Download citation
Download citation
link to html
Synchrotron-based photoemission electron microscopy (PEEM; probing the surface region) and time-of-flight secondary ion mass spectrometry (ToF-SIMS; probing the uppermost surface layer) have been used to image naturally heterogeneous samples containing chalcopyrite (CuFeS2), pentlandite [(Ni,Fe)9S8] and monoclinic pyrrhotite (Fe7S8) both freshly polished and exposed to pH 9 KOH for 30 min. PEEM images constructed from the metal L3 absorption edges were acquired for the freshly prepared and solution-exposed mineral samples. These images were also used to produce near-edge X-ray absorption fine-structure spectra from regions of the images, allowing the chemistry of the surface of each mineral to be interrogated, and the effect of solution exposure on the mineral surface chemistry to be determined. The PEEM results indicate that the iron in the monoclinic pyrrhotite oxidized preferentially and extensively, while the iron in the chalcopyrite and pentlandite underwent only mild oxidation. The ToF-SIMS data gave a clearer picture of the changes happening in the uppermost surface layer, with oxidation products being observed on all three minerals, and significant polysulfide formation and copper activation being detected for pyrrhotite.

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds