Download citation
Download citation
link to html
The monoclinic (space group P21/n) structure of [Ni(H2O)6](p-H3CC6H4SO3)2, with the octahedral cation at an inversion centre and the anion in a general position, shows a strong pseudo-orthorhombic (`Pnnm') symmetry. The structure comprises layers of hydro­philic and hydro­phobic moieties, the former connected by hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680101529X/om6052sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680101529X/om6052Isup2.hkl
Contains datablock I

CCDC reference: 175345

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.050
  • wR factor = 0.101
  • Data-to-parameter ratio = 15.5

checkCIF results

No syntax errors found


Amber Alert Alert Level B:
PLAT_112 Alert B ADDSYM Detects Additional (Pseudo) Symm. Elem. m PLAT_112 Alert B ADDSYM Detects Additional (Pseudo) Symm. Elem. n PLAT_113 Alert B ADDSYM suggests Pseudo/New Spacegroup ........ Pnnm
0 Alert Level A = Potentially serious problem
3 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

For many purposes, including catalysis, transition metal complexes are required, containing anions which coordinate weakly or not at all. p-Toluenesulfonate (OTs) groups are commonly used, and for nickel(II), a useful starting compound is the hexaaqua complex, [Ni(H2O)6](OTs)2, (I), where tosyl Ts is p-MeC6H4SO2. (I) is easily prepared from the basic carbonate and the sulfonic acid. In it, the aqua ligands can be readily displaced by phosphine ligands, yielding such products as [Ni(dppe)2](OTs)2. In the course of our studies of Ni-based catalytic systems, we determined the crystal structure of (I).

The Ni atom is located at a crystallographic inversion centre and has an octahedral coordination; the OTs- anion lies in a general position (Fig. 1). The crystal structure of (I) comprises intermittent layers of hydrophilic (cations and sulfonate groups, connected by a network of hydrogen bonds) and hydrophobic (tolyl groups) moieties. Structures with such layering can have unusual thermodynamic properties, making them prospective materials for thermal energy storage (Groh et al., 1990).

Structure (I) shows a strong pseudo-orthorhombic symmetry, approximating the space group Pnnm (No. 58) in the lattice setting a = 6.299, b = 24.933, c = 6.914 Å and `α = β = γ = 90°', the cation occupying a 2/m special position and the anion lying on the m plane, with the benzene ring disordered between two orientations, intersecting the plane at an acute angle. In fact, the structure could be solved and (poorly) refined in the space group Pnnm, converging at wR(F2) = 0.213 for all 1644 `independent' reflections, R = 0.107 for 1350 reflections with F2 > 2σ(F2). Merging the data in the orthorhombic symmetry gives Rint = 0.27.

(I) is isomorphous with [Co(H2O)6](OTs)2 (Cabaleiro-Martinez et al., 2000) and pseudo-isomorphous with a number of [Ni(H2O)6]X2 salts, where X is PhSO3 (Groh et al., 1990), p-ClC6H4SO3 (Bernardinelli et al., 1991) and p-H2CCH—C6H4SO3 (Leonard et al., 1999). The similarity of the latter structure with the rest is somewhat obscured by the fact that it has been reported in the P21/c setting rather than in P21/n, which corresponds to the reduced cell.

Experimental top

A mixture of Ni(CO3).Ni(OH)2.4H2O (II) (5.81 g, 1.2 mmol), HOTs (4.74 g, 2.5 mmol) and toluene (100 ml) was stirred. Water was removed by azeotropic distillation using a Dean–Stark apparatus under nitrogen, the solvent was removed under reduced pressure and the solid was dried in vacuo. The IR spectrum indicated the presence of unreacted (II). The mixture was stirred, the flask heated in air to 573±50 K on a Bunsen burner, whereupon HOTs melted and the reaction was brought to completion. After cooling to room temperature the solid products were washed with degassed toluene (2 × 10 ml) and then ether, dried in vacuo and dissolved in methanol. The solution was filtered to remove residual (II), and the methanol was removed from the filtrate in vacuo, yielding a pale-green solid of (I) (2.8 g, yield 56%). IR spectrum (solid), cm-1: ν(SO) 1184 (sym. str.), 1055 (asym. str.). Recrystallization from methanol yielded pale-green crystals suitable for X-ray study.

Refinement top

Csp2—H bond distances are in the range 0.91 (4)–0.97 (4) Å, and the Csp3—H distances are 0.92 (5) and 0.98 (6) Å.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The cation and anion in the structure of (I). Primed atoms have been generated by the inversion centre. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I). Dashed lines show the direction of the hydrogen bonds.
Hexaaquanickel(II) bis(p-tolylsulfonate) top
Crystal data top
[Ni(H2O)6](C7H7O3S)2F(000) = 532
Mr = 509.18Dx = 1.557 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.914 (1) ÅCell parameters from 448 reflections
b = 6.299 (1) Åθ = 10–20°
c = 24.933 (4) ŵ = 1.14 mm1
β = 90.719 (15)°T = 150 K
V = 1085.8 (3) Å3Prism, colourless
Z = 20.25 × 0.10 × 0.05 mm
Data collection top
SMART 1K CCD area-detector
diffractometer
2864 independent reflections
Radiation source: fine-focus sealed tube2253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 8 pixels mm-1θmax = 29.0°, θmin = 1.6°
ω scansh = 89
Absorption correction: integration
(XPREP SHELXTL; Bruker, 1997)
k = 68
Tmin = 0.763, Tmax = 0.945l = 3329
8262 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: difference Fourier map
wR(F2) = 0.101All H-atom parameters refined
S = 1.19 w = 1/[σ2(Fo2) + (0.0083P)2 + 2.4432P]
where P = (Fo2 + 2Fc2)/3
2864 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Ni(H2O)6](C7H7O3S)2V = 1085.8 (3) Å3
Mr = 509.18Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.914 (1) ŵ = 1.14 mm1
b = 6.299 (1) ÅT = 150 K
c = 24.933 (4) Å0.25 × 0.10 × 0.05 mm
β = 90.719 (15)°
Data collection top
SMART 1K CCD area-detector
diffractometer
2864 independent reflections
Absorption correction: integration
(XPREP SHELXTL; Bruker, 1997)
2253 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.945Rint = 0.055
8262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.101All H-atom parameters refined
S = 1.19Δρmax = 0.55 e Å3
2864 reflectionsΔρmin = 0.48 e Å3
185 parameters
Special details top

Experimental. The data collection nominally covered a hemisphere of reciprocal space, by a combination of 4 sets of ω scans; each set at different ϕ and/or 2θ angles and each scan (30 sec exposure) covering 0.3° in ω. Crystal to detector distance 4.5 cm. Crystal decay was monitored by repeating 50 initial frames at the end of data collection and comparing 119 duplicate reflections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.50000.50000.00000.01655 (14)
S0.01007 (11)0.10018 (12)0.09502 (3)0.01774 (17)
O10.2584 (4)0.5957 (5)0.04068 (13)0.0389 (7)
H0110.233 (7)0.715 (8)0.0493 (19)0.054 (15)*
H0120.187 (6)0.519 (7)0.0570 (16)0.035 (11)*
O20.6817 (4)0.5971 (4)0.06173 (11)0.0314 (6)
H0210.790 (8)0.518 (9)0.064 (2)0.074 (17)*
H0220.728 (6)0.723 (8)0.0622 (18)0.051 (14)*
O30.4859 (4)0.2076 (4)0.03275 (10)0.0258 (5)
H0310.589 (7)0.158 (8)0.0472 (18)0.058 (15)*
H0320.386 (7)0.150 (7)0.0455 (18)0.053 (14)*
O40.1902 (3)0.0109 (4)0.07327 (9)0.0250 (5)
O50.1605 (3)0.0066 (4)0.07035 (8)0.0240 (5)
O60.0082 (3)0.3329 (3)0.09292 (9)0.0234 (5)
C10.0003 (4)0.0274 (5)0.16377 (12)0.0194 (6)
C20.0562 (5)0.1690 (6)0.20302 (14)0.0259 (7)
H20.090 (6)0.312 (7)0.1936 (15)0.038 (11)*
C30.0495 (5)0.1079 (7)0.25688 (14)0.0304 (8)
H30.077 (6)0.211 (7)0.2840 (17)0.052 (13)*
C40.0131 (5)0.0932 (6)0.27168 (13)0.0274 (7)
C50.0660 (5)0.2344 (6)0.23150 (14)0.0291 (8)
H50.116 (5)0.373 (6)0.2418 (13)0.021 (9)*
C60.0603 (5)0.1769 (6)0.17783 (14)0.0257 (7)
H60.101 (6)0.271 (7)0.1525 (16)0.045 (12)*
C70.0302 (7)0.1585 (9)0.32990 (16)0.0406 (10)
H710.015 (8)0.304 (10)0.335 (2)0.082 (19)*
H720.159 (8)0.145 (8)0.3437 (19)0.065 (15)*
H730.043 (7)0.067 (8)0.3499 (18)0.054 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0162 (2)0.0104 (2)0.0231 (3)0.0002 (2)0.00174 (19)0.0008 (2)
S0.0188 (3)0.0122 (3)0.0222 (4)0.0008 (3)0.0002 (3)0.0001 (3)
O10.0370 (15)0.0158 (13)0.065 (2)0.0014 (12)0.0306 (14)0.0010 (14)
O20.0340 (14)0.0158 (12)0.0441 (15)0.0008 (11)0.0138 (12)0.0027 (12)
O30.0214 (12)0.0161 (11)0.0398 (14)0.0007 (10)0.0001 (11)0.0071 (11)
O40.0249 (11)0.0176 (11)0.0322 (12)0.0035 (10)0.0082 (9)0.0037 (11)
O50.0259 (11)0.0189 (11)0.0273 (11)0.0012 (10)0.0072 (9)0.0000 (11)
O60.0258 (11)0.0123 (10)0.0320 (12)0.0007 (9)0.0007 (9)0.0022 (10)
C10.0158 (13)0.0182 (16)0.0244 (15)0.0001 (12)0.0012 (11)0.0007 (13)
C20.0249 (16)0.0234 (17)0.0292 (17)0.0038 (14)0.0009 (13)0.0032 (15)
C30.0273 (18)0.038 (2)0.0255 (18)0.0070 (16)0.0013 (14)0.0064 (17)
C40.0196 (15)0.041 (2)0.0218 (16)0.0020 (15)0.0009 (12)0.0005 (16)
C50.0300 (18)0.0269 (19)0.0303 (18)0.0006 (15)0.0002 (14)0.0059 (16)
C60.0303 (17)0.0224 (17)0.0244 (16)0.0026 (14)0.0029 (13)0.0016 (15)
C70.038 (2)0.057 (3)0.0263 (19)0.001 (2)0.0036 (17)0.006 (2)
Geometric parameters (Å, º) top
Ni—O32.018 (2)C1—C61.396 (4)
Ni—O12.056 (3)C2—C31.397 (5)
Ni—O22.067 (3)C2—H20.96 (4)
S—O51.461 (2)C3—C41.387 (5)
S—O41.465 (2)C3—H30.96 (4)
S—O61.467 (2)C4—C51.392 (5)
S—C11.775 (3)C4—C71.512 (5)
O1—H0110.80 (5)C5—C61.386 (5)
O1—H0120.80 (4)C5—H50.97 (4)
O2—H0210.90 (6)C6—H60.91 (4)
O2—H0220.85 (5)C7—H710.98 (6)
O3—H0310.86 (5)C7—H720.96 (5)
O3—H0320.85 (5)C7—H730.92 (5)
C1—C21.383 (4)
O3i—Ni—O3180.00 (13)Ni—O3—H031117 (3)
O3i—Ni—O188.61 (11)Ni—O3—H032126 (3)
O3—Ni—O191.39 (11)H031—O3—H032112 (4)
O3i—Ni—O1i91.39 (11)C2—C1—C6120.2 (3)
O3—Ni—O1i88.61 (11)C2—C1—S120.6 (3)
O1—Ni—O1i180.00 (15)C6—C1—S119.2 (2)
O3i—Ni—O2i90.04 (11)C1—C2—C3119.7 (3)
O3—Ni—O2i89.96 (11)C1—C2—H2120 (2)
O1—Ni—O2i87.94 (12)C3—C2—H2120 (2)
O1i—Ni—O2i92.06 (12)C4—C3—C2120.9 (3)
O3i—Ni—O289.96 (11)C4—C3—H3120 (3)
O3—Ni—O290.04 (11)C2—C3—H3119 (3)
O1—Ni—O292.06 (12)C3—C4—C5118.4 (3)
O1i—Ni—O287.94 (12)C3—C4—C7121.6 (4)
O2i—Ni—O2180.00 (10)C5—C4—C7119.9 (4)
O5—S—O4112.11 (14)C6—C5—C4121.5 (3)
O5—S—O6112.38 (14)C6—C5—H5120 (2)
O4—S—O6112.23 (14)C4—C5—H5119 (2)
O5—S—C1106.33 (14)C5—C6—C1119.2 (3)
O4—S—C1106.27 (14)C5—C6—H6119 (3)
O6—S—C1107.01 (14)C1—C6—H6121 (3)
Ni—O1—H011126 (3)C4—C7—H71111 (3)
Ni—O1—H012125 (3)C4—C7—H72113 (3)
H011—O1—H012107 (4)H71—C7—H72110 (4)
Ni—O2—H021112 (3)C4—C7—H73108 (3)
Ni—O2—H022121 (3)H71—C7—H73110 (4)
H021—O2—H022101 (4)H72—C7—H73105 (4)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H011···O5ii0.80 (5)1.98 (5)2.778 (4)178 (5)
O1—H012···O60.80 (4)2.01 (4)2.810 (4)175 (4)
O2—H021···O6iii0.90 (6)1.95 (6)2.816 (3)161 (5)
O2—H022···O4iv0.85 (5)1.92 (5)2.767 (4)171 (4)
O3—H031···O4iii0.86 (5)1.89 (5)2.741 (3)171 (5)
O3—H032···O50.85 (5)1.91 (5)2.756 (3)176 (5)
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(H2O)6](C7H7O3S)2
Mr509.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)6.914 (1), 6.299 (1), 24.933 (4)
β (°) 90.719 (15)
V3)1085.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.25 × 0.10 × 0.05
Data collection
DiffractometerSMART 1K CCD area-detector
diffractometer
Absorption correctionIntegration
(XPREP SHELXTL; Bruker, 1997)
Tmin, Tmax0.763, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
8262, 2864, 2253
Rint0.055
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.101, 1.19
No. of reflections2864
No. of parameters185
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.55, 0.48

Computer programs: SMART (Siemens, 1995), SMART, SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Ni—O32.018 (2)S—O41.465 (2)
Ni—O12.056 (3)S—O61.467 (2)
Ni—O22.067 (3)S—C11.775 (3)
S—O51.461 (2)
O3—Ni—O191.39 (11)O4—S—O6112.23 (14)
O3—Ni—O290.04 (11)O5—S—C1106.33 (14)
O1—Ni—O292.06 (12)O4—S—C1106.27 (14)
O5—S—O4112.11 (14)O6—S—C1107.01 (14)
O5—S—O6112.38 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H011···O5i0.80 (5)1.98 (5)2.778 (4)178 (5)
O1—H012···O60.80 (4)2.01 (4)2.810 (4)175 (4)
O2—H021···O6ii0.90 (6)1.95 (6)2.816 (3)161 (5)
O2—H022···O4iii0.85 (5)1.92 (5)2.767 (4)171 (4)
O3—H031···O4ii0.86 (5)1.89 (5)2.741 (3)171 (5)
O3—H032···O50.85 (5)1.91 (5)2.756 (3)176 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds