Download citation
Download citation
link to html
A new data analysis methodology for X-ray absorption near-edge spectroscopy (XANES) is introduced and tested using several examples. The methodology has been implemented within the context of a new Matlab-based program discussed in a companion related article [Delgado-Jaime et al. (2010), J. Synchrotron Rad. 17, 132-137]. The approach makes use of a Monte Carlo search method to seek appropriate starting points for a fit model, allowing for the generation of a large number of independent fits with minimal user-induced bias. The applicability of this methodology is tested using various data sets on the Cl K-edge XAS data for tetragonal CuCl42-, a common reference compound used for calibration and covalency estimation in M-Cl bonds. A new background model function that effectively blends together background profiles with spectral features is an important component of the discussed methodology. The development of a robust evaluation function to fit multiple-edge data is discussed and the implications regarding standard approaches to data analysis are discussed and explored within these examples.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S090904950904655X/ot5602sup1.pdf
Supplementary material


Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds