Download citation
Download citation
link to html
Colourless crystals of the title compound, [Cu2(C4N3)2(C18H15P)4], were obtained by the reaction of CuC(CN)3 with excess of molten PPh3. The crystal structure contains centrosymmetric dimeric units bridged by two C(CN)3 ligands. The Cu atoms have a distorted tetrahedral coordination.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801016373/om6057sup1.cif
Contains datablocks cutcmpsi, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801016373/om6057Isup2.hkl
Contains datablock I

CCDC reference: 175977

Key indicators

  • Single-crystal X-ray study
  • T = 213 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.052
  • wR factor = 0.152
  • Data-to-parameter ratio = 14.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
RADNW_01 Alert C The radiation wavelength lies outside the expected range for the supplied radiation type. Expected range 1.54175-1.54180 Wavelength given = 1.54184 THETM_01 Alert C The value of sine(theta_max)/wavelength is less than 0.590 Calculated sin(theta_max)/wavelength = 0.5878 PLAT_213 Alert C Atom N13 has ADP max/min Ratio ........... 3.10 PLAT_601 Alert C Structure Contains Solvent Accessible VOIDS of 88.00 A   3
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
4 Alert Level C = Please check

Comment top

The pseudohalide tricyanomethanide C(CN)3- is well known as a versatile ligand in coordination compounds. With four available lone electron pairs, its coordination modes vary from unidentate terminal to bi- or tridentate bridging ligand (Golub et al., 1986). Continuing our structural studies on the coordination behaviour of pseudohalides in the system M(PPh3)nX, M = Cu(I), Ag(I) or Au(I), we present here the crystal and molecular structure of [Cu(PPh3)2C(CN)3]2. So far, Au(PPh3)2(C(CN)3) is the only structurally characterized example involving tricyanomethanide within the above-mentioned system (Baukova et al. 1989; Wang & Wang, 1993). The crystal structure of the title compound is built up by centrosymmetric dimeric molecules, in which two copper atoms are asymmetrically bridged end-to-end by two C(CN)3 ligands, forming a twelve-membered non-planar ring. The distorted tetrahedral coordination at the copper atoms is completed by two triphenylphosphine ligands, showing wide P—Cu—P and small N—Cu—N angles of 124.87 (3)° and 95.92 (12)°, respectively. The Cu—N distances are 2.027 (3) and 2.090 (3) Å. The corresponding Cu—N—C bond angles are 159.6 (3) and 151.7 (3) Å. The C(CN)3 ligand does not differ significantly from the ideal planar D3 h geometry of non-coordinated tricyanomethanide. The largest deviation from the mean plane is observed for C1 [0.0718 (36) Å]. The bond length C(13)—N(13) of the non-coordinated cyano group is slightly shorter [1.131 (5) Å] compared to the coordinated cyano groups C(12)—N(12) [1.144 (4) Å] and C(11)—N(11) [1.152 (4) Å]. The C—N distances in non-coordinated tricyanomethanide are related to within 1.131–1.139 Å (Potočňák et al., 1997, Potočňák et al., 1998). Selected bond lengths and angles are given in Table 1. Similar end-to-end bridged structures were found for [Ag(PPh3)2N(CN)2]2 (Bessler et al., 2000) and [Cu(PPh3)2N3]2 (Ziolo et al., 1971).

Experimental top

KC(CN)3 was prepared according to Trofimenko et al. (1962). CuC(CN)3 was obtained from KC(CN)3, CuSO4 and NaHSO3 in H2O solution as a microcrystalline precipitate. [Cu(PPh3)2C(CN)3]2 was synthesized by the reaction of CuC(CN)3 in molten PPh3 at 373 K. The excess PPh3 was removed with n-hexane and the residue was submitted to continuous extraction with CH2Cl2, from which the title compound was obtained in high yield as colourless crystal plates, m.p. 225 °C. Elem. anal. (calc. for C40H20CuN3P2/found) C=70.84/70.63 H=4.46/4.15 N=6.20/6.15%.

Refinement top

The terminal nitrogen atom N13 presents greater displacement parameters due to its thermal movements. No improvement of the structure factors can be achieved by splitting it into two positions. The H atoms were placed in calculated positions (C—H = 0.94 Å) and allowed to ride with isotropic displacement parameters 20% larger than those of the attached C atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius 1994); cell refinement: CAD-4 EXPRESS; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1997), ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Tetrakis(triphenylphosphine)-bis(µ-tricyanomethanido)dicopper(I) top
Crystal data top
C80H60Cu2N6P4Z = 1
Mr = 1356.30F(000) = 700
Triclinic, P1Dx = 1.295 Mg m3
a = 12.113 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 12.8530 (16) ÅCell parameters from 25 reflections
c = 13.0084 (14) Åθ = 29.9–50.2°
α = 85.113 (11)°µ = 2.00 mm1
β = 69.290 (12)°T = 213 K
γ = 66.945 (13)°Block, colourless
V = 1739.7 (5) Å30.50 × 0.20 × 0.10 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
5634 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.077
Graphite monochromatorθmax = 65.0°, θmin = 5.1°
ω scansh = 114
Absorption correction: ψ scan
(Spek, 1997)
k = 1415
Tmin = 0.634, Tmax = 0.817l = 1415
6696 measured reflections3 standard reflections every 400 reflections
5840 independent reflections intensity decay: 2.2%
Refinement top
Refinement on F2Primary atom site location: heavy atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0797P)2 + 2.1459P],
where P = (Fo2 + 2Fc2)/3
5840 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
C80H60Cu2N6P4γ = 66.945 (13)°
Mr = 1356.30V = 1739.7 (5) Å3
Triclinic, P1Z = 1
a = 12.113 (3) ÅCu Kα radiation
b = 12.8530 (16) ŵ = 2.00 mm1
c = 13.0084 (14) ÅT = 213 K
α = 85.113 (11)°0.50 × 0.20 × 0.10 mm
β = 69.290 (12)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
5634 reflections with I > 2σ(I)
Absorption correction: ψ scan
(Spek, 1997)
Rint = 0.077
Tmin = 0.634, Tmax = 0.8173 standard reflections every 400 reflections
6696 measured reflections intensity decay: 2.2%
5840 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.10Δρmax = 0.64 e Å3
5840 reflectionsΔρmin = 0.87 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.7218 (0.0162) x + 9.0625 (0.0100) y - 5.6328 (0.0133) z = 6.2981 (0.0239)

* -0.0718 (0.0036) C1 * -0.0236 (0.0028) C11 * 0.0435 (0.0021) N11 * -0.0175 (0.0028) C12_$1 * 0.0397 (0.0021) N12_$1 * -0.0084 (0.0051) C13 * 0.0380 (0.0037) N13

Rms deviation of fitted atoms = 0.0396

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.60412 (4)0.83892 (3)0.76120 (4)0.03351 (16)
P10.58828 (7)0.68705 (6)0.70137 (6)0.03146 (19)
C1110.5807 (3)0.6871 (2)0.5642 (3)0.0343 (6)
C1120.6544 (3)0.7333 (3)0.4813 (3)0.0442 (8)
H1120.70730.76220.49720.053*
C1130.6509 (4)0.7373 (3)0.3760 (3)0.0546 (9)
H1130.70310.76670.32030.066*
C1140.5709 (4)0.6983 (4)0.3528 (3)0.0577 (10)
H1140.56670.70320.28170.069*
C1150.4973 (4)0.6522 (4)0.4332 (3)0.0585 (10)
H1150.44340.62480.41710.070*
C1160.5029 (3)0.6464 (3)0.5383 (3)0.0460 (8)
H1160.45300.61430.59290.055*
C1210.7287 (3)0.5602 (2)0.6962 (3)0.0342 (6)
C1220.7535 (3)0.5299 (3)0.7945 (3)0.0419 (7)
H1220.69280.56840.86170.050*
C1230.8670 (3)0.4438 (3)0.7925 (3)0.0494 (8)
H1230.88270.42330.85870.059*
C1240.9577 (3)0.3874 (3)0.6944 (3)0.0506 (9)
H1241.03590.33050.69350.061*
C1250.9332 (3)0.4148 (3)0.5980 (3)0.0500 (9)
H1250.99410.37510.53140.060*
C1260.8193 (3)0.5006 (3)0.5986 (3)0.0414 (7)
H1260.80330.51850.53230.050*
C1310.4531 (3)0.6525 (3)0.7881 (3)0.0385 (7)
C1320.4607 (4)0.5427 (3)0.8057 (3)0.0539 (9)
H1320.53950.48160.77510.065*
C1330.3524 (5)0.5219 (4)0.8685 (4)0.0710 (12)
H1330.35910.44700.88150.085*
C1340.2372 (4)0.6091 (5)0.9110 (4)0.0747 (14)
H1340.16370.59430.95020.090*
C1350.2280 (4)0.7189 (5)0.8967 (4)0.0706 (13)
H1350.14880.77930.92840.085*
C1360.3365 (3)0.7413 (3)0.8349 (3)0.0518 (9)
H1360.33000.81650.82510.062*
P20.75909 (7)0.90759 (6)0.67023 (7)0.0347 (2)
C2110.7348 (3)1.0422 (3)0.7297 (3)0.0397 (7)
C2120.7600 (3)1.1285 (3)0.6678 (3)0.0466 (8)
H2120.78861.12070.59060.056*
C2130.7432 (3)1.2268 (3)0.7192 (4)0.0532 (9)
H2130.76081.28490.67640.064*
C2140.7013 (4)1.2398 (3)0.8317 (4)0.0580 (10)
H2140.69301.30540.86580.070*
C2150.6717 (5)1.1572 (4)0.8940 (4)0.0716 (13)
H2150.64051.16680.97120.086*
C2160.6878 (5)1.0590 (3)0.8433 (3)0.0625 (11)
H2160.66631.00280.88690.075*
C2210.7772 (3)0.9362 (2)0.5271 (3)0.0360 (7)
C2220.6668 (3)1.0022 (3)0.5038 (3)0.0449 (8)
H2220.58811.03360.56190.054*
C2230.6717 (3)1.0219 (3)0.3961 (3)0.0501 (8)
H2230.59681.06660.38150.060*
C2240.7867 (4)0.9757 (3)0.3103 (3)0.0506 (8)
H2240.79010.98870.23720.061*
C2250.8964 (3)0.9108 (3)0.3316 (3)0.0494 (8)
H2250.97470.87970.27300.059*
C2260.8922 (3)0.8911 (3)0.4393 (3)0.0400 (7)
H2260.96780.84680.45300.048*
C2310.9191 (3)0.8142 (3)0.6677 (3)0.0376 (7)
C2320.9412 (3)0.7033 (3)0.6938 (3)0.0435 (8)
H2320.87380.67790.71320.052*
C2331.0612 (3)0.6288 (3)0.6919 (3)0.0522 (9)
H2331.07480.55350.71030.063*
C2341.1602 (3)0.6648 (3)0.6632 (3)0.0543 (9)
H2341.24200.61410.66090.065*
C2351.1396 (3)0.7753 (3)0.6377 (4)0.0565 (10)
H2351.20730.80010.61870.068*
C2361.0201 (3)0.8502 (3)0.6397 (3)0.0483 (8)
H2361.00690.92560.62220.058*
N110.6341 (3)0.7953 (2)0.9104 (3)0.0473 (7)
C110.6654 (3)0.8083 (3)0.9807 (3)0.0394 (7)
C10.6998 (3)0.8307 (3)1.0662 (3)0.0429 (8)
C120.3782 (3)1.0665 (3)0.8710 (3)0.0390 (7)
N120.4446 (3)0.9811 (2)0.8231 (3)0.0460 (7)
C130.8154 (4)0.7602 (4)1.0795 (3)0.0689 (13)
N130.9080 (4)0.7044 (5)1.0921 (4)0.131 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0286 (2)0.0285 (2)0.0391 (3)0.01020 (18)0.00621 (19)0.00496 (18)
P10.0264 (4)0.0273 (4)0.0366 (4)0.0104 (3)0.0053 (3)0.0033 (3)
C1110.0293 (14)0.0272 (14)0.0397 (17)0.0067 (11)0.0080 (12)0.0035 (12)
C1120.0475 (18)0.0470 (18)0.0426 (19)0.0270 (15)0.0110 (15)0.0027 (14)
C1130.066 (2)0.056 (2)0.042 (2)0.0306 (19)0.0114 (17)0.0041 (16)
C1140.071 (3)0.061 (2)0.044 (2)0.025 (2)0.0232 (19)0.0008 (17)
C1150.064 (2)0.070 (3)0.061 (2)0.036 (2)0.033 (2)0.004 (2)
C1160.0425 (17)0.0513 (19)0.050 (2)0.0246 (15)0.0151 (15)0.0026 (16)
C1210.0303 (14)0.0267 (14)0.0425 (17)0.0120 (12)0.0073 (12)0.0013 (12)
C1220.0410 (17)0.0358 (16)0.0436 (19)0.0128 (14)0.0107 (14)0.0010 (14)
C1230.052 (2)0.0392 (18)0.061 (2)0.0169 (16)0.0262 (18)0.0103 (16)
C1240.0367 (17)0.0334 (17)0.074 (3)0.0083 (14)0.0166 (17)0.0067 (16)
C1250.0379 (17)0.0352 (17)0.059 (2)0.0056 (14)0.0045 (15)0.0038 (15)
C1260.0389 (17)0.0338 (16)0.0432 (18)0.0118 (13)0.0066 (14)0.0018 (13)
C1310.0343 (15)0.0438 (17)0.0357 (17)0.0180 (13)0.0059 (13)0.0030 (13)
C1320.052 (2)0.053 (2)0.054 (2)0.0297 (17)0.0050 (17)0.0018 (17)
C1330.081 (3)0.084 (3)0.061 (3)0.061 (3)0.011 (2)0.016 (2)
C1340.063 (3)0.126 (4)0.046 (2)0.062 (3)0.0007 (19)0.001 (2)
C1350.0362 (19)0.103 (4)0.058 (3)0.026 (2)0.0040 (17)0.014 (2)
C1360.0348 (17)0.061 (2)0.048 (2)0.0157 (16)0.0015 (15)0.0057 (17)
P20.0307 (4)0.0296 (4)0.0421 (5)0.0141 (3)0.0074 (3)0.0011 (3)
C2110.0368 (16)0.0312 (15)0.051 (2)0.0171 (13)0.0098 (14)0.0030 (13)
C2120.0443 (18)0.0385 (17)0.053 (2)0.0176 (15)0.0100 (15)0.0010 (15)
C2130.051 (2)0.0303 (16)0.078 (3)0.0188 (15)0.0185 (19)0.0033 (16)
C2140.058 (2)0.043 (2)0.075 (3)0.0256 (17)0.014 (2)0.0123 (18)
C2150.104 (4)0.066 (3)0.054 (2)0.055 (3)0.013 (2)0.007 (2)
C2160.097 (3)0.054 (2)0.049 (2)0.050 (2)0.016 (2)0.0028 (18)
C2210.0350 (15)0.0290 (14)0.0445 (18)0.0145 (12)0.0118 (13)0.0008 (12)
C2220.0355 (16)0.0381 (17)0.056 (2)0.0113 (14)0.0119 (15)0.0014 (15)
C2230.049 (2)0.0425 (18)0.062 (2)0.0141 (15)0.0274 (18)0.0074 (16)
C2240.061 (2)0.0440 (19)0.050 (2)0.0213 (17)0.0222 (17)0.0048 (16)
C2250.0464 (19)0.0454 (19)0.046 (2)0.0150 (15)0.0063 (15)0.0014 (15)
C2260.0373 (16)0.0351 (16)0.0432 (18)0.0118 (13)0.0112 (13)0.0020 (13)
C2310.0327 (15)0.0384 (16)0.0428 (18)0.0171 (13)0.0098 (13)0.0013 (13)
C2320.0374 (16)0.0395 (17)0.056 (2)0.0197 (14)0.0136 (15)0.0047 (15)
C2330.0427 (18)0.0401 (18)0.075 (3)0.0164 (15)0.0222 (18)0.0069 (17)
C2340.0354 (17)0.055 (2)0.070 (3)0.0131 (16)0.0200 (17)0.0042 (18)
C2350.0401 (19)0.062 (2)0.076 (3)0.0292 (18)0.0208 (18)0.010 (2)
C2360.0422 (18)0.0444 (18)0.065 (2)0.0255 (15)0.0189 (16)0.0110 (16)
N110.0451 (16)0.0401 (15)0.0482 (18)0.0112 (12)0.0104 (13)0.0072 (13)
C110.0384 (16)0.0272 (15)0.0414 (18)0.0058 (12)0.0076 (14)0.0039 (13)
C10.0364 (16)0.0362 (17)0.0427 (19)0.0011 (13)0.0134 (14)0.0075 (14)
C120.0307 (15)0.0387 (17)0.0423 (18)0.0066 (14)0.0129 (13)0.0044 (14)
N120.0368 (14)0.0417 (16)0.0525 (17)0.0055 (13)0.0155 (13)0.0110 (13)
C130.054 (2)0.071 (3)0.048 (2)0.014 (2)0.0178 (18)0.018 (2)
N130.071 (3)0.157 (5)0.086 (3)0.057 (3)0.043 (3)0.036 (3)
Geometric parameters (Å, º) top
Cu—N122.027 (3)P2—C2111.829 (3)
Cu—N112.090 (3)C211—C2121.382 (5)
Cu—P12.2607 (8)C211—C2161.385 (5)
Cu—P22.2916 (9)C212—C2131.390 (5)
P1—C1111.818 (3)C213—C2141.370 (6)
P1—C1211.823 (3)C214—C2151.363 (6)
P1—C1311.825 (3)C215—C2161.387 (5)
C111—C1161.384 (4)C221—C2261.392 (4)
C111—C1121.393 (4)C221—C2221.398 (5)
C112—C1131.380 (5)C222—C2231.386 (5)
C113—C1141.377 (6)C223—C2241.380 (5)
C114—C1151.375 (6)C224—C2251.376 (5)
C115—C1161.387 (5)C225—C2261.389 (5)
C121—C1261.388 (4)C231—C2321.379 (5)
C121—C1221.404 (5)C231—C2361.394 (4)
C122—C1231.380 (5)C232—C2331.386 (5)
C123—C1241.379 (5)C233—C2341.372 (5)
C124—C1251.375 (6)C234—C2351.375 (6)
C125—C1261.387 (5)C235—C2361.381 (5)
C131—C1321.383 (5)N11—C111.152 (4)
C131—C1361.384 (5)C11—C11.404 (5)
C132—C1331.392 (5)C1—C131.402 (5)
C133—C1341.358 (7)C1—C12i1.402 (4)
C134—C1351.373 (7)C12—N121.144 (4)
C135—C1361.401 (6)C12—C1i1.402 (4)
P2—C2211.819 (3)C13—N131.131 (5)
P2—C2311.827 (3)
N12—Cu—N1195.92 (12)C221—P2—C211103.19 (15)
N12—Cu—P1119.59 (9)C231—P2—C211103.35 (14)
N11—Cu—P1105.21 (8)C221—P2—Cu115.29 (10)
N12—Cu—P2103.34 (9)C231—P2—Cu113.82 (11)
N11—Cu—P2102.77 (9)C211—P2—Cu114.67 (11)
P1—Cu—P2124.87 (3)C212—C211—C216118.0 (3)
C111—P1—C121104.00 (14)C212—C211—P2123.8 (3)
C111—P1—C131103.67 (14)C216—C211—P2118.2 (3)
C121—P1—C131104.33 (14)C211—C212—C213120.3 (4)
C111—P1—Cu117.82 (10)C214—C213—C212120.6 (4)
C121—P1—Cu109.67 (10)C215—C214—C213119.7 (4)
C131—P1—Cu115.93 (11)C214—C215—C216119.9 (4)
C116—C111—C112118.0 (3)C211—C216—C215121.3 (4)
C116—C111—P1123.6 (3)C226—C221—C222118.2 (3)
C112—C111—P1118.4 (2)C226—C221—P2124.1 (2)
C113—C112—C111121.0 (3)C222—C221—P2117.6 (2)
C114—C113—C112119.9 (3)C223—C222—C221120.9 (3)
C115—C114—C113120.3 (4)C224—C223—C222119.9 (3)
C114—C115—C116119.6 (3)C225—C224—C223120.0 (4)
C111—C116—C115121.3 (3)C224—C225—C226120.4 (3)
C126—C121—C122118.6 (3)C225—C226—C221120.6 (3)
C126—C121—P1123.1 (3)C232—C231—C236118.6 (3)
C122—C121—P1117.9 (2)C232—C231—P2118.7 (2)
C123—C122—C121120.0 (3)C236—C231—P2122.7 (3)
C124—C123—C122120.6 (4)C231—C232—C233120.9 (3)
C125—C124—C123119.8 (3)C234—C233—C232120.0 (3)
C124—C125—C126120.3 (3)C233—C234—C235119.8 (3)
C125—C126—C121120.6 (3)C234—C235—C236120.5 (3)
C132—C131—C136118.9 (3)C235—C236—C231120.2 (3)
C132—C131—P1123.3 (3)C11—N11—Cu151.7 (3)
C136—C131—P1117.8 (3)N11—C11—C1176.8 (3)
C131—C132—C133120.5 (4)C13—C1—C12i121.1 (3)
C134—C133—C132120.5 (4)C13—C1—C11121.3 (3)
C133—C134—C135120.0 (4)C12i—C1—C11117.2 (3)
C134—C135—C136120.1 (4)N12—C12—C1i176.9 (3)
C131—C136—C135120.0 (4)C12—N12—Cu159.6 (3)
C221—P2—C231105.14 (14)N13—C13—C1178.7 (5)
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC80H60Cu2N6P4
Mr1356.30
Crystal system, space groupTriclinic, P1
Temperature (K)213
a, b, c (Å)12.113 (3), 12.8530 (16), 13.0084 (14)
α, β, γ (°)85.113 (11), 69.290 (12), 66.945 (13)
V3)1739.7 (5)
Z1
Radiation typeCu Kα
µ (mm1)2.00
Crystal size (mm)0.50 × 0.20 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(Spek, 1997)
Tmin, Tmax0.634, 0.817
No. of measured, independent and
observed [I > 2σ(I)] reflections
6696, 5840, 5634
Rint0.077
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.152, 1.10
No. of reflections5840
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.87

Computer programs: CAD-4 EXPRESS (Enraf-Nonius 1994), CAD-4 EXPRESS, HELENA (Spek, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Cu—N122.027 (3)C11—C11.404 (5)
Cu—N112.090 (3)C1—C131.402 (5)
Cu—P12.2607 (8)C1—C12i1.402 (4)
Cu—P22.2916 (9)C12—N121.144 (4)
N11—C111.152 (4)C13—N131.131 (5)
N12—Cu—N1195.92 (12)N11—C11—C1176.8 (3)
N12—Cu—P1119.59 (9)C13—C1—C12i121.1 (3)
N11—Cu—P1105.21 (8)C13—C1—C11121.3 (3)
N12—Cu—P2103.34 (9)C12i—C1—C11117.2 (3)
N11—Cu—P2102.77 (9)N12—C12—C1i176.9 (3)
P1—Cu—P2124.87 (3)C12—N12—Cu159.6 (3)
C11—N11—Cu151.7 (3)N13—C13—C1178.7 (5)
Symmetry code: (i) x+1, y+2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds