Download citation
Download citation
link to html
The structure of the low-temperature form of barium tetraphosphate, Ba3P4O13, shows the tetraphosphate to exist in an S conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101021588/os1147sup1.cif
Contains datablocks holt, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101021588/os1147Isup2.hkl
Contains datablock I

Comment top

In 1986, Millet et al. (1986) reported unit-cell dimensions for low- and high-temperature forms of Ba3P4O13. The low-temperature form (triclinic space group P1 or P1; a = 5.757, b = 7.243, c = 8.104 Å, α = 82.75, β = 73.94, γ = 70.71°) transforms at 1143 K into the high-temperature form (orthorhombic space group Pbcm; a = 7.107, b = 13.883, c = 19.219 Å) (cell dimensions from precession camera data).

Gatehouse et al. (1991) later reported a crystal structure of the low-temperature form in the triclinic space group P1 [a = 5.691 (5), b = 7.238 (7), c = 8.006 (5) Å, α = 83.65 (5), β = 75.95 (8), γ = 70.49 (7)°]. The asymmetric unit consisted of two Ba atoms and a linear tetraphosphate group chain (P4O13), with one Ba atom and the central O atom of the P4O13 chain existing on a center of symmetry. Disorder of the central bridging O atom and of the two terminal O atoms on adjacent P atoms led to an incomplete refinement. Only Ba atoms were refined anisotropically, while P and O atoms were refined with isotropic displacement parameters.

We have isolated crystals of the low-temperature form of Ba3P4O13 and refined single-crystal data in a triclinic cell of doubled volume [600.65 (12) Å]. We find the disorder evident in the P4O13 group seen in the triclinic cell of volume 301 Å to be completely absent in our refinement. Moreover, the central bridging O atom shows a normal angle P—O—P of 151.4 (4) Å.

The P4O13 group has an S conformation (Fig. 1) as is common (Averbuch-Pouchot, 1987; Averbuch-Pouchot & Durif, 1987) and not a U conformation (Lii et al., 1989). The P···P···P···P torsion angle is 179.1°, consistent with this assignment. The four P atoms are coplanar (s.u. 0.012). Relative O-atom conformations are pseudo-eclipsed about the P1···P2 direction, pseudo-staggered about about the P2···P3 direction and pseudo-eclipsed about the P3···P4 line. Average O—P···P—O torsion angles about the three P—P directions are 9.8, 56.1 and 30.63°, respectively, further evidence of the need to refine the O atoms of the P4O13 group without constrained symmetry. Angles at the brigding O atoms are 128.6 (3), 151.4 (4) and 130.0 (3)°. [Can an s.u. value be provided for the P···P···P···P torsion angle; is the s.u. = 0.012 value an r.m.s. deviation ?]

The four Ba atoms appear related by the pseudosymmetry element (1/2 + x, y, 1/2 + z). Atoms Ba1 and Ba2 exist on a center of symmetry and are eight-coordinate, with Ba—O distances in the range 2.659 (4)–3.113 (5) Å for Ba1 and 2.719 (4)–2.938 (4) Å for Ba2. Atom Ba3 is seven-coordinate [Ba—O 2.662 (4)–2.891 (4) Å], while Ba4 has eight O-atom neighbors within the range 2.680 (4)–3.194 (4) Å.

Ba atoms are seen in two tunnels extending in the [100] direction. These tunnels differ in their placement in the curves of the P4O13 groups (Ba3 and Ba4) or at the ends of such groups (Ba1 and Ba2) (Fig. 2).

Experimental top

Crystals of Ba3P4O13 were obtained from a mixture of Na2CO3, BaCO3 and (NH4)2HPO4 (proportion 2:1:2) which was ground together in an agate morter and then heated in a porcelain crucible from 373 K to 873 K. A quantity of (NH4)2HPO4 equal to 10% of the final mass was added to the top of the crucible and the material then heated to fusion (1173 K). Colorless crystals were found in the product after controlled cooling (6° h) to 673 K.

Computing details top

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the P4O13 group of the title compound. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Projection of Ba3P4O13 on to the 011 plane.
Barium tetraphosphate top
Crystal data top
Ba3P4O13Z = 2
Mr = 743.90F(000) = 664
Triclinic, P1Dx = 4.113 Mg m3
a = 7.557 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.618 (1) ÅCell parameters from 23 reflections
c = 10.582 (1) Åθ = 6.2–12.8°
α = 108.26 (1)°µ = 10.33 mm1
β = 104.50 (1)°T = 293 K
γ = 102.37 (1)°Plate, colorless
V = 600.65 (12) Å30.15 × 0.15 × 0.15 mm
Data collection top
Syntex P4 four-circle
diffractometer
2777 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 30.0°, θmin = 2.2°
θ/2θ scansh = 101
Absorption correction: ψ scan
(XEMP; Siemens, 1990)
k = 1111
Tmin = 0.72, Tmax = 0.78l = 1414
4118 measured reflections3 standard reflections every 97 reflections
3397 independent reflections intensity decay: 0.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0592P)2 + 5.8638P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max = 0.001
S = 0.90Δρmax = 0.03 e Å3
3397 reflectionsΔρmin = 0.08 e Å3
185 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0173 (7)
Crystal data top
Ba3P4O13γ = 102.37 (1)°
Mr = 743.90V = 600.65 (12) Å3
Triclinic, P1Z = 2
a = 7.557 (1) ÅMo Kα radiation
b = 8.618 (1) ŵ = 10.33 mm1
c = 10.582 (1) ÅT = 293 K
α = 108.26 (1)°0.15 × 0.15 × 0.15 mm
β = 104.50 (1)°
Data collection top
Syntex P4 four-circle
diffractometer
2777 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XEMP; Siemens, 1990)
Rint = 0.022
Tmin = 0.72, Tmax = 0.783 standard reflections every 97 reflections
4118 measured reflections intensity decay: 0.0%
3397 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032185 parameters
wR(F2) = 0.0990 restraints
S = 0.90Δρmax = 0.03 e Å3
3397 reflectionsΔρmin = 0.08 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.50000.00000.00000.01144 (13)
Ba20.00000.00000.50000.01131 (13)
Ba30.36448 (4)0.22221 (4)0.27035 (3)0.01034 (12)
Ba40.14908 (4)0.22935 (4)0.23031 (3)0.00975 (12)
P10.67328 (18)0.79731 (16)0.36439 (13)0.0085 (2)
O110.7021 (7)0.8590 (5)0.4845 (4)0.0180 (8)
O120.8231 (6)0.8022 (5)0.2953 (5)0.0213 (9)
O130.4678 (5)0.8853 (5)0.2589 (4)0.0130 (7)
O140.6931 (6)0.5923 (5)0.4392 (4)0.0128 (7)
P20.66111 (18)0.46114 (16)0.36628 (13)0.0082 (2)
O220.7348 (7)0.2855 (5)0.4820 (4)0.0206 (9)
O230.4588 (6)0.5152 (6)0.2721 (5)0.0252 (10)
O240.8044 (7)0.4632 (6)0.2796 (5)0.0250 (9)
P30.84691 (18)0.52350 (16)0.13519 (14)0.0084 (2)
O321.0572 (6)0.4979 (6)0.1840 (5)0.0211 (9)
O330.7222 (7)0.6974 (5)0.0294 (4)0.0231 (9)
O340.8026 (6)0.3915 (5)0.0675 (4)0.0125 (7)
P40.83901 (17)0.18521 (16)0.14304 (13)0.0077 (2)
O410.8093 (6)0.1206 (5)0.0241 (4)0.0147 (7)
O421.0474 (5)0.1049 (5)0.2437 (4)0.0123 (7)
O430.6970 (5)0.1691 (5)0.2196 (4)0.0146 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0107 (2)0.0116 (2)0.0124 (2)0.00328 (16)0.00484 (16)0.00450 (16)
Ba20.0086 (2)0.0139 (2)0.0091 (2)0.00191 (16)0.00249 (15)0.00303 (16)
Ba30.00881 (16)0.01054 (18)0.01359 (18)0.00363 (12)0.00437 (12)0.00637 (12)
Ba40.00899 (17)0.00994 (17)0.01224 (18)0.00368 (12)0.00422 (12)0.00586 (12)
P10.0079 (5)0.0091 (6)0.0088 (6)0.0033 (4)0.0023 (4)0.0040 (4)
O110.028 (2)0.0167 (19)0.0156 (19)0.0132 (17)0.0065 (16)0.0110 (16)
O120.0187 (19)0.0165 (19)0.035 (2)0.0060 (16)0.0211 (18)0.0088 (18)
O130.0087 (16)0.0114 (17)0.0150 (18)0.0029 (13)0.0009 (13)0.0030 (14)
O140.0186 (18)0.0085 (16)0.0120 (17)0.0059 (14)0.0040 (14)0.0047 (13)
P20.0075 (5)0.0079 (5)0.0081 (5)0.0020 (4)0.0026 (4)0.0023 (4)
O220.033 (2)0.0086 (17)0.0151 (19)0.0015 (16)0.0077 (17)0.0020 (14)
O230.0105 (17)0.021 (2)0.038 (3)0.0013 (16)0.0026 (17)0.016 (2)
O240.036 (2)0.030 (2)0.026 (2)0.020 (2)0.021 (2)0.0181 (19)
P30.0081 (5)0.0072 (5)0.0092 (6)0.0020 (4)0.0031 (4)0.0025 (4)
O320.0117 (17)0.021 (2)0.033 (2)0.0053 (15)0.0051 (16)0.0150 (18)
O330.031 (2)0.0086 (17)0.016 (2)0.0063 (16)0.0016 (17)0.0020 (15)
O340.0154 (17)0.0080 (16)0.0111 (17)0.0023 (14)0.0022 (14)0.0027 (13)
P40.0071 (5)0.0089 (5)0.0078 (6)0.0029 (4)0.0022 (4)0.0041 (4)
O410.0204 (19)0.0156 (18)0.0125 (18)0.0099 (15)0.0062 (15)0.0080 (15)
O420.0074 (15)0.0126 (17)0.0142 (18)0.0045 (13)0.0008 (13)0.0033 (14)
O430.0121 (16)0.0126 (17)0.023 (2)0.0044 (14)0.0120 (15)0.0066 (15)
Geometric parameters (Å, º) top
Ba1—O33i2.659 (4)Ba4—O23ix2.680 (4)
Ba1—O33ii2.659 (4)Ba4—O41vi2.682 (4)
Ba1—O13ii2.699 (4)Ba4—O12ii2.700 (4)
Ba1—O13i2.699 (4)Ba4—O32ii2.739 (4)
Ba1—O41iii2.742 (4)Ba4—O13ix2.777 (4)
Ba1—O412.742 (4)Ba4—O22iv2.799 (4)
Ba1—O12i3.113 (5)Ba4—O42iii2.876 (4)
Ba1—O12ii3.113 (5)Ba4—O41iii3.194 (4)
Ba1—O43iii3.325 (4)Ba4—P4iii3.5171 (14)
Ba1—O433.325 (4)Ba4—P3ii3.6111 (14)
Ba2—O42iv2.719 (4)Ba4—Ba1vi4.3980 (6)
Ba2—O42iii2.719 (4)P1—O121.495 (4)
Ba2—O22iii2.740 (4)P1—O111.511 (4)
Ba2—O22iv2.740 (4)P1—O131.526 (4)
Ba2—O11v2.772 (4)P1—O141.649 (4)
Ba2—O11ii2.772 (4)O14—P21.582 (4)
Ba2—O43iii2.938 (4)P2—O231.479 (4)
Ba2—O43iv2.938 (4)P2—O221.495 (4)
Ba3—O32vi2.662 (4)P2—O241.584 (4)
Ba3—O11vii2.671 (4)O24—P31.590 (4)
Ba3—O432.674 (4)P3—O331.484 (4)
Ba3—O232.771 (5)P3—O321.486 (4)
Ba3—O42vi2.779 (4)P3—O341.572 (4)
Ba3—O13i2.890 (4)O34—P41.632 (4)
Ba3—O33ii2.891 (4)P4—O431.502 (4)
Ba3—O11i3.268 (5)P4—O411.515 (4)
Ba3—Ba2viii4.4559 (6)P4—O421.524 (4)
O33i—Ba1—O33ii180.0O43—Ba3—O2377.77 (13)
O33i—Ba1—O13ii84.67 (13)O32vi—Ba3—O42vi73.74 (12)
O33ii—Ba1—O13ii95.33 (13)O11vii—Ba3—O42vi71.05 (13)
O33i—Ba1—O13i95.33 (13)O43—Ba3—O42vi139.50 (12)
O33ii—Ba1—O13i84.67 (13)O23—Ba3—O42vi139.83 (12)
O13ii—Ba1—O13i180.0O32vi—Ba3—O13i140.19 (12)
O33i—Ba1—O41iii89.73 (14)O11vii—Ba3—O13i99.94 (12)
O33ii—Ba1—O41iii90.27 (14)O43—Ba3—O13i71.87 (11)
O13ii—Ba1—O41iii107.47 (12)O23—Ba3—O13i149.41 (12)
O13i—Ba1—O41iii72.53 (12)O42vi—Ba3—O13i70.37 (12)
O33i—Ba1—O4190.27 (14)O32vi—Ba3—O33ii83.77 (13)
O33ii—Ba1—O4189.73 (14)O11vii—Ba3—O33ii156.34 (14)
O13ii—Ba1—O4172.53 (12)O43—Ba3—O33ii71.73 (13)
O13i—Ba1—O41107.47 (12)O23—Ba3—O33ii96.90 (14)
O41iii—Ba1—O41180.0O42vi—Ba3—O33ii86.11 (13)
O33i—Ba1—O12i66.39 (12)O13i—Ba3—O33ii77.25 (11)
O33ii—Ba1—O12i113.61 (12)O32vi—Ba3—O11i158.46 (13)
O13ii—Ba1—O12i129.19 (11)O11vii—Ba3—O11i74.53 (14)
O13i—Ba1—O12i50.81 (11)O43—Ba3—O11i64.14 (12)
O41iii—Ba1—O12i112.89 (11)O23—Ba3—O11i114.68 (11)
O41—Ba1—O12i67.11 (11)O42vi—Ba3—O11i99.10 (11)
O33i—Ba1—O12ii113.61 (12)O13i—Ba3—O11i47.46 (11)
O33ii—Ba1—O12ii66.39 (12)O33ii—Ba3—O11i116.47 (11)
O13ii—Ba1—O12ii50.81 (11)O23ix—Ba4—O41vi79.32 (14)
O13i—Ba1—O12ii129.19 (11)O23ix—Ba4—O12ii137.41 (14)
O41iii—Ba1—O12ii67.11 (11)O41vi—Ba4—O12ii129.31 (14)
O41—Ba1—O12ii112.89 (11)O23ix—Ba4—O32ii67.08 (13)
O12i—Ba1—O12ii180.0O41vi—Ba4—O32ii89.92 (13)
O33i—Ba1—O43iii65.02 (12)O12ii—Ba4—O32ii80.64 (13)
O33ii—Ba1—O43iii114.98 (12)O23ix—Ba4—O13ix70.87 (13)
O13ii—Ba1—O43iii64.77 (11)O41vi—Ba4—O13ix72.23 (12)
O13i—Ba1—O43iii115.23 (11)O12ii—Ba4—O13ix140.98 (13)
O41iii—Ba1—O43iii48.29 (10)O32ii—Ba4—O13ix136.65 (12)
O41—Ba1—O43iii131.71 (10)O23ix—Ba4—O22iv91.83 (14)
O12i—Ba1—O43iii127.02 (11)O41vi—Ba4—O22iv151.19 (13)
O12ii—Ba1—O43iii52.98 (11)O12ii—Ba4—O22iv74.74 (14)
O33i—Ba1—O43114.98 (12)O32ii—Ba4—O22iv111.96 (13)
O33ii—Ba1—O4365.02 (12)O13ix—Ba4—O22iv78.97 (13)
O13ii—Ba1—O43115.23 (11)O23ix—Ba4—O42iii140.74 (12)
O13i—Ba1—O4364.77 (11)O41vi—Ba4—O42iii95.96 (12)
O41iii—Ba1—O43131.71 (10)O12ii—Ba4—O42iii74.60 (12)
O41—Ba1—O4348.29 (10)O32ii—Ba4—O42iii152.17 (11)
O12i—Ba1—O4352.98 (11)O13ix—Ba4—O42iii70.61 (12)
O12ii—Ba1—O43127.02 (11)O22iv—Ba4—O42iii73.65 (11)
O43iii—Ba1—O43180.0O23ix—Ba4—O41iii149.88 (13)
O42iv—Ba2—O42iii180.0O41vi—Ba4—O41iii70.66 (13)
O42iv—Ba2—O22iii77.09 (12)O12ii—Ba4—O41iii66.32 (12)
O42iii—Ba2—O22iii102.91 (12)O32ii—Ba4—O41iii109.66 (11)
O42iv—Ba2—O22iv102.91 (12)O13ix—Ba4—O41iii101.26 (11)
O42iii—Ba2—O22iv77.09 (12)O22iv—Ba4—O41iii115.71 (11)
O22iii—Ba2—O22iv180.0O42iii—Ba4—O41iii48.33 (11)
O42iv—Ba2—O11v109.52 (12)O12—P1—O11115.0 (3)
O42iii—Ba2—O11v70.48 (12)O12—P1—O13113.1 (3)
O22iii—Ba2—O11v94.88 (13)O11—P1—O13111.0 (2)
O22iv—Ba2—O11v85.12 (13)O12—P1—O14106.3 (2)
O42iv—Ba2—O11ii70.48 (12)O11—P1—O14104.6 (2)
O42iii—Ba2—O11ii109.52 (12)O13—P1—O14105.9 (2)
O22iii—Ba2—O11ii85.12 (13)P2—O14—P1128.6 (3)
O22iv—Ba2—O11ii94.88 (13)O23—P2—O22115.9 (3)
O11v—Ba2—O11ii180.0O23—P2—O14111.1 (2)
O42iv—Ba2—O43iii127.36 (10)O22—P2—O14107.0 (2)
O42iii—Ba2—O43iii52.64 (10)O23—P2—O24111.3 (3)
O22iii—Ba2—O43iii68.61 (12)O22—P2—O24106.1 (3)
O22iv—Ba2—O43iii111.39 (12)O14—P2—O24104.7 (2)
O11v—Ba2—O43iii112.02 (12)P2—O24—P3151.4 (4)
O11ii—Ba2—O43iii67.98 (12)O33—P3—O32115.9 (3)
O42iv—Ba2—O43iv52.64 (10)O33—P3—O34106.6 (2)
O42iii—Ba2—O43iv127.36 (10)O32—P3—O34110.8 (2)
O22iii—Ba2—O43iv111.39 (12)O33—P3—O24115.5 (3)
O22iv—Ba2—O43iv68.61 (12)O32—P3—O24102.8 (3)
O11v—Ba2—O43iv67.98 (12)O34—P3—O24104.8 (2)
O11ii—Ba2—O43iv112.02 (12)P3—O34—P4130.0 (3)
O43iii—Ba2—O43iv180.0O43—P4—O41114.6 (2)
O32vi—Ba3—O11vii83.94 (14)O43—P4—O42112.4 (2)
O32vi—Ba3—O43133.87 (13)O41—P4—O42110.8 (2)
O11vii—Ba3—O43130.28 (13)O43—P4—O34105.9 (2)
O32vi—Ba3—O2366.87 (13)O41—P4—O34105.7 (2)
O11vii—Ba3—O2396.74 (14)O42—P4—O34106.8 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z; (iii) x+1, y, z; (iv) x1, y, z1; (v) x1, y+1, z1; (vi) x1, y, z; (vii) x+1, y1, z+1; (viii) x, y, z+1; (ix) x, y1, z.

Experimental details

Crystal data
Chemical formulaBa3P4O13
Mr743.90
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.557 (1), 8.618 (1), 10.582 (1)
α, β, γ (°)108.26 (1), 104.50 (1), 102.37 (1)
V3)600.65 (12)
Z2
Radiation typeMo Kα
µ (mm1)10.33
Crystal size (mm)0.15 × 0.15 × 0.15
Data collection
DiffractometerSyntex P4 four-circle
diffractometer
Absorption correctionψ scan
(XEMP; Siemens, 1990)
Tmin, Tmax0.72, 0.78
No. of measured, independent and
observed [I > 2σ(I)] reflections
4118, 3397, 2777
Rint0.022
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.099, 0.90
No. of reflections3397
No. of parameters185
Δρmax, Δρmin (e Å3)0.03, 0.08

Computer programs: XSCANS (Siemens, 1991), XSCANS, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1990), SHELXL97.

Selected bond lengths (Å) top
Ba1—O33i2.659 (4)Ba3—O33vi2.891 (4)
Ba1—O13i2.699 (4)Ba3—O11i3.268 (5)
Ba1—O412.742 (4)Ba3—Ba2vii4.4559 (6)
Ba1—O12i3.113 (5)Ba4—O23viii2.680 (4)
Ba1—O433.325 (4)Ba4—O41iv2.682 (4)
Ba2—O42ii2.719 (4)Ba4—O12vi2.700 (4)
Ba2—O22ii2.740 (4)Ba4—O32vi2.739 (4)
Ba2—O11iii2.772 (4)Ba4—O13viii2.777 (4)
Ba2—O43ii2.938 (4)Ba4—O22ii2.799 (4)
Ba3—O32iv2.662 (4)Ba4—O42ix2.876 (4)
Ba3—O11v2.671 (4)Ba4—O41ix3.194 (4)
Ba3—O432.674 (4)Ba4—P4ix3.5171 (14)
Ba3—O232.771 (5)Ba4—P3vi3.6111 (14)
Ba3—O42iv2.779 (4)Ba4—Ba1iv4.3980 (6)
Ba3—O13i2.890 (4)
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z1; (iii) x1, y+1, z1; (iv) x1, y, z; (v) x+1, y1, z+1; (vi) x+1, y1, z; (vii) x, y, z+1; (viii) x, y1, z; (ix) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds