Download citation
Download citation
link to html
The title cobalt(III) complex, [Co(C9H6NO)3]·CH3OH, features three 8-quinolinolate ligands that chelate the cobalt(III) atom with an octahedral coordination geometry. The methanol solvent mol­ecule is disordered in the structure. The O...O distances 2.726 (7) and 2.871 (8) Å between the quinolinol hydroxyl and disordered methanol suggest the existence of hydrogen bonding. The separation distances of 3.404 (15) and 3.386 (7) Å between parallel quinoline rings indicate π–π stacking between neighboring complex mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803014211/om6151sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803014211/om6151Isup2.hkl
Contains datablock I

CCDC reference: 217429

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • H-atom completeness 82%
  • Disorder in solvent or counterion
  • R factor = 0.042
  • wR factor = 0.130
  • Data-to-parameter ratio = 16.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_302 Alert C Anion/Solvent Disorder ......................... 50.00 Perc. General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C28 H22 Co1 N3 O4 Atom count from the _atom_site data: C28 H18 Co1 N3 O4 CELLZ_01 From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_sum C28 H22 Co N3 O4 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 112.00 112.00 0.00 H 88.00 72.00 16.00 Co 4.00 4.00 0.00 N 12.00 12.00 0.00 O 16.00 16.00 0.00 Difference between formula and atom_site contents detected. WARNING: H atoms missing from atom site list. Is this intentional?
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

As a part of an investigation on the ππ-stacking interaction in metal complexes, several 8-quinolinolate metal complexes have been prepared in our laboratory (Li et al., 2003). Compound (I) is a representative of this group.

The structure of (I) is shown in Fig. 1. Three 8-quinolinolate monoanions chelate to the CoIII atom with an octahedral coordination geometry. The planar 8-quinolinolate are nearly perpendicular to each other with dihedral angles of 93.80 (7), 95.34 (6) and 91.49 (7)°. The overlapped arrangement of neighboring parallel quinoline rings is shown in Fig. 2. The quinoline plane containing N11 is separated from the quinoline plane containing N11(1 − x, 1 − y, 1 − z) by 3.404 (15) Å. Likewise, the quinoline plane containing N31 atom is separated from the quinoline plane containing N31(1 − x, 1 − y, −z) by 3.386 (7) Å. These findings indicate the existence of the ππ stacking between the neighboring complex molecules.

The solvate methanol is disordered, either C or O atoms located in two sites with 0.5 occupancy factors. Although H atoms of the disordered methanol were not located, the O1a···O11 distance of 2.726 (7) Å and the O1b···O11 distance of 2.871 (8) Å suggest the existence of hydrogen bonding between the quinolinol hydroxyl group and the disordered methanol molecule. The C24—H24···O1b(0.5 − x, −0.5 + y, 0.5 − z) angle of 133° and the C24···O1b distance of 3.154 (8) Å suggest that the disordered methanol molecule is also involved in the weak hydrogen bonding.

Compound (I) is isomorphous with the manganese(III) compound (Hems & Mackay, 1975). The major difference between the Co and Mn complexes is the length of the coordination bonds: Mn—O distances range from 1.905 to 1.924 Å and Co—O distances range from 1.8975 (19) to 1.9066 (19) Å; Mn—N distances range from 2.059 to 2.266 Å, while Co—N distances range from 1.921 (2) to 1.936 (2) Å. The other difference between two structures is that the solvent methanol molecule in the Mn structrue was not treated with a disorder model, even though the C—O distance of 1.352 Å is shorter than the expected value.

Experimental top

The complex was prepared by refluxing the methanol solution (15 ml) containing CoCl2·6H2O (0.24 g, 1 mmol) and 8-quinolinol (0.15 g, 1 mmol) for 2 h. The resulting solution was filtered at room temperature. The brown single crystals were obtained from the filtrate after two weeks.

Refinement top

The disordered methanol molecule was refined isotropically and H atoms were not located. Other H atoms were placed in calculated positions with C—H = 0.93 Å and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq of the carrier atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with ellipsoids drawn at the 30% probability level. Dashed lines indicate the hydrogen bonding.
[Figure 2] Fig. 2. A packing diagram showing the ππ interaction between neighboring quinoline rings.
Tris(8-quinolinolato-κ2N,O)cobalt(III) methanol solvate top
Crystal data top
[Co(C9H6NO)3]·CH4OF(000) = 1080
Mr = 523.42Dx = 1.466 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 9762 reflections
a = 10.9235 (12) Åθ = 3.0–27.0°
b = 13.1172 (14) ŵ = 0.77 mm1
c = 16.6861 (14) ÅT = 298 K
β = 97.325 (8)°Prism, brown
V = 2371.4 (4) Å30.36 × 0.20 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS-RAPID
diffractometer
5432 independent reflections
Radiation source: fine-focus sealed tube4009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 2.0°
ω scansh = 1414
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1717
Tmin = 0.750, Tmax = 0.918l = 2121
10460 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0805P)2 + 0.1393P]
where P = (Fo2 + 2Fc2)/3
5432 reflections(Δ/σ)max = 0.003
323 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Co(C9H6NO)3]·CH4OV = 2371.4 (4) Å3
Mr = 523.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.9235 (12) ŵ = 0.77 mm1
b = 13.1172 (14) ÅT = 298 K
c = 16.6861 (14) Å0.36 × 0.20 × 0.10 mm
β = 97.325 (8)°
Data collection top
Rigaku R-AXIS-RAPID
diffractometer
5432 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4009 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.918Rint = 0.020
10460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.04Δρmax = 0.59 e Å3
5432 reflectionsΔρmin = 0.42 e Å3
323 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co0.42453 (3)0.52085 (3)0.240612 (18)0.03029 (12)
O110.25371 (17)0.51074 (15)0.25265 (11)0.0397 (4)
O210.59627 (16)0.52675 (14)0.23257 (11)0.0363 (4)
O310.40960 (18)0.65942 (14)0.20819 (11)0.0396 (4)
N110.4467 (2)0.56689 (17)0.35082 (12)0.0363 (5)
N210.45475 (19)0.38159 (16)0.27347 (12)0.0314 (4)
N310.3862 (2)0.48847 (16)0.12697 (12)0.0333 (5)
C100.3259 (3)0.6040 (2)0.46019 (16)0.0498 (8)
C120.5483 (3)0.5981 (2)0.39558 (17)0.0478 (7)
H120.62320.59690.37460.057*
C130.5438 (4)0.6332 (3)0.47470 (19)0.0596 (9)
H130.61580.65530.50560.072*
C140.4372 (4)0.6351 (3)0.50610 (17)0.0610 (9)
H140.43630.65730.55900.073*
C150.2088 (4)0.6023 (3)0.4859 (2)0.0636 (10)
H150.19890.62220.53810.076*
C160.1087 (4)0.5712 (3)0.4333 (2)0.0666 (10)
H160.03130.57140.45090.080*
C170.1182 (3)0.5389 (2)0.3540 (2)0.0524 (8)
H170.04830.51800.32030.063*
C180.2328 (3)0.5386 (2)0.32625 (16)0.0395 (6)
C190.3365 (3)0.5703 (2)0.38057 (15)0.0378 (6)
C200.6257 (3)0.2599 (2)0.29467 (15)0.0384 (6)
C220.3766 (3)0.3107 (2)0.29318 (16)0.0408 (6)
H220.29340.32660.29200.049*
C230.4182 (3)0.2123 (2)0.31575 (18)0.0494 (7)
H230.36260.16410.33040.059*
C240.5394 (3)0.1865 (2)0.31634 (18)0.0482 (7)
H240.56580.12090.33090.058*
C250.7527 (3)0.2434 (2)0.29262 (17)0.0491 (7)
H250.78710.17960.30510.059*
C260.8243 (3)0.3213 (3)0.27227 (18)0.0507 (8)
H260.90810.30950.27130.061*
C270.7772 (3)0.4191 (2)0.25265 (17)0.0454 (7)
H270.82970.47070.23980.054*
C280.6517 (2)0.4386 (2)0.25241 (14)0.0336 (5)
C290.5768 (2)0.3571 (2)0.27431 (13)0.0314 (5)
C300.3434 (2)0.5764 (2)0.00203 (15)0.0412 (6)
C320.3725 (3)0.4000 (2)0.08936 (16)0.0410 (6)
H320.38170.34020.11950.049*
C330.3444 (3)0.3934 (3)0.00479 (17)0.0492 (7)
H330.33530.33010.02020.059*
C340.3306 (3)0.4800 (3)0.04010 (17)0.0493 (7)
H340.31270.47590.09600.059*
C350.3337 (3)0.6719 (3)0.04178 (18)0.0513 (8)
H350.31420.67520.09760.062*
C360.3531 (3)0.7587 (3)0.00256 (18)0.0521 (8)
H360.34820.82080.02450.063*
C370.3801 (3)0.7594 (2)0.08720 (17)0.0445 (6)
H370.39230.82080.11490.053*
C380.3886 (2)0.6677 (2)0.12899 (16)0.0359 (6)
C390.3721 (2)0.5767 (2)0.08324 (14)0.0336 (5)
C1a0.0264 (11)0.3915 (10)0.0861 (8)0.111 (4)*0.50
C1b0.0423 (8)0.3573 (7)0.1223 (6)0.073 (2)*0.50
O1a0.0379 (6)0.4409 (5)0.1711 (4)0.0774 (17)*0.50
O1b0.0416 (6)0.4653 (6)0.1382 (5)0.088 (2)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.03250 (19)0.03052 (19)0.02821 (17)0.00119 (14)0.00521 (12)0.00099 (14)
O110.0334 (10)0.0475 (11)0.0384 (9)0.0051 (8)0.0056 (7)0.0030 (8)
O210.0341 (9)0.0346 (10)0.0412 (9)0.0022 (8)0.0086 (7)0.0054 (8)
O310.0512 (12)0.0320 (10)0.0352 (9)0.0027 (8)0.0038 (8)0.0026 (7)
N110.0451 (13)0.0316 (12)0.0319 (10)0.0005 (10)0.0043 (9)0.0006 (9)
N210.0322 (11)0.0320 (11)0.0311 (10)0.0020 (9)0.0078 (8)0.0015 (8)
N310.0335 (11)0.0356 (11)0.0318 (10)0.0016 (9)0.0078 (8)0.0020 (9)
C100.080 (2)0.0380 (16)0.0342 (14)0.0080 (15)0.0183 (14)0.0010 (11)
C120.0527 (18)0.0476 (18)0.0412 (15)0.0076 (14)0.0007 (13)0.0024 (12)
C130.079 (2)0.056 (2)0.0405 (16)0.0138 (18)0.0039 (16)0.0074 (14)
C140.103 (3)0.0487 (19)0.0312 (15)0.0030 (19)0.0095 (16)0.0074 (13)
C150.088 (3)0.059 (2)0.0511 (18)0.0156 (19)0.0366 (19)0.0006 (16)
C160.070 (2)0.066 (2)0.073 (2)0.0205 (19)0.047 (2)0.0168 (19)
C170.0449 (17)0.052 (2)0.0638 (19)0.0102 (14)0.0198 (14)0.0119 (15)
C180.0435 (15)0.0343 (15)0.0425 (14)0.0089 (11)0.0123 (12)0.0047 (11)
C190.0505 (16)0.0299 (14)0.0347 (12)0.0060 (11)0.0124 (11)0.0030 (10)
C200.0480 (16)0.0353 (14)0.0319 (12)0.0043 (12)0.0056 (11)0.0016 (10)
C220.0414 (15)0.0382 (15)0.0441 (15)0.0064 (12)0.0111 (12)0.0007 (11)
C230.0589 (19)0.0345 (15)0.0572 (18)0.0131 (14)0.0162 (15)0.0005 (13)
C240.065 (2)0.0308 (15)0.0485 (16)0.0015 (13)0.0073 (14)0.0016 (12)
C250.0506 (18)0.0488 (18)0.0475 (16)0.0179 (14)0.0043 (13)0.0030 (13)
C260.0341 (15)0.069 (2)0.0485 (16)0.0134 (14)0.0037 (12)0.0028 (15)
C270.0323 (14)0.0585 (19)0.0455 (15)0.0028 (13)0.0057 (12)0.0049 (13)
C280.0345 (13)0.0391 (14)0.0276 (11)0.0002 (11)0.0056 (10)0.0001 (10)
C290.0353 (13)0.0343 (13)0.0252 (11)0.0005 (10)0.0065 (10)0.0022 (9)
C300.0367 (14)0.0532 (18)0.0343 (13)0.0004 (13)0.0064 (11)0.0031 (12)
C320.0469 (16)0.0390 (15)0.0376 (13)0.0021 (12)0.0072 (11)0.0034 (11)
C330.0559 (19)0.0528 (19)0.0390 (15)0.0056 (14)0.0066 (13)0.0143 (13)
C340.0537 (18)0.063 (2)0.0313 (13)0.0060 (15)0.0052 (12)0.0062 (13)
C350.0533 (18)0.063 (2)0.0372 (15)0.0011 (15)0.0038 (13)0.0132 (13)
C360.0498 (18)0.0522 (19)0.0547 (18)0.0015 (15)0.0081 (14)0.0219 (15)
C370.0436 (16)0.0384 (15)0.0521 (16)0.0003 (12)0.0081 (13)0.0062 (12)
C380.0307 (13)0.0374 (14)0.0401 (14)0.0025 (11)0.0070 (10)0.0025 (11)
C390.0311 (13)0.0373 (14)0.0330 (12)0.0007 (11)0.0062 (10)0.0015 (10)
Geometric parameters (Å, º) top
Co—O311.8975 (19)C20—C251.409 (4)
Co—O211.8994 (18)C20—C241.425 (4)
Co—O111.9066 (19)C22—C231.404 (4)
Co—N111.921 (2)C22—H220.93
Co—N211.924 (2)C23—C241.366 (4)
Co—N311.936 (2)C23—H230.93
O11—C181.329 (3)C24—H240.93
O21—C281.327 (3)C25—C261.356 (5)
O31—C381.317 (3)C25—H250.93
N11—C121.321 (4)C26—C271.405 (4)
N11—C191.361 (3)C26—H260.93
N21—C221.332 (3)C27—C281.395 (4)
N21—C291.369 (3)C27—H270.93
N31—C321.319 (3)C28—C291.422 (4)
N31—C391.366 (3)C30—C341.414 (4)
C10—C151.400 (5)C30—C351.415 (4)
C10—C141.412 (5)C30—C391.417 (3)
C10—C191.419 (4)C32—C331.408 (4)
C12—C131.405 (4)C32—H320.93
C12—H120.93C33—C341.359 (4)
C13—C141.337 (5)C33—H330.93
C13—H130.93C34—H340.93
C14—H140.93C35—C361.359 (5)
C15—C161.374 (5)C35—H350.93
C15—H150.93C36—C371.406 (4)
C16—C171.405 (5)C36—H360.93
C16—H160.93C37—C381.387 (4)
C17—C181.389 (4)C37—H370.93
C17—H170.93C38—C391.416 (4)
C18—C191.420 (4)C1a—O1a1.551 (14)
C20—C291.407 (4)C1b—O1b1.442 (12)
O31—Co—O2189.46 (8)C29—C20—C25118.6 (3)
O31—Co—O1192.70 (8)C29—C20—C24115.5 (3)
O21—Co—O11177.41 (8)C25—C20—C24125.9 (3)
O31—Co—N1188.14 (9)N21—C22—C23120.9 (3)
O21—Co—N1192.83 (9)N21—C22—H22119.6
O11—Co—N1185.81 (9)C23—C22—H22119.6
O31—Co—N21175.06 (8)C24—C23—C22120.6 (3)
O21—Co—N2185.62 (8)C24—C23—H23119.7
O11—Co—N2192.21 (8)C22—C23—H23119.7
N11—Co—N2191.69 (9)C23—C24—C20120.2 (3)
O31—Co—N3186.04 (8)C23—C24—H24119.9
O21—Co—N3191.83 (8)C20—C24—H24119.9
O11—Co—N3189.75 (8)C26—C25—C20119.4 (3)
N11—Co—N31172.51 (9)C26—C25—H25120.3
N21—Co—N3194.51 (9)C20—C25—H25120.3
C18—O11—Co111.35 (17)C25—C26—C27122.7 (3)
C28—O21—Co111.71 (15)C25—C26—H26118.7
C38—O31—Co111.28 (16)C27—C26—H26118.7
C12—N11—C19120.1 (2)C28—C27—C26120.0 (3)
C12—N11—Co129.3 (2)C28—C27—H27120.0
C19—N11—Co110.48 (17)C26—C27—H27120.0
C22—N21—C29119.2 (2)O21—C28—C27125.3 (2)
C22—N21—Co129.90 (19)O21—C28—C29117.4 (2)
C29—N21—Co110.91 (16)C27—C28—C29117.3 (2)
C32—N31—C39119.5 (2)N21—C29—C20123.6 (2)
C32—N31—Co131.02 (19)N21—C29—C28114.4 (2)
C39—N31—Co109.45 (17)C20—C29—C28122.0 (2)
C15—C10—C14126.5 (3)C34—C30—C35125.7 (3)
C15—C10—C19118.0 (3)C34—C30—C39116.7 (3)
C14—C10—C19115.5 (3)C35—C30—C39117.5 (3)
N11—C12—C13120.4 (3)N31—C32—C33121.8 (3)
N11—C12—H12119.8N31—C32—H32119.1
C13—C12—H12119.8C33—C32—H32119.1
C14—C13—C12120.7 (3)C34—C33—C32119.7 (3)
C14—C13—H13119.6C34—C33—H33120.1
C12—C13—H13119.6C32—C33—H33120.1
C13—C14—C10121.0 (3)C33—C34—C30120.2 (3)
C13—C14—H14119.5C33—C34—H34119.9
C10—C14—H14119.5C30—C34—H34119.9
C16—C15—C10119.5 (3)C36—C35—C30119.3 (3)
C16—C15—H15120.2C36—C35—H35120.4
C10—C15—H15120.2C30—C35—H35120.4
C15—C16—C17122.8 (3)C35—C36—C37123.4 (3)
C15—C16—H16118.6C35—C36—H36118.3
C17—C16—H16118.6C37—C36—H36118.3
C18—C17—C16119.5 (3)C38—C37—C36119.4 (3)
C18—C17—H17120.2C38—C37—H37120.3
C16—C17—H17120.2C36—C37—H37120.3
O11—C18—C17125.3 (3)O31—C38—C37124.6 (3)
O11—C18—C19117.0 (2)O31—C38—C39117.7 (2)
C17—C18—C19117.8 (3)C37—C38—C39117.6 (2)
N11—C19—C10122.3 (3)N31—C39—C38115.3 (2)
N11—C19—C18115.4 (2)N31—C39—C30122.0 (2)
C10—C19—C18122.4 (3)C38—C39—C30122.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O210.932.522.985 (3)111
C22—H22···O110.932.532.985 (3)111
C24—H24···O1b0.932.443.154 (8)133
C25—H25···O210.932.503.339 (4)151

Experimental details

Crystal data
Chemical formula[Co(C9H6NO)3]·CH4O
Mr523.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.9235 (12), 13.1172 (14), 16.6861 (14)
β (°) 97.325 (8)
V3)2371.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.36 × 0.20 × 0.10
Data collection
DiffractometerRigaku R-AXIS-RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.750, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
10460, 5432, 4009
Rint0.020
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.130, 1.04
No. of reflections5432
No. of parameters323
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.42

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Co—O311.8975 (19)Co—N111.921 (2)
Co—O211.8994 (18)Co—N211.924 (2)
Co—O111.9066 (19)Co—N311.936 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds