)
N16—Ir1—N12—N1136.1 (4)N14—N13—C10—N1561.3 (6)
C2—Ir1—N12—N11130.3 (5)C18—N13—N14—Ir1176.9 (4)
C6—Ir1—N12—N11142.1 (5)C10—N13—N14—C16174.8 (5)
N14—Ir1—N12—C11133.8 (7)N14—N13—C18—C170.6 (7)
N16—Ir1—N12—C11143.5 (7)C18—N13—N14—C160.5 (7)
C2—Ir1—N12—C1149.3 (7)C10—N13—C18—C206.4 (10)
C6—Ir1—N12—C1138.2 (7)C18—N13—C10—N15113.1 (7)
C6—Ir1—N14—N13134.7 (4)N14—N13—C10—N1162.6 (7)
N12—Ir1—N16—N1536.4 (4)C10—N13—C18—C17174.2 (6)
N14—Ir1—N16—N1547.0 (4)N14—N13—C18—C20178.8 (6)
N12—Ir1—C6—C5113.0 (5)N13—N14—C16—C19178.4 (5)
N12—Ir1—N14—N1343.1 (4)Ir1—N14—C16—C193.2 (10)
N16—Ir1—N14—N1343.9 (4)Ir1—N14—C16—C17175.5 (5)
C1—Ir1—N14—N13139.5 (4)N13—N14—C16—C170.3 (7)
C1—Ir1—C6—C566.8 (6)C10—N15—C23—C2513.7 (11)
N12—Ir1—N14—C16142.1 (6)N16—N15—C10—N1358.0 (7)
N16—Ir1—N14—C16131.0 (6)C23—N15—N16—C210.2 (7)
C1—Ir1—N14—C1635.4 (6)N16—N15—C10—N1165.5 (6)
C6—Ir1—N14—C1650.4 (6)C23—N15—C10—N11124.7 (6)
C6—Ir1—C2—C320.7 (6)C23—N15—C10—N13111.9 (7)
N14—Ir1—C6—C5163.9 (5)N16—N15—C23—C220.1 (8)
N12—Ir1—C2—C3112.9 (6)C10—N15—C23—C22170.4 (6)
C2—Ir1—C6—C520.6 (6)C10—N15—N16—Ir16.0 (7)
C2—Ir1—N16—C2154.3 (7)C10—N15—N16—C21171.9 (5)
C1—Ir1—N16—N15143.8 (5)N16—N15—C23—C25175.9 (6)
C1—Ir1—C2—C364.5 (7)C23—N15—N16—Ir1177.7 (4)
N16—Ir1—C2—C3160.9 (6)N15—N16—C21—C24177.2 (6)
O7—S1—C8—F354.2 (9)Ir1—N16—C21—C240.2 (10)
O7—S1—C8—F2177.6 (9)N15—N16—C21—C220.4 (7)
O5—S1—C8—F362.6 (9)Ir1—N16—C21—C22177.0 (5)
O5—S1—C8—F1179.5 (8)Ir1—C2—C3—C48.0 (10)
O7—S1—C8—F162.7 (9)C2—C3—C4—C513.7 (10)
O6—S1—C8—F3177.2 (8)C2—C3—C4—O4171.9 (7)
O6—S1—C8—F254.6 (10)C3—C4—C5—C613.7 (10)
O5—S1—C8—F265.6 (10)O4—C4—C5—C6171.9 (7)
O6—S1—C8—F160.3 (9)C4—C5—C6—Ir17.9 (10)
N12—N11—C10—N1358.8 (7)C14—C11—C12—C13177.7 (7)
C10—N11—C13—C156.2 (11)N12—C11—C12—C130.5 (9)
N12—N11—C13—C15178.6 (7)C11—C12—C13—C15179.0 (8)
C13—N11—C10—N13116.1 (7)C11—C12—C13—N110.1 (8)
C10—N11—N12—Ir15.4 (7)N14—C16—C17—C180.1 (7)
C10—N11—C13—C12174.7 (7)C19—C16—C17—C18178.7 (6)
C10—N11—N12—C11174.9 (6)C16—C17—C18—N130.4 (7)
C13—N11—N12—Ir1178.9 (4)C16—C17—C18—C20178.9 (7)
C13—N11—N12—C110.8 (7)C24—C21—C22—C23176.9 (7)
N12—N11—C10—N1566.0 (7)N16—C21—C22—C230.5 (8)
C13—N11—C10—N15119.2 (7)C21—C22—C23—C25175.3 (7)
N12—N11—C13—C120.5 (8)C21—C22—C23—N150.3 (8)
Ir1—N12—C11—C12178.9 (5)

Experimental details

Crystal data
Chemical formula[Ir(C5H4O)(C16H22N6)(CO)](CF3O3S)
Mr747.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.1441 (3), 16.2686 (2), 14.0631 (3)
β (°) 115.506 (3)
V3)2714.12 (11)
Z4
Radiation typeCu Kα
µ (mm1)10.80
Crystal size (mm)0.20 × 0.15 × 0.09 × 0.09 (radius)
Data collection
DiffractometerOxford Xcalibur Ruby Gemini
Absorption correctionFor a sphere
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.243, 0.324
No. of measured, independent and
observed [I > 2σ(I)] reflections
26335, 5390, 4347
Rint0.058
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.04
No. of reflections5390
No. of parameters357
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.02, 0.77

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), WinGX2003 (Farrugia, 1999) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Ir1—N122.118 (5)O1—C11.145 (8)
Ir1—N142.148 (6)O4—C41.228 (11)
Ir1—N162.156 (5)C2—C31.330 (10)
Ir1—C11.839 (7)C3—C41.471 (12)
Ir1—C22.026 (7)C4—C51.458 (15)
Ir1—C62.028 (7)C5—C61.321 (10)
N12—Ir1—N1483.00 (19)N16—Ir1—C294.4 (2)
N12—Ir1—N1686.05 (17)N16—Ir1—C6177.6 (3)
N12—Ir1—C292.5 (2)C2—Ir1—C687.5 (3)
N12—Ir1—C692.34 (18)C2—C3—C4125.0 (9)
N14—Ir1—C197.5 (3)C3—C4—C5119.2 (7)
N14—Ir1—C2174.5 (2)C4—C5—C6126.5 (7)
N14—Ir1—C695.8 (3)Ir1—C6—C5127.8 (6)
C4—C5—C6—Ir17.9 (10)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds