Download citation
Download citation
link to html
The crystal structure of the title complex, [Cu(C12H28N4)(H2O)2]Cl2·2H2O, has been determined. The CuII atom is octahedrally coordinated by the four N atoms of the tetradentate macrocyclic ligand in equatorial positions and by the O atoms of two water mol­ecules in axial positions. The crystal structure is stabilized by a three-dimensional network of hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199015474/os1090sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199015474/os1090Isup2.hkl
Contains datablock I

CCDC reference: 143226

Comment top

The macrocyclic ligand 5,12-dimethyl-1,4,8,11-tetraazacyclotetradecane exists as two isomers, i.e. C-meso and C-rac. The coordination behaviour of transition metal complexes of C-meso- and C-rac-5,12-dimethyl-1,4,8,11-tetraazacyclotetradecane has been widely studied (Chen et al., 1994; Hay et al., 1984; Hay & Govan, 1992; Hay & Piplani, 1977). The crystal structures of complexes of the C-rac isomer with CuII and CoIII have been reported previously (Panneerselvam et al., 1999; Tahirov et al., 1994). The present paper reports the crystal structure of the copper(II) complex of the C-meso isomer, (I).

The CuII ion is six-coordinated in a distorted octahedral geometry with the four N atoms of the macrocyclic ligand in equatorial positions and two O atoms of two water molecules in axial positions. This compound is not a symmetric complex, since the two trans water molecules and the four N atoms of the tetradentate ligand are coordinated at different distances. In the majority of monomeric trans-diaquacopper(II) complexes, the Cu atom is located at a center of symmetry or on a twofold axis (Allen & Kennard, 1993). There are only a few examples where the trans-diaquacopper(II) octahedral complex is not centrosymmetric (Kozhemyak et al., 1980; Biagini Cingi et al., 1989; Petrovčič et al., 1999).

The CuII ion and the four N-donor atoms are coplanar within 0.004 (1) Å. The Cu—N distances are in the range 1.997 (2)–2.047 (2) Å and the average Cu—N distance, 2.023 (2) Å, is similar to the average Cu—N distance found for CuII tetraaza macrocyclic complexes [2.03 (3) Å; Lu et al., 1991]. The Cu—Owater distances, 2.542 (2) and 2.505 (2) Å, are shorter than those found in trans-diaquacopper(II) tetraaza macrocyclic complexes of the type trans-[Cu(C-meso-1,5,8,12-tetramethyl-1,4,8,11-tetraazacyclotetradecane)- (OH2)2]X2, i.e. 2.624 (3) Å for X = NO2, 2.692 (2) Å for X = Cl, 2.695 (16) Å for X = Br and 2.725 (3) Å for X = I (Lu et al., 1999). The tetradentate ligand adopts a conformation with two six-membered rings in a chair form and two five-membered rings in a gauche form. The arrangement of the four chiral nitrogen centers is in the type-III configuration designated by Bosnich et al. (1965). The two C-methyl groups occupy equatorial positions. The complex has a 1SR,4RS,8RS,11SR configuration for the four chiral N-atom centers and a 5SR,12RS configuration for the two chiral C-atom centers. The crystal structure is stabilized by hydrogen bonds (Table 2).

Experimental top

The ligand C-meso-5,12-dimethyl-1,4,8,11-tetraazacyclotetradecane was prepared according to Hay & Piplani (1977). Equimolar quantities of copper(II) sulfate pentahydrate and C-meso-5,12-dimethyl-1,4,8,11-tetraazacyclotetradecane were dissolved in water and left to react for ca 30 min in a steam bath. The resulting solution was evaporated to dryness by rotatory evaporation. The crystals were obtained from 2 M NaCl aqueous solution on slow evaporation.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: NRCVAX; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids. The chloride anions, the uncoordinated water molecules and the H atoms have been omitted for clarity.
trans-Diaqua(C-meso-5,12-dimethyl-1,4,8,11- tetraazacyclotetradecane-N,N',N'',N''')copper(II) dichloride dihydrate top
Crystal data top
[Cu(C12H28N4)(H2O)2]Cl2·2H2OF(000) = 924
Mr = 434.89Dx = 1.380 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.043 (1) ÅCell parameters from 25 reflections
b = 17.482 (4) Åθ = 9.4–17.3°
c = 15.237 (3) ŵ = 1.32 mm1
β = 102.30 (1)°T = 293 K
V = 2093.4 (7) Å3Pillar, blue
Z = 40.38 × 0.31 × 0.28 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2947 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25°, θmin = 1.8°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 2020
Tmin = 0.619, Tmax = 0.691l = 1817
7942 measured reflections3 standard reflections every 60 min
3688 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: mixed
wR(F2) = 0.076H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.3263P]
where P = (Fo2 + 2Fc2)/3
3688 reflections(Δ/σ)max = 0.002
210 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu(C12H28N4)(H2O)2]Cl2·2H2OV = 2093.4 (7) Å3
Mr = 434.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.043 (1) ŵ = 1.32 mm1
b = 17.482 (4) ÅT = 293 K
c = 15.237 (3) Å0.38 × 0.31 × 0.28 mm
β = 102.30 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2947 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.028
Tmin = 0.619, Tmax = 0.6913 standard reflections every 60 min
7942 measured reflections intensity decay: 1%
3688 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
3688 reflectionsΔρmin = 0.31 e Å3
210 parameters
Special details top

Experimental. The maximum 2θ for data collection is 50.0°. The data collection would not go beyond this limit, because of the crystal quality.

Refinement. The H atoms were fixed geometrically and water H atoms were located from the difference-Fourier map.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.44739 (3)0.74283 (1)0.83515 (1)0.0343 (1)
O10.2851 (2)0.75121 (10)0.96090 (11)0.0634 (5)
H1O10.31860.71390.99950.080*
H2O10.27280.79070.99360.080*
O20.6086 (2)0.74014 (10)0.71150 (11)0.0608 (4)
H1O20.58730.78190.67490.080*
H2O20.63770.70820.68230.080*
N10.2727 (2)0.66922 (11)0.77006 (11)0.0468 (4)
H1N10.29440.66280.71430.056*
N20.5721 (2)0.64784 (10)0.89347 (11)0.0446 (4)
H1N20.54540.64320.94830.054*
N30.6204 (2)0.81596 (10)0.90132 (11)0.0432 (4)
H1N30.59630.82280.95650.052*
N40.3205 (2)0.83762 (11)0.77679 (11)0.0456 (4)
H1N40.34650.84200.72170.055*
C10.3048 (4)0.59523 (14)0.81591 (18)0.0672 (8)
H1A0.24970.55470.77690.081*
H1B0.25910.59540.86990.081*
C20.4930 (4)0.58199 (13)0.83966 (17)0.0646 (7)
H2A0.51800.53510.87400.078*
H2B0.53740.57740.78550.078*
C30.7617 (3)0.64786 (16)0.90960 (17)0.0597 (7)
H30.79450.65110.85140.072*
C40.8321 (3)0.71707 (19)0.96464 (17)0.0674 (8)
H4A0.78280.71901.01740.081*
H4B0.95400.71040.98520.081*
C50.8003 (3)0.79279 (17)0.91627 (18)0.0619 (7)
H5A0.87050.83180.95140.074*
H5B0.83340.78890.85880.074*
C60.5887 (3)0.88993 (13)0.85394 (17)0.0574 (6)
H6A0.63500.88900.80020.069*
H6B0.64370.93080.89240.069*
C70.4007 (4)0.90353 (13)0.82935 (17)0.0598 (7)
H7A0.35580.90930.88320.072*
H7B0.37670.95000.79410.072*
C80.1313 (3)0.83803 (17)0.76081 (16)0.0629 (7)
H80.09910.83620.81930.075*
C90.0598 (3)0.7674 (2)0.70815 (19)0.0746 (9)
H9A0.06230.77370.68870.090*
H9B0.10670.76460.65460.090*
C100.0935 (3)0.69282 (18)0.75715 (18)0.0682 (8)
H1OA0.06350.69750.81530.082*
H10B0.02170.65360.72350.082*
C110.8368 (5)0.5742 (2)0.9563 (2)0.1062 (13)
H11A0.79990.56841.01180.127*
H11B0.95870.57690.96820.127*
H11C0.79870.53120.91810.127*
C120.0548 (5)0.9100 (2)0.7124 (2)0.1045 (13)
H12A0.09230.95390.74930.125*
H12B0.06710.90690.70090.125*
H12C0.09100.91480.65650.125*
Cl10.45811 (13)0.87780 (4)0.58995 (4)0.0885 (3)
Cl20.23711 (8)0.59497 (4)0.56513 (4)0.06240 (18)
O30.6291 (2)0.87627 (11)1.09328 (13)0.0740 (5)
H1O30.70500.91001.08660.080*
H2O30.50400.90231.07610.080*
O40.1110 (3)0.47642 (12)0.40706 (13)0.0786 (6)
H1O40.02770.45070.41860.080*
H2O40.15050.51350.45630.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0348 (1)0.0358 (1)0.0323 (1)0.0024 (1)0.0068 (1)0.0010 (1)
O10.0760 (12)0.0708 (12)0.0465 (9)0.0042 (9)0.0202 (9)0.0031 (8)
O20.0714 (11)0.0691 (11)0.0463 (9)0.0036 (9)0.0229 (8)0.0038 (8)
N10.0460 (11)0.0600 (12)0.0365 (9)0.0149 (9)0.0132 (8)0.0098 (8)
N20.0576 (11)0.0450 (10)0.0331 (9)0.0086 (8)0.0136 (8)0.0029 (7)
N30.0437 (10)0.0494 (10)0.0387 (9)0.0092 (8)0.0139 (8)0.0108 (8)
N40.0526 (11)0.0522 (11)0.0355 (9)0.0121 (9)0.0169 (8)0.0063 (8)
C10.090 (2)0.0501 (14)0.0628 (16)0.0305 (14)0.0202 (15)0.0090 (12)
C20.104 (2)0.0356 (12)0.0562 (15)0.0018 (13)0.0209 (15)0.0003 (11)
C30.0541 (15)0.0768 (18)0.0478 (13)0.0260 (13)0.0101 (11)0.0034 (12)
C40.0399 (13)0.108 (2)0.0507 (14)0.0140 (14)0.0003 (11)0.0032 (15)
C50.0368 (13)0.0854 (19)0.0630 (15)0.0129 (13)0.0096 (11)0.0197 (14)
C60.0795 (18)0.0422 (12)0.0564 (14)0.0207 (12)0.0274 (13)0.0089 (11)
C70.091 (2)0.0371 (12)0.0569 (15)0.0105 (12)0.0289 (14)0.0039 (10)
C80.0519 (15)0.092 (2)0.0446 (13)0.0292 (14)0.0103 (11)0.0060 (13)
C90.0398 (14)0.130 (3)0.0497 (15)0.0120 (15)0.0005 (11)0.0073 (17)
C100.0412 (14)0.106 (2)0.0585 (15)0.0223 (14)0.0127 (12)0.0212 (16)
C110.110 (3)0.106 (3)0.094 (2)0.060 (2)0.001 (2)0.016 (2)
C120.102 (3)0.128 (3)0.078 (2)0.065 (2)0.0076 (19)0.023 (2)
Cl10.1804 (10)0.0481 (4)0.0508 (4)0.0025 (4)0.0553 (5)0.0022 (3)
Cl20.0678 (4)0.0620 (4)0.0600 (4)0.0188 (3)0.0194 (3)0.0117 (3)
O30.0685 (12)0.0704 (12)0.0865 (13)0.0016 (10)0.0243 (11)0.0129 (10)
O40.0739 (12)0.0824 (13)0.0899 (14)0.0217 (11)0.0410 (11)0.0296 (11)
Geometric parameters (Å, º) top
Cu1—O12.542 (2)C3—H30.98
Cu1—O22.505 (2)C4—C51.510 (4)
Cu1—N31.997 (2)C4—H4A0.97
Cu1—N12.005 (2)C4—H4B0.97
Cu1—N22.043 (2)C5—H5A0.97
Cu1—N42.047 (2)C5—H5B0.97
O1—H1O10.88C6—C71.497 (4)
O1—H2O10.86C6—H6A0.97
O2—H1O20.91C6—H6B0.97
O2—H2O20.78C7—H7A0.97
N1—C11.467 (3)C7—H7B0.97
N1—C101.472 (3)C8—C91.518 (4)
N1—H1N10.91C8—C121.521 (4)
N2—C21.477 (3)C8—H80.98
N2—C31.492 (3)C9—C101.498 (4)
N2—H1N20.91C9—H9A0.97
N3—C51.473 (3)C9—H9B0.97
N3—C61.476 (3)C10—H1OA0.97
N3—H1N30.91C10—H10B0.97
N4—C71.471 (3)C11—H11A0.96
N4—C81.489 (3)C11—H11B0.96
N4—H1N40.91C11—H11C0.96
C1—C21.497 (4)C12—H12A0.96
C1—H1A0.97C12—H12B0.96
C1—H1B0.97C12—H12C0.96
C2—H2A0.97O3—H1O30.87
C2—H2B0.97O3—H2O31.08
C3—C41.512 (4)O4—H1O40.85
C3—C111.531 (4)O4—H2O40.99
O1—Cu1—O2177.77 (6)C11—C3—H3108.3
N1—Cu1—O189.51 (7)C5—C4—C3115.2 (2)
N2—Cu1—O190.13 (6)C5—C4—H4A108.5
N3—Cu1—O189.83 (7)C3—C4—H4A108.5
N4—Cu1—O189.56 (6)C5—C4—H4B108.5
N1—Cu1—O292.09 (7)C3—C4—H4B108.5
N2—Cu1—O291.55 (7)H4A—C4—H4B107.5
N3—Cu1—O288.58 (7)N3—C5—C4112.0 (2)
N4—Cu1—O288.77 (7)N3—C5—H5A109.2
N3—Cu1—N1179.31 (7)C4—C5—H5A109.2
N3—Cu1—N294.36 (8)N3—C5—H5B109.2
N1—Cu1—N285.45 (8)C4—C5—H5B109.2
N3—Cu1—N486.00 (8)H5A—C5—H5B107.9
N1—Cu1—N494.18 (8)N3—C6—C7108.75 (19)
N2—Cu1—N4179.52 (8)N3—C6—H6A109.9
H1O1—O1—H2O1105.1C7—C6—H6A109.9
H1O2—O2—H2O2105.3N3—C6—H6B109.9
C1—N1—C10112.3 (2)C7—C6—H6B109.9
C1—N1—Cu1107.26 (14)H6A—C6—H6B108.3
C10—N1—Cu1116.71 (16)N4—C7—C6108.29 (19)
C1—N1—H1N1106.7N4—C7—H7A110.0
C10—N1—H1N1106.7C6—C7—H7A110.0
Cu1—N1—H1N1106.7N4—C7—H7B110.0
C2—N2—C3113.3 (2)C6—C7—H7B110.0
C2—N2—Cu1106.19 (14)H7A—C7—H7B108.4
C3—N2—Cu1117.47 (16)N4—C8—C9110.0 (2)
C2—N2—H1N2106.4N4—C8—C12112.2 (3)
C3—N2—H1N2106.4C9—C8—C12110.4 (2)
Cu1—N2—H1N2106.4N4—C8—H8108.1
C5—N3—C6112.2 (2)C9—C8—H8108.1
C5—N3—Cu1117.24 (15)C12—C8—H8108.1
C6—N3—Cu1106.53 (14)C10—C9—C8115.9 (2)
C5—N3—H1N3106.8C10—C9—H9A108.3
C6—N3—H1N3106.8C8—C9—H9A108.3
Cu1—N3—H1N3106.8C10—C9—H9B108.3
C7—N4—C8113.5 (2)C8—C9—H9B108.3
C7—N4—Cu1106.11 (14)H9A—C9—H9B107.4
C8—N4—Cu1118.18 (16)N1—C10—C9112.2 (2)
C7—N4—H1N4106.1N1—C10—H1OA109.2
C8—N4—H1N4106.1C9—C10—H1OA109.2
Cu1—N4—H1N4106.1N1—C10—H10B109.2
N1—C1—C2108.5 (2)C9—C10—H10B109.2
N1—C1—H1A110.0H1OA—C10—H10B107.9
C2—C1—H1A110.0C3—C11—H11A109.5
N1—C1—H1B110.0C3—C11—H11B109.5
C2—C1—H1B110.0H11A—C11—H11B109.5
H1A—C1—H1B108.4C3—C11—H11C109.5
N2—C2—C1107.9 (2)H11A—C11—H11C109.5
N2—C2—H2A110.1H11B—C11—H11C109.5
C1—C2—H2A110.1C8—C12—H12A109.5
N2—C2—H2B110.1C8—C12—H12B109.5
C1—C2—H2B110.1H12A—C12—H12B109.5
H2A—C2—H2B108.4C8—C12—H12C109.5
N2—C3—C4109.9 (2)H12A—C12—H12C109.5
N2—C3—C11111.4 (3)H12B—C12—H12C109.5
C4—C3—C11110.5 (2)H1O3—O3—H2O3109.0
N2—C3—H3108.3H1O4—O4—H2O4109.0
C4—C3—H3108.3
Cu1—N1—C1—C241.3 (2)C6—C7—N4—Cu139.1 (2)
N1—C1—C2—N255.6 (3)C7—N4—Cu1—N312.9 (1)
C1—C2—N2—Cu140.6 (2)N4—Cu1—N3—C615.9 (1)
C2—N2—Cu1—N114.5 (2)Cu1—N4—C8—C953.5 (2)
N2—Cu1—N1—C114.7 (2)N4—C8—C9—C1068.9 (3)
Cu1—N2—C3—C455.3 (2)C8—C9—C10—N172.0 (3)
N2—C3—C4—C570.3 (3)C9—C10—N1—Cu157.1 (3)
C3—C4—C5—N371.5 (3)C10—N1—Cu1—N438.1 (2)
C4—C5—N3—Cu156.1 (2)N1—Cu1—N4—C837.6 (2)
C5—N3—Cu1—N237.8 (2)C2—N2—C3—C1157.4 (3)
N3—Cu1—N2—C338.1 (2)C11—C3—C4—C5166.3 (2)
Cu1—N3—C6—C742.1 (2)C7—N4—C8—C1258.0 (3)
N3—C6—C7—N455.4 (2)C12—C8—C9—C10166.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl20.912.523.337 (2)150
N2—H1N2···Cl1i0.912.443.343 (2)175
N3—H1N3···O30.912.253.096 (3)155
N4—H1N4···Cl10.912.493.341 (2)167
O1—H1O1···Cl1i0.882.253.118 (2)168
O1—H2O1···Cl2i0.872.323.188 (2)173
O2—H1O2···Cl10.912.233.120 (2)163
O2—H2O2···O3ii0.782.002.746 (3)161
O3—H1O3···O4iii0.871.872.728 (3)170
O3—H2O3···Cl2i1.082.123.131 (2)154
O4—H1O4···Cl2iv0.852.343.175 (2)167
O4—H2O4···Cl20.992.183.175 (2)180
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y+1/2, z+3/2; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C12H28N4)(H2O)2]Cl2·2H2O
Mr434.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.043 (1), 17.482 (4), 15.237 (3)
β (°) 102.30 (1)
V3)2093.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.38 × 0.31 × 0.28
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.619, 0.691
No. of measured, independent and
observed [I > 2σ(I)] reflections
7942, 3688, 2947
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.076, 1.02
No. of reflections3688
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.31

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), NRCVAX, SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—O12.542 (2)Cu1—N12.005 (2)
Cu1—O22.505 (2)Cu1—N22.043 (2)
Cu1—N31.997 (2)Cu1—N42.047 (2)
O1—Cu1—O2177.77 (6)N4—Cu1—O288.77 (7)
N1—Cu1—O189.51 (7)N3—Cu1—N1179.31 (7)
N2—Cu1—O190.13 (6)N3—Cu1—N294.36 (8)
N3—Cu1—O189.83 (7)N1—Cu1—N285.45 (8)
N4—Cu1—O189.56 (6)N3—Cu1—N486.00 (8)
N1—Cu1—O292.09 (7)N1—Cu1—N494.18 (8)
N2—Cu1—O291.55 (7)N2—Cu1—N4179.52 (8)
N3—Cu1—O288.58 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl20.912.523.337 (2)150
N2—H1N2···Cl1i0.912.443.343 (2)175
N3—H1N3···O30.912.253.096 (3)155
N4—H1N4···Cl10.912.493.341 (2)167
O1—H1O1···Cl1i0.882.253.118 (2)168
O1—H2O1···Cl2i0.872.323.188 (2)173
O2—H1O2···Cl10.912.233.120 (2)163
O2—H2O2···O3ii0.782.002.746 (3)161
O3—H1O3···O4iii0.871.872.728 (3)170
O3—H2O3···Cl2i1.082.123.131 (2)154
O4—H1O4···Cl2iv0.852.343.175 (2)167
O4—H2O4···Cl20.992.183.175 (2)180
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y+1/2, z+3/2; (iv) x, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds