organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hy­dr­oxy-1-methyl-2-[4-(piperidin-1-yl)phen­yl]quinolin-4(1H)-one

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland, bFaculty of Chemistry, Kyiv Taras Shevchenko National University, Volodymyrska 64, 01033 Kyiv, Ukraine, and cFaculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 4 February 2011; accepted 10 February 2011; online 19 February 2011)

There are two structurally similar but crystallographically independent mol­ecules (A and B) in the asymmetric unit of the title compound, C21H22N2O2, which are linked via two O—H⋯O hydrogen bonds. An intramolecular O—H⋯O hydrogen bond also occurs in each molecule. In the crystal, the A and B mol­ecules are further linked through C—H⋯O inter­actions. The benzene ring is twisted at an angle of 69.9 (1) and 83.4 (1)° relative to the 1,4-dihydro­quinoline skeleton in mol­ecules A and B, respectively. Adjacent 1,4-dihydro­quinoline units of mol­ecules A are parallel, while mol­ecules A and B are oriented at an angle of 32.8 (1)°.

Related literature

For general background to quinolin-4(1H)-ones, see: Bilokin' et al. (2009)[Bilokin', M. D., Shvadchak, V. V., Yushchenko, D. A., Duportail, G., Mély, Y. & Pivovarenko, V. G. (2009). J. Fluoresc. 19, 545-553.]; Mitscher (2005[Mitscher, L. D. (2005). Chem. Rev. 105, 559-592.]); Yushchenko et al. (2007[Yushchenko, D. A., Shvadchak, V. V., Klymchenko, A. S., Duportail, G., Pivovarenko, V. G. & Mély, Y. (2007). J. Phys. Chem. A, 111, 8986-8992.]); Sengupta & Kasha (1979[Sengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382-385.]). For related structures, see: Czaun et al. (2002[Czaun, M., Ganszky, I., Speier, G. & Párkányi, L. (2002). Z. Kristallogr. New Cryst. Struct. 217, 379-380.]); Mphahlele et al. (2002[Mphahlele, M. J., Fernandes, M. A., El-Nahas, A. M., Ottosson, H., Ndlovu, S. M., Sithole, H. M., Dladla, B. S. & De Waal, D. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 2159-2164.]); Mphahlele & El-Nahas (2004[Mphahlele, M. J. & El-Nahas, A. M. (2004). J. Mol. Struct. 688, 129-136.]). For inter­molecular inter­actions, see: Aakeröy et al. (1992[Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63-65.]); Novoa et al. (2006[Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding - New Insights, edited by S. Grabowski, pp. 193-244. The Netherlands: Springer.]). For the synthesis, see: Hradil et al. (1999)[Hradil, P., Hlaváč, J. & Lemr, K. (1999). J. Heterocycl. Chem. 36, 141-144.]; Yushchenko et al. (2006[Yushchenko, D. A., Bilokin', M. D., Pyvovarenko, O. V., Duportail, G., Mély, Y. & Pivovarenko, V. G. (2006). Tetrahedron Lett. 47, 905-908.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22N2O2

  • Mr = 334.41

  • Monoclinic, P 21 /c

  • a = 9.621 (4) Å

  • b = 18.622 (6) Å

  • c = 18.955 (7) Å

  • β = 104.17 (3)°

  • V = 3293 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 180 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur PX diffractometer with a CCD area detector

  • 41668 measured reflections

  • 13682 independent reflections

  • 6901 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.133

  • S = 1.01

  • 13682 reflections

  • 455 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11A—H11A⋯O12A 0.84 2.32 2.760 (2) 113
O11A—H11A⋯O12B 0.84 1.95 2.723 (2) 153
O11B—H11B⋯O12A 0.84 2.01 2.791 (2) 154
O11B—H11B⋯O12B 0.84 2.30 2.741 (2) 113
C24B—H24D⋯O12Ai 0.99 2.52 3.475 (2) 162
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Poland, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Poland, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Apart from their interesting biological activities (Mitscher, 2005), quinolin-4(1H)-ones display dual fluorescence, the result of Excited State Intramolecular Proton Transfer (ESIPT), if they are substituted with –OH and phenyl in the pyridine-4(1H)-one ring in the vicinity of the carbonyl group and the N atom, respectively (Yushchenko et al., 2007). Influenced by the properties of the medium, ESIPT makes 3-hydroxy-2-phenylquinolin-4(1H)-ones interesting fluorescent probes sensitive to features of a medium (Bilokin' et al., 2009). Since ESIPT is believed to depend on the mutual orientation of the 1,4-dihydroquinoline and benzene fragments (Yushchenko et al., 2007), we undertook investigations into the structure of potential fluorescent sensors belonging to the latter group of compounds. Here the structure of 3-hydroxy-1-methyl-(-2-[4-(piperidin-1-yl)phenyl]quinolin-4(1H)-one is presented.

In the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the 2-phenylquinolin-4(1H)-one moiety are typical of this group of compounds (Czaun et al., 2002; Mphahlele et al., 2002; Mphahlele & El-Nahas, 2004). With respective average deviations from planarity of 0.0163 (1)° (A) or 0.0180 (1)° (B) and 0.0078 (1)° (A) or 0.0059 (1)° (B), the 1,4-dihydroquinoline and benzene ring systems are oriented at a dihedral angle of 69.9 (1)° (A) or 83.4 (1)° (B) (in crystalline 3-hydroxy-2-phenylquinolin-4(1H)-one: dimethyl sulfoxide, 1:1, this angle is equal to 45.2 (1)° (Czaun et al., 2002)). As mentioned above, the latter angle appears to be important for explaining the mechanism of ESIPT in this group of compounds (Yushchenko et al., 2007).

In the crystal lattice, two structurally similar but crystallographically independent molecules (A and B), linked via two O–H···O hydrogen bonds (Aakeröy et al., 1992), are present in the asymmetric unit (Table 1, Fig. 1). Molecules A are in contact with neighboring B ones through C–H···O (Novoa et al., 2006) interactions (Table 1, Fig. 2). Adjacent 1,4-dihydroquinoline units of molecules A are parallel – they lie at an angle of 0.0 (1)° – while molecules A and B are oriented at an angle of 32.8 (1)°. The O12–H12···O13 intramolecular hydrogen bonds (Table 1, Figs. 1 and 2) are the ones that may be involved in ESIPT; the phenomenon originally disclosed in 3-hydroxy-2-phenyl-4H-chromen-4-ones (Sengupta & Kasha, 1979), which are analogues of 3-hydroxy-2-phenylquinolin-4(1H)-ones.

Related literature top

For general background to quinolin-4(1H)-ones, see: Bilokin' et al. (2009); Mitscher (2005); Yushchenko et al. (2007); Sengupta & Kasha (1979). For related structures, see: Czaun et al. (2002); Mphahlele et al. (2002); Mphahlele & El-Nahas (2004). For intermolecular interactions, see: Aakeröy et al. (1992); Novoa et al. (2006). For the synthesis, see: Hradil et al. (1999); Yushchenko et al. (2006).

Experimental top

The title compound was synthesized in two steps. First a mixture of 2-(methylamino)benzoic acid, 2-bromo-1-(4-fluorophenyl)ethanone and potassium carbonate in dimethylformamide was heated at 325 K for 1 h to obtain 2-(4-fluorophenyl)-2-oxoethyl 2-(methylamino)benzoate. On further heating with polyphosphoric acid (395 K, 2 h), this yielded 2-(4-fluorophenyl)-3-hydroxy-1-methyl-quinolin-4(1H)-one (Hradil et al., 1999; Yushchenko et al., 2006). The latter compound was then separated, dissolved in piperidine and the solution stored in a sealed tube at 445 K for 50 h. The reactant mixture was subsequently poured into 1% aq HCl and the precipitate separated by filtration. Crystals suitable for X-ray investigations were grown from dimethylformamide (m.p. = 566–568 K).

The X-ray measurements were carried out at 180 K. Below this temperature, a phase transition occurs, which doubles parameter c of the unit cell.

Refinement top

H atoms of C–H bonds were positioned geometrically, with C–H = 0.95 Å, 0.98 Å and 0.99 Å for the aromatic, methyl and methylene H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and 1.5 for alkyl H atoms. H atoms of O–H bonds were positioned geometrically with O–H = 0.84 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of molecules A and B of the title compound together with the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. The O–H···O hydrogen bonds are represented by dashed lines.
[Figure 2] Fig. 2. The arrangement of molecules A and B in the crystal. The O–H···O interactions are represented by dashed lines, the C–H···O contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry code: (i) –x + 1, –y + 1, –z + 1.]
3-Hydroxy-1-methyl-2-[4-(piperidin-1-yl)phenyl]quinolin-4(1H)-one top
Crystal data top
C21H22N2O2F(000) = 1424
Mr = 334.41Dx = 1.349 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19567 reflections
a = 9.621 (4) Åθ = 3–35°
b = 18.622 (6) ŵ = 0.09 mm1
c = 18.955 (7) ÅT = 180 K
β = 104.17 (3)°Block, colorless
V = 3293 (2) Å30.40 × 0.35 × 0.30 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur PX
diffractometer with a CCD area detector'
6901 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 35.1°, θmin = 3.1°
ω and ϕ scansh = 1513
41668 measured reflectionsk = 3024
13682 independent reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.053P)2]
where P = (Fo2 + 2Fc2)/3
13682 reflections(Δ/σ)max = 0.001
455 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C21H22N2O2V = 3293 (2) Å3
Mr = 334.41Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.621 (4) ŵ = 0.09 mm1
b = 18.622 (6) ÅT = 180 K
c = 18.955 (7) Å0.40 × 0.35 × 0.30 mm
β = 104.17 (3)°
Data collection top
Oxford Diffraction Xcalibur PX
diffractometer with a CCD area detector'
6901 reflections with I > 2σ(I)
41668 measured reflectionsRint = 0.040
13682 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.01Δρmax = 0.50 e Å3
13682 reflectionsΔρmin = 0.25 e Å3
455 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.62758 (10)0.35031 (6)0.98211 (5)0.0217 (2)
N1B0.01996 (10)0.36909 (6)0.49772 (5)0.0227 (2)
C2A0.48185 (12)0.35224 (6)0.95022 (6)0.0202 (2)
C2B0.12649 (12)0.36293 (6)0.52659 (6)0.0204 (2)
C3A0.42999 (12)0.33671 (6)0.87742 (6)0.0202 (2)
C3B0.17973 (12)0.34211 (6)0.59775 (6)0.0203 (2)
C4A0.52258 (12)0.31590 (6)0.83202 (6)0.0193 (2)
C4B0.08833 (13)0.32634 (7)0.64502 (6)0.0219 (2)
C5A0.77324 (13)0.29184 (7)0.82809 (7)0.0251 (3)
H5A0.73950.27820.77850.030*
C5B0.16279 (13)0.31646 (8)0.65442 (7)0.0286 (3)
H5B0.12810.30330.70400.034*
C6A0.91803 (14)0.29110 (7)0.85969 (7)0.0301 (3)
H6A0.98410.27780.83210.036*
C6B0.30772 (14)0.32021 (8)0.62521 (7)0.0318 (3)
H6B0.37290.31020.65440.038*
C7A0.96681 (14)0.31024 (8)0.93299 (7)0.0299 (3)
H7A1.06690.31040.95460.036*
C7B0.35874 (13)0.33903 (7)0.55167 (7)0.0283 (3)
H7B0.45920.34100.53110.034*
C8A0.87355 (13)0.32885 (7)0.97444 (7)0.0264 (3)
H8A0.90890.34051.02440.032*
C8B0.26632 (13)0.35457 (7)0.50900 (7)0.0259 (3)
H8B0.30300.36700.45930.031*
C9A0.72446 (13)0.33055 (6)0.94225 (6)0.0203 (2)
C9B0.11638 (12)0.35211 (6)0.53882 (6)0.0204 (2)
C10A0.67400 (12)0.31256 (6)0.86814 (6)0.0197 (2)
C10B0.06406 (12)0.33181 (7)0.61233 (6)0.0214 (2)
O11A0.28603 (9)0.33866 (5)0.84855 (5)0.0281 (2)
H11A0.26830.32770.80420.042*
O11B0.32439 (9)0.33503 (5)0.62420 (5)0.0257 (2)
H11B0.34210.32110.66760.039*
O12A0.47359 (9)0.30034 (5)0.76573 (4)0.0259 (2)
O12B0.13899 (9)0.30750 (6)0.71000 (5)0.0320 (2)
C13A0.68432 (14)0.37058 (8)1.05886 (6)0.0283 (3)
H13A0.60800.39291.07740.042*
H13B0.76330.40481.06270.042*
H13C0.71940.32761.08760.042*
C13B0.07655 (14)0.39398 (8)0.42239 (7)0.0325 (3)
H13D0.14270.43410.42200.049*
H13E0.12760.35450.39280.049*
H13F0.00300.40990.40230.049*
C14A0.38208 (13)0.37134 (7)0.99616 (6)0.0211 (2)
C14B0.22385 (12)0.37982 (7)0.47866 (6)0.0212 (2)
C15A0.35906 (13)0.32537 (7)1.04993 (6)0.0232 (3)
H15A0.40660.28031.05700.028*
C15B0.25605 (13)0.32892 (7)0.43131 (7)0.0239 (3)
H15B0.21710.28200.43040.029*
C16A0.26762 (13)0.34414 (7)1.09372 (6)0.0232 (3)
H16A0.25440.31171.13020.028*
C16B0.34430 (13)0.34540 (7)0.38519 (7)0.0235 (3)
H16B0.36390.30960.35330.028*
C17A0.19498 (13)0.40993 (7)1.08483 (6)0.0232 (3)
C17B0.40451 (12)0.41371 (6)0.38511 (6)0.0206 (2)
C18A0.21631 (15)0.45534 (7)1.02923 (7)0.0312 (3)
H18A0.16760.50011.02110.037*
C18B0.36954 (15)0.46512 (7)0.43209 (7)0.0318 (3)
H18B0.40590.51260.43240.038*
C19A0.30755 (15)0.43583 (7)0.98596 (7)0.0306 (3)
H19A0.31920.46740.94850.037*
C19B0.28269 (15)0.44759 (7)0.47807 (7)0.0315 (3)
H19B0.26290.48320.51020.038*
N20A0.10083 (11)0.42989 (6)1.12809 (5)0.0251 (2)
N20B0.49979 (11)0.43049 (5)0.34169 (5)0.0228 (2)
C21A0.09634 (16)0.38008 (9)1.18785 (8)0.0382 (4)
H21A0.19230.37841.22200.046*
H21B0.07390.33131.16760.046*
C21B0.51323 (15)0.37533 (7)0.28849 (7)0.0312 (3)
H21C0.41890.36900.25360.037*
H21D0.53890.32920.31430.037*
C22A0.01350 (16)0.40103 (9)1.22943 (8)0.0387 (4)
H22A0.11090.39541.19740.046*
H22B0.00510.36831.27140.046*
C22B0.62434 (14)0.39258 (8)0.24620 (7)0.0304 (3)
H22C0.72140.38910.27910.036*
H22D0.61770.35680.20690.036*
C23A0.00603 (16)0.47724 (9)1.25640 (8)0.0413 (4)
H23A0.09990.48251.29190.050*
H23B0.07030.49001.28100.050*
C23B0.60333 (15)0.46696 (8)0.21334 (7)0.0329 (3)
H23C0.50940.47010.17760.039*
H23D0.67950.47760.18800.039*
C24A0.00105 (18)0.52637 (8)1.19200 (9)0.0441 (4)
H24A0.01620.57651.20940.053*
H24B0.09830.52401.15910.053*
C24B0.60962 (16)0.52036 (7)0.27452 (8)0.0352 (3)
H24C0.70570.51830.30860.042*
H24D0.59560.56950.25400.042*
C25A0.10870 (17)0.50598 (8)1.14988 (9)0.0414 (4)
H25A0.09360.53631.10570.050*
H25B0.20590.51621.18030.050*
C25B0.49643 (16)0.50524 (7)0.31595 (8)0.0336 (3)
H25C0.51130.53800.35830.040*
H25D0.40060.51550.28400.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0208 (5)0.0283 (6)0.0166 (5)0.0005 (4)0.0060 (4)0.0027 (4)
N1B0.0199 (5)0.0330 (6)0.0158 (5)0.0022 (4)0.0056 (4)0.0024 (4)
C2A0.0211 (6)0.0213 (6)0.0205 (6)0.0020 (5)0.0094 (5)0.0009 (5)
C2B0.0202 (6)0.0238 (6)0.0199 (5)0.0001 (5)0.0098 (5)0.0005 (5)
C3A0.0177 (6)0.0248 (6)0.0191 (5)0.0024 (5)0.0067 (5)0.0012 (5)
C3B0.0171 (6)0.0256 (6)0.0189 (5)0.0007 (5)0.0059 (5)0.0009 (5)
C4A0.0209 (6)0.0198 (6)0.0186 (5)0.0007 (5)0.0073 (5)0.0014 (5)
C4B0.0195 (6)0.0293 (7)0.0175 (5)0.0022 (5)0.0060 (5)0.0001 (5)
C5A0.0233 (6)0.0334 (7)0.0208 (6)0.0018 (5)0.0093 (5)0.0015 (5)
C5B0.0218 (6)0.0441 (8)0.0216 (6)0.0016 (6)0.0085 (5)0.0046 (6)
C6A0.0220 (6)0.0402 (8)0.0309 (7)0.0038 (6)0.0119 (6)0.0022 (6)
C6B0.0219 (6)0.0437 (8)0.0328 (7)0.0025 (6)0.0126 (6)0.0034 (6)
C7A0.0190 (6)0.0365 (8)0.0334 (7)0.0031 (5)0.0048 (6)0.0035 (6)
C7B0.0166 (6)0.0346 (8)0.0330 (7)0.0000 (5)0.0047 (5)0.0026 (6)
C8A0.0220 (6)0.0326 (7)0.0234 (6)0.0014 (5)0.0033 (5)0.0029 (5)
C8B0.0214 (6)0.0319 (7)0.0227 (6)0.0019 (5)0.0025 (5)0.0016 (5)
C9A0.0214 (6)0.0224 (6)0.0184 (5)0.0002 (5)0.0071 (5)0.0003 (5)
C9B0.0193 (6)0.0242 (6)0.0187 (5)0.0000 (5)0.0067 (5)0.0011 (5)
C10A0.0193 (6)0.0225 (6)0.0187 (5)0.0008 (5)0.0072 (5)0.0012 (5)
C10B0.0189 (6)0.0281 (7)0.0181 (5)0.0021 (5)0.0063 (5)0.0000 (5)
O11A0.0186 (4)0.0456 (6)0.0204 (4)0.0042 (4)0.0055 (4)0.0026 (4)
O11B0.0173 (4)0.0390 (6)0.0214 (4)0.0008 (4)0.0059 (3)0.0030 (4)
O12A0.0242 (5)0.0354 (5)0.0178 (4)0.0042 (4)0.0044 (4)0.0007 (4)
O12B0.0226 (5)0.0537 (6)0.0193 (4)0.0044 (4)0.0040 (4)0.0058 (4)
C13A0.0290 (7)0.0360 (8)0.0201 (6)0.0034 (6)0.0066 (5)0.0054 (5)
C13B0.0295 (7)0.0499 (9)0.0189 (6)0.0089 (6)0.0074 (5)0.0091 (6)
C14A0.0214 (6)0.0252 (6)0.0182 (5)0.0007 (5)0.0077 (5)0.0017 (5)
C14B0.0191 (6)0.0276 (7)0.0181 (5)0.0001 (5)0.0070 (5)0.0012 (5)
C15A0.0226 (6)0.0260 (6)0.0227 (6)0.0030 (5)0.0089 (5)0.0010 (5)
C15B0.0242 (6)0.0247 (6)0.0257 (6)0.0031 (5)0.0114 (5)0.0006 (5)
C16A0.0237 (6)0.0276 (7)0.0205 (6)0.0013 (5)0.0099 (5)0.0023 (5)
C16B0.0250 (6)0.0244 (6)0.0246 (6)0.0014 (5)0.0127 (5)0.0023 (5)
C17A0.0209 (6)0.0299 (7)0.0201 (6)0.0012 (5)0.0074 (5)0.0014 (5)
C17B0.0199 (6)0.0237 (6)0.0200 (6)0.0003 (5)0.0082 (5)0.0008 (5)
C18A0.0374 (7)0.0308 (7)0.0307 (7)0.0120 (6)0.0186 (6)0.0078 (6)
C18B0.0441 (8)0.0243 (7)0.0340 (7)0.0074 (6)0.0231 (6)0.0047 (6)
C19A0.0388 (8)0.0307 (7)0.0280 (7)0.0076 (6)0.0192 (6)0.0076 (6)
C19B0.0432 (8)0.0256 (7)0.0333 (7)0.0040 (6)0.0241 (6)0.0071 (6)
N20A0.0258 (5)0.0292 (6)0.0238 (5)0.0037 (5)0.0131 (5)0.0012 (4)
N20B0.0259 (5)0.0215 (5)0.0247 (5)0.0015 (4)0.0133 (4)0.0003 (4)
C21A0.0403 (8)0.0473 (9)0.0349 (8)0.0146 (7)0.0245 (7)0.0140 (7)
C21B0.0340 (7)0.0312 (7)0.0346 (7)0.0067 (6)0.0203 (6)0.0081 (6)
C22A0.0386 (8)0.0528 (10)0.0326 (7)0.0115 (7)0.0236 (7)0.0100 (7)
C22B0.0313 (7)0.0359 (8)0.0288 (7)0.0021 (6)0.0169 (6)0.0038 (6)
C23A0.0339 (8)0.0656 (11)0.0280 (7)0.0033 (7)0.0146 (6)0.0062 (7)
C23B0.0339 (7)0.0434 (8)0.0243 (6)0.0013 (6)0.0128 (6)0.0064 (6)
C24A0.0555 (10)0.0388 (9)0.0498 (9)0.0015 (7)0.0353 (8)0.0071 (7)
C24B0.0471 (8)0.0283 (7)0.0385 (8)0.0014 (6)0.0260 (7)0.0063 (6)
C25A0.0518 (9)0.0355 (8)0.0478 (9)0.0040 (7)0.0332 (8)0.0098 (7)
C25B0.0428 (8)0.0268 (7)0.0382 (8)0.0044 (6)0.0236 (7)0.0069 (6)
Geometric parameters (Å, º) top
N1A—C2A1.3848 (16)C15A—C16A1.3938 (16)
N1A—C9A1.3856 (15)C15A—H15A0.9500
N1A—C13A1.4723 (16)C15B—C16B1.3938 (16)
N1B—C2B1.3858 (16)C15B—H15B0.9500
N1B—C9B1.3861 (15)C16A—C17A1.3999 (18)
N1B—C13B1.4728 (16)C16A—H16A0.9500
C2A—C3A1.3783 (17)C16B—C17B1.3979 (17)
C2A—C14A1.4884 (16)C16B—H16B0.9500
C2B—C3B1.3761 (17)C17A—C18A1.4048 (17)
C2B—C14B1.4895 (16)C17A—N20A1.4124 (15)
C3A—O11A1.3594 (15)C17B—C18B1.4035 (17)
C3A—C4A1.4352 (16)C17B—N20B1.4088 (15)
C3B—O11B1.3653 (15)C18A—C19A1.3885 (17)
C3B—C4B1.4311 (16)C18A—H18A0.9500
C4A—O12A1.2628 (14)C18B—C19B1.3861 (17)
C4A—C10A1.4514 (18)C18B—H18B0.9500
C4B—O12B1.2586 (15)C19A—H19A0.9500
C4B—C10B1.4489 (18)C19B—H19B0.9500
C5A—C6A1.3751 (19)N20A—C25A1.4727 (18)
C5A—C10A1.4113 (16)N20A—C21A1.4729 (17)
C5A—H5A0.9500N20B—C21B1.4670 (16)
C5B—C6B1.3703 (19)N20B—C25B1.4727 (17)
C5B—C10B1.4112 (16)C21A—C22A1.5159 (17)
C5B—H5B0.9500C21A—H21A0.9900
C6A—C7A1.3995 (19)C21A—H21B0.9900
C6A—H6A0.9500C21B—C22B1.5192 (17)
C6B—C7B1.4043 (19)C21B—H21C0.9900
C6B—H6B0.9500C21B—H21D0.9900
C7A—C8A1.3738 (18)C22A—C23A1.504 (2)
C7A—H7A0.9500C22A—H22A0.9900
C7B—C8B1.3713 (17)C22A—H22B0.9900
C7B—H7B0.9500C22B—C23B1.512 (2)
C8A—C9A1.4150 (18)C22B—H22C0.9900
C8A—H8A0.9500C22B—H22D0.9900
C8B—C9B1.4154 (18)C23A—C24A1.514 (2)
C8B—H8B0.9500C23A—H23A0.9900
C9A—C10A1.4097 (17)C23A—H23B0.9900
C9B—C10B1.4123 (17)C23B—C24B1.517 (2)
O11A—H11A0.8400C23B—H23C0.9900
O11B—H11B0.8400C23B—H23D0.9900
C13A—H13A0.9800C24A—C25A1.5196 (19)
C13A—H13B0.9800C24A—H24A0.9900
C13A—H13C0.9800C24A—H24B0.9900
C13B—H13D0.9800C24B—C25B1.5167 (18)
C13B—H13E0.9800C24B—H24C0.9900
C13B—H13F0.9800C24B—H24D0.9900
C14A—C19A1.3877 (18)C25A—H25A0.9900
C14A—C15A1.3897 (17)C25A—H25B0.9900
C14B—C19B1.3844 (18)C25B—H25C0.9900
C14B—C15B1.3913 (17)C25B—H25D0.9900
C2A—N1A—C9A120.87 (10)C17A—C16A—H16A119.4
C2A—N1A—C13A121.04 (10)C15B—C16B—C17B121.14 (11)
C9A—N1A—C13A118.08 (10)C15B—C16B—H16B119.4
C2B—N1B—C9B120.98 (10)C17B—C16B—H16B119.4
C2B—N1B—C13B120.51 (10)C16A—C17A—C18A117.18 (11)
C9B—N1B—C13B118.50 (10)C16A—C17A—N20A122.18 (11)
C3A—C2A—N1A120.75 (10)C18A—C17A—N20A120.62 (11)
C3A—C2A—C14A120.57 (11)C16B—C17B—C18B117.15 (11)
N1A—C2A—C14A118.67 (10)C16B—C17B—N20B122.12 (10)
C3B—C2B—N1B120.59 (10)C18B—C17B—N20B120.71 (11)
C3B—C2B—C14B121.24 (11)C19A—C18A—C17A121.01 (12)
N1B—C2B—C14B118.17 (10)C19A—C18A—H18A119.5
O11A—C3A—C2A118.74 (10)C17A—C18A—H18A119.5
O11A—C3A—C4A119.12 (10)C19B—C18B—C17B120.89 (12)
C2A—C3A—C4A122.10 (11)C19B—C18B—H18B119.6
O11B—C3B—C2B119.24 (10)C17B—C18B—H18B119.6
O11B—C3B—C4B118.53 (10)C14A—C19A—C18A121.60 (12)
C2B—C3B—C4B122.22 (11)C14A—C19A—H19A119.2
O12A—C4A—C3A121.55 (11)C18A—C19A—H19A119.2
O12A—C4A—C10A123.13 (10)C14B—C19B—C18B122.04 (11)
C3A—C4A—C10A115.30 (11)C14B—C19B—H19B119.0
O12B—C4B—C3B121.33 (11)C18B—C19B—H19B119.0
O12B—C4B—C10B123.16 (10)C17A—N20A—C25A114.83 (10)
C3B—C4B—C10B115.49 (10)C17A—N20A—C21A115.13 (10)
C6A—C5A—C10A121.00 (12)C25A—N20A—C21A113.53 (11)
C6A—C5A—H5A119.5C17B—N20B—C21B115.19 (10)
C10A—C5A—H5A119.5C17B—N20B—C25B116.01 (9)
C6B—C5B—C10B121.36 (12)C21B—N20B—C25B115.63 (10)
C6B—C5B—H5B119.3N20A—C21A—C22A113.16 (12)
C10B—C5B—H5B119.3N20A—C21A—H21A108.9
C5A—C6A—C7A119.19 (11)C22A—C21A—H21A108.9
C5A—C6A—H6A120.4N20A—C21A—H21B108.9
C7A—C6A—H6A120.4C22A—C21A—H21B108.9
C5B—C6B—C7B119.19 (12)H21A—C21A—H21B107.8
C5B—C6B—H6B120.4N20B—C21B—C22B113.98 (11)
C7B—C6B—H6B120.4N20B—C21B—H21C108.8
C8A—C7A—C6A121.65 (12)C22B—C21B—H21C108.8
C8A—C7A—H7A119.2N20B—C21B—H21D108.8
C6A—C7A—H7A119.2C22B—C21B—H21D108.8
C8B—C7B—C6B121.23 (12)H21C—C21B—H21D107.7
C8B—C7B—H7B119.4C23A—C22A—C21A111.99 (13)
C6B—C7B—H7B119.4C23A—C22A—H22A109.2
C7A—C8A—C9A119.61 (12)C21A—C22A—H22A109.2
C7A—C8A—H8A120.2C23A—C22A—H22B109.2
C9A—C8A—H8A120.2C21A—C22A—H22B109.2
C7B—C8B—C9B120.16 (12)H22A—C22A—H22B107.9
C7B—C8B—H8B119.9C23B—C22B—C21B111.76 (11)
C9B—C8B—H8B119.9C23B—C22B—H22C109.3
N1A—C9A—C10A119.54 (11)C21B—C22B—H22C109.3
N1A—C9A—C8A121.13 (11)C23B—C22B—H22D109.3
C10A—C9A—C8A119.33 (10)C21B—C22B—H22D109.3
N1B—C9B—C10B119.32 (11)H22C—C22B—H22D107.9
N1B—C9B—C8B121.68 (11)C22A—C23A—C24A108.59 (12)
C10B—C9B—C8B119.00 (10)C22A—C23A—H23A110.0
C9A—C10A—C5A119.19 (11)C24A—C23A—H23A110.0
C9A—C10A—C4A121.40 (10)C22A—C23A—H23B110.0
C5A—C10A—C4A119.41 (11)C24A—C23A—H23B110.0
C5B—C10B—C9B119.03 (11)H23A—C23A—H23B108.4
C5B—C10B—C4B119.65 (11)C22B—C23B—C24B108.01 (11)
C9B—C10B—C4B121.31 (10)C22B—C23B—H23C110.1
C3A—O11A—H11A109.5C24B—C23B—H23C110.1
C3B—O11B—H11B109.5C22B—C23B—H23D110.1
N1A—C13A—H13A109.5C24B—C23B—H23D110.1
N1A—C13A—H13B109.5H23C—C23B—H23D108.4
H13A—C13A—H13B109.5C23A—C24A—C25A111.89 (13)
N1A—C13A—H13C109.5C23A—C24A—H24A109.2
H13A—C13A—H13C109.5C25A—C24A—H24A109.2
H13B—C13A—H13C109.5C23A—C24A—H24B109.2
N1B—C13B—H13D109.5C25A—C24A—H24B109.2
N1B—C13B—H13E109.5H24A—C24A—H24B107.9
H13D—C13B—H13E109.5C25B—C24B—C23B112.00 (12)
N1B—C13B—H13F109.5C25B—C24B—H24C109.2
H13D—C13B—H13F109.5C23B—C24B—H24C109.2
H13E—C13B—H13F109.5C25B—C24B—H24D109.2
C19A—C14A—C15A117.75 (11)C23B—C24B—H24D109.2
C19A—C14A—C2A120.70 (10)H24C—C24B—H24D107.9
C15A—C14A—C2A121.55 (11)N20A—C25A—C24A113.15 (12)
C19B—C14B—C15B117.37 (11)N20A—C25A—H25A108.9
C19B—C14B—C2B121.12 (11)C24A—C25A—H25A108.9
C15B—C14B—C2B121.49 (11)N20A—C25A—H25B108.9
C14A—C15A—C16A121.29 (12)C24A—C25A—H25B108.9
C14A—C15A—H15A119.4H25A—C25A—H25B107.8
C16A—C15A—H15A119.4N20B—C25B—C24B112.74 (11)
C14B—C15B—C16B121.38 (12)N20B—C25B—H25C109.0
C14B—C15B—H15B119.3C24B—C25B—H25C109.0
C16B—C15B—H15B119.3N20B—C25B—H25D109.0
C15A—C16A—C17A121.14 (11)C24B—C25B—H25D109.0
C15A—C16A—H16A119.4H25C—C25B—H25D107.8
C9A—N1A—C2A—C3A2.05 (18)C8B—C9B—C10B—C4B178.16 (12)
C13A—N1A—C2A—C3A176.69 (11)O12B—C4B—C10B—C5B0.8 (2)
C9A—N1A—C2A—C14A177.88 (11)C3B—C4B—C10B—C5B179.28 (12)
C13A—N1A—C2A—C14A3.38 (17)O12B—C4B—C10B—C9B179.02 (12)
C9B—N1B—C2B—C3B2.25 (18)C3B—C4B—C10B—C9B0.57 (17)
C13B—N1B—C2B—C3B177.70 (12)C3A—C2A—C14A—C19A68.97 (17)
C9B—N1B—C2B—C14B178.07 (11)N1A—C2A—C14A—C19A111.11 (14)
C13B—N1B—C2B—C14B1.98 (17)C3A—C2A—C14A—C15A110.36 (14)
N1A—C2A—C3A—O11A179.44 (11)N1A—C2A—C14A—C15A69.56 (16)
C14A—C2A—C3A—O11A0.49 (17)C3B—C2B—C14B—C19B85.44 (16)
N1A—C2A—C3A—C4A1.92 (18)N1B—C2B—C14B—C19B94.23 (15)
C14A—C2A—C3A—C4A178.00 (11)C3B—C2B—C14B—C15B96.39 (15)
N1B—C2B—C3B—O11B178.60 (11)N1B—C2B—C14B—C15B83.93 (15)
C14B—C2B—C3B—O11B1.73 (18)C19A—C14A—C15A—C16A1.90 (19)
N1B—C2B—C3B—C4B0.32 (19)C2A—C14A—C15A—C16A178.75 (11)
C14B—C2B—C3B—C4B179.35 (11)C19B—C14B—C15B—C16B0.13 (19)
O11A—C3A—C4A—O12A0.99 (18)C2B—C14B—C15B—C16B178.36 (12)
C2A—C3A—C4A—O12A178.50 (11)C14A—C15A—C16A—C17A0.34 (19)
O11A—C3A—C4A—C10A177.63 (10)C14B—C15B—C16B—C17B0.38 (19)
C2A—C3A—C4A—C10A0.12 (17)C15A—C16A—C17A—C18A1.11 (19)
O11B—C3B—C4B—O12B1.21 (18)C15A—C16A—C17A—N20A179.44 (12)
C2B—C3B—C4B—O12B179.86 (12)C15B—C16B—C17B—C18B1.44 (19)
O11B—C3B—C4B—C10B177.27 (10)C15B—C16B—C17B—N20B176.69 (11)
C2B—C3B—C4B—C10B1.66 (18)C16A—C17A—C18A—C19A1.0 (2)
C10A—C5A—C6A—C7A0.9 (2)N20A—C17A—C18A—C19A179.35 (12)
C10B—C5B—C6B—C7B0.6 (2)C16B—C17B—C18B—C19B2.1 (2)
C5A—C6A—C7A—C8A0.9 (2)N20B—C17B—C18B—C19B176.11 (12)
C5B—C6B—C7B—C8B0.8 (2)C15A—C14A—C19A—C18A2.0 (2)
C6A—C7A—C8A—C9A1.6 (2)C2A—C14A—C19A—C18A178.62 (13)
C6B—C7B—C8B—C9B0.2 (2)C17A—C18A—C19A—C14A0.6 (2)
C2A—N1A—C9A—C10A0.34 (17)C15B—C14B—C19B—C18B0.5 (2)
C13A—N1A—C9A—C10A178.43 (11)C2B—C14B—C19B—C18B177.74 (13)
C2A—N1A—C9A—C8A179.67 (11)C17B—C18B—C19B—C14B1.6 (2)
C13A—N1A—C9A—C8A0.89 (17)C16A—C17A—N20A—C25A140.73 (13)
C7A—C8A—C9A—N1A178.84 (12)C18A—C17A—N20A—C25A41.00 (17)
C7A—C8A—C9A—C10A0.48 (19)C16A—C17A—N20A—C21A6.07 (18)
C2B—N1B—C9B—C10B3.28 (17)C18A—C17A—N20A—C21A175.65 (13)
C13B—N1B—C9B—C10B176.67 (12)C16B—C17B—N20B—C21B9.31 (17)
C2B—N1B—C9B—C8B176.71 (11)C18B—C17B—N20B—C21B172.62 (12)
C13B—N1B—C9B—C8B3.34 (18)C16B—C17B—N20B—C25B148.90 (13)
C7B—C8B—C9B—N1B178.50 (12)C18B—C17B—N20B—C25B33.03 (17)
C7B—C8B—C9B—C10B1.51 (19)C17A—N20A—C21A—C22A176.03 (12)
N1A—C9A—C10A—C5A179.41 (11)C25A—N20A—C21A—C22A48.73 (17)
C8A—C9A—C10A—C5A1.25 (18)C17B—N20B—C21B—C22B175.92 (11)
N1A—C9A—C10A—C4A1.49 (18)C25B—N20B—C21B—C22B44.34 (17)
C8A—C9A—C10A—C4A177.84 (11)N20A—C21A—C22A—C23A53.71 (18)
C6A—C5A—C10A—C9A1.97 (19)N20B—C21B—C22B—C23B50.97 (17)
C6A—C5A—C10A—C4A177.14 (12)C21A—C22A—C23A—C24A56.61 (17)
O12A—C4A—C10A—C9A179.83 (11)C21B—C22B—C23B—C24B57.25 (15)
C3A—C4A—C10A—C9A1.57 (17)C22A—C23A—C24A—C25A56.29 (18)
O12A—C4A—C10A—C5A0.74 (18)C22B—C23B—C24B—C25B58.65 (16)
C3A—C4A—C10A—C5A179.34 (11)C17A—N20A—C25A—C24A176.14 (12)
C6B—C5B—C10B—C9B0.6 (2)C21A—N20A—C25A—C24A48.48 (18)
C6B—C5B—C10B—C4B179.21 (13)C23A—C24A—C25A—N20A53.05 (19)
N1B—C9B—C10B—C5B178.31 (12)C17B—N20B—C25B—C24B175.63 (12)
C8B—C9B—C10B—C5B1.70 (18)C21B—N20B—C25B—C24B44.96 (17)
N1B—C9B—C10B—C4B1.84 (18)C23B—C24B—C25B—N20B52.75 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11A—H11A···O12A0.842.322.760 (2)113
O11A—H11A···O12B0.841.952.723 (2)153
O11B—H11B···O12A0.842.012.791 (2)154
O11B—H11B···O12B0.842.302.741 (2)113
C24B—H24D···O12Ai0.992.523.475 (2)162
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H22N2O2
Mr334.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)180
a, b, c (Å)9.621 (4), 18.622 (6), 18.955 (7)
β (°) 104.17 (3)
V3)3293 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur PX
diffractometer with a CCD area detector'
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
41668, 13682, 6901
Rint0.040
(sin θ/λ)max1)0.809
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.133, 1.01
No. of reflections13682
No. of parameters455
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.25

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11A—H11A···O12A0.842.322.760 (2)113
O11A—H11A···O12B0.841.952.723 (2)153
O11B—H11B···O12A0.842.012.791 (2)154
O11B—H11B···O12B0.842.302.741 (2)113
C24B—H24D···O12Ai0.992.523.475 (2)162
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant DS/8220–4–0087–11).

References

First citationAakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63–65.  Google Scholar
First citationBilokin', M. D., Shvadchak, V. V., Yushchenko, D. A., Duportail, G., Mély, Y. & Pivovarenko, V. G. (2009). J. Fluoresc. 19, 545–553.  Web of Science PubMed CAS Google Scholar
First citationCzaun, M., Ganszky, I., Speier, G. & Párkányi, L. (2002). Z. Kristallogr. New Cryst. Struct. 217, 379–380.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHradil, P., Hlaváč, J. & Lemr, K. (1999). J. Heterocycl. Chem. 36, 141–144.  CrossRef CAS Google Scholar
First citationMitscher, L. D. (2005). Chem. Rev. 105, 559–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMphahlele, M. J. & El-Nahas, A. M. (2004). J. Mol. Struct. 688, 129–136.  CrossRef CAS Google Scholar
First citationMphahlele, M. J., Fernandes, M. A., El-Nahas, A. M., Ottosson, H., Ndlovu, S. M., Sithole, H. M., Dladla, B. S. & De Waal, D. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 2159–2164.  CSD CrossRef Google Scholar
First citationNovoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen BondingNew Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.  Google Scholar
First citationOxford Diffraction (2003). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Poland, Wrocław, Poland.  Google Scholar
First citationSengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382–385.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYushchenko, D. A., Bilokin', M. D., Pyvovarenko, O. V., Duportail, G., Mély, Y. & Pivovarenko, V. G. (2006). Tetrahedron Lett. 47, 905–908.  Web of Science CrossRef CAS Google Scholar
First citationYushchenko, D. A., Shvadchak, V. V., Klymchenko, A. S., Duportail, G., Pivovarenko, V. G. & Mély, Y. (2007). J. Phys. Chem. A, 111, 8986–8992.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds