Download citation
Download citation
link to html
The title cyano-bridged heteronuclear coordination polymer, [Cu2Mo(CN)8(C2H8N2)4]n, was synthesized by the reaction of [CuL2]2+ (L is ethyl­enediamine) and [Mo(CN)8]4− in an aqueous solution. The structure is a three-dimensional polymer; the Cu sits on a position with twofold symmetry and the Mo sits on a position with \overline{4} symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806026535/om2025sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806026535/om2025Isup2.hkl
Contains datablock I

CCDC reference: 618299

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.026
  • wR factor = 0.059
  • Data-to-parameter ratio = 19.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT420_ALERT_2_C D-H Without Acceptor N1 - H1B ... ? PLAT420_ALERT_2_C D-H Without Acceptor N2 - H2B ... ? PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 1 N2 -CU1 -N1 -C1 122.20 0.50 2.565 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 5 N1 -CU1 -N2 -C2 96.50 0.50 2.565 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 10 C4 -MO1 -C3 -N3 135.00 4.00 2.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 11 C4 -MO1 -C3 -N3 34.00 4.00 8.656 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 12 C4 -MO1 -C3 -N3 -146.00 4.00 7.566 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 13 C4 -MO1 -C3 -N3 -68.00 4.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 14 C3 -MO1 -C3 -N3 -147.00 4.00 2.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 15 C3 -MO1 -C3 -N3 84.00 4.00 8.656 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 16 C3 -MO1 -C3 -N3 -19.00 4.00 7.566 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 17 C4 -MO1 -C4 -N4 16.00 6.00 2.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 18 C4 -MO1 -C4 -N4 -91.00 6.00 8.656 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 19 C4 -MO1 -C4 -N4 123.00 6.00 7.566 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 20 C3 -MO1 -C4 -N4 -23.00 6.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 21 C3 -MO1 -C4 -N4 55.00 6.00 2.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 22 C3 -MO1 -C4 -N4 -163.00 6.00 8.656 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 23 C3 -MO1 -C4 -N4 -165.00 6.00 7.566 1.555 1.555 1.555
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 19 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 17 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1995); software used to prepare material for publication: SHELXTL.

Poly[bis[bis(ethylenediamine)copper(II)]-tetra-µ-cyano- [tetracyanomolybdate(IV)]] top
Crystal data top
[Cu2Mo(CN)8(C2H8N2)4]Dx = 1.670 Mg m3
Mr = 671.60Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/nCell parameters from 2278 reflections
a = 9.2676 (7) Åθ = 2.6–27.9°
c = 15.550 (2) ŵ = 2.08 mm1
V = 1335.6 (2) Å3T = 291 K
Z = 2Block, blue
F(000) = 6800.36 × 0.17 × 0.08 mm
Data collection top
Bruker SMART APEX-II
diffractometer
1524 independent reflections
Radiation source: fine-focus sealed tube1215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 8.3 pixels mm-1θmax = 27.5°, θmin = 2.6°
φ and ω scansh = 128
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 712
Tmin = 0.524, Tmax = 0.848l = 2020
5810 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0203P)2]
where P = (Fo2 + 2Fc2)/3
1524 reflections(Δ/σ)max < 0.001
80 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.25000.25000.25000.02093 (11)
Cu10.25000.75000.09307 (2)0.04140 (14)
N10.40382 (18)0.7090 (2)0.18087 (12)0.0365 (4)
H1A0.39100.76530.22740.044*
H1B0.39910.61620.19760.044*
N20.4131 (2)0.7441 (2)0.00870 (14)0.0442 (5)
H2A0.38890.68890.03670.053*
H2B0.43240.83370.01040.053*
N30.1776 (2)0.4604 (2)0.08210 (13)0.0483 (5)
N40.5659 (2)0.3711 (2)0.18150 (13)0.0460 (5)
C10.5451 (3)0.7388 (3)0.14150 (18)0.0488 (6)
H1C0.62100.69080.17360.059*
H1D0.56420.84170.14180.059*
C20.5408 (3)0.6839 (3)0.05162 (17)0.0549 (7)
H2C0.62760.71260.02120.066*
H2D0.53580.57930.05170.066*
C30.2014 (2)0.3849 (2)0.13860 (14)0.0314 (5)
C40.4571 (2)0.3286 (2)0.20683 (13)0.0309 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02120 (13)0.02120 (13)0.02039 (17)0.0000.0000.000
Cu10.0372 (2)0.0621 (3)0.0249 (2)0.0079 (2)0.0000.000
N10.0355 (10)0.0400 (11)0.0341 (10)0.0038 (8)0.0009 (8)0.0060 (9)
N20.0584 (14)0.0367 (11)0.0374 (11)0.0037 (10)0.0134 (10)0.0030 (9)
N30.0660 (15)0.0408 (12)0.0381 (12)0.0147 (10)0.0023 (10)0.0083 (9)
N40.0353 (11)0.0684 (14)0.0344 (11)0.0139 (10)0.0011 (9)0.0030 (10)
C10.0361 (14)0.0500 (16)0.0602 (17)0.0053 (12)0.0003 (12)0.0029 (13)
C20.0468 (16)0.0641 (18)0.0538 (17)0.0086 (14)0.0198 (13)0.0013 (14)
C30.0375 (12)0.0261 (11)0.0306 (11)0.0041 (9)0.0021 (9)0.0033 (9)
C40.0319 (11)0.0378 (12)0.0231 (11)0.0028 (10)0.0019 (9)0.0011 (9)
Geometric parameters (Å, º) top
Mo1—C4i2.160 (2)N1—H1A0.9000
Mo1—C4ii2.160 (2)N1—H1B0.9000
Mo1—C4iii2.160 (2)N2—C21.469 (3)
Mo1—C42.160 (2)N2—H2A0.9000
Mo1—C32.183 (2)N2—H2B0.9000
Mo1—C3i2.183 (2)N3—C31.145 (3)
Mo1—C3ii2.183 (2)N4—C41.152 (3)
Mo1—C3iii2.183 (2)C1—C21.488 (4)
Cu1—N2iv2.003 (2)C1—H1C0.9700
Cu1—N22.003 (2)C1—H1D0.9700
Cu1—N1iv2.0100 (18)C2—H2C0.9700
Cu1—N12.0101 (18)C2—H2D0.9700
N1—C11.472 (3)
C4i—Mo1—C4ii95.54 (3)N2—Cu1—N1iv170.25 (8)
C4i—Mo1—C4iii95.54 (3)N2iv—Cu1—N1170.26 (8)
C4ii—Mo1—C4iii143.79 (11)N2—Cu1—N184.51 (8)
C4i—Mo1—C4143.79 (11)N1iv—Cu1—N194.44 (10)
C4ii—Mo1—C495.54 (3)C1—N1—Cu1108.24 (15)
C4iii—Mo1—C495.54 (3)C1—N1—H1A110.0
C4i—Mo1—C376.30 (8)Cu1—N1—H1A110.0
C4ii—Mo1—C370.62 (7)C1—N1—H1B110.0
C4iii—Mo1—C3145.59 (8)Cu1—N1—H1B110.0
C4—Mo1—C375.15 (8)H1A—N1—H1B108.4
C4i—Mo1—C3i75.15 (8)C2—N2—Cu1108.72 (15)
C4ii—Mo1—C3i145.59 (8)C2—N2—H2A109.9
C4iii—Mo1—C3i70.62 (7)Cu1—N2—H2A109.9
C4—Mo1—C3i76.30 (8)C2—N2—H2B109.9
C3—Mo1—C3i74.99 (11)Cu1—N2—H2B109.9
C4i—Mo1—C3ii70.62 (7)H2A—N2—H2B108.3
C4ii—Mo1—C3ii75.15 (8)N1—C1—C2107.6 (2)
C4iii—Mo1—C3ii76.30 (8)N1—C1—H1C110.2
C4—Mo1—C3ii145.59 (8)C2—C1—H1C110.2
C3—Mo1—C3ii129.02 (7)N1—C1—H1D110.2
C3i—Mo1—C3ii129.02 (7)C2—C1—H1D110.2
C4i—Mo1—C3iii145.59 (8)H1C—C1—H1D108.5
C4ii—Mo1—C3iii76.30 (8)N2—C2—C1108.6 (2)
C4iii—Mo1—C3iii75.15 (8)N2—C2—H2C110.0
C4—Mo1—C3iii70.62 (7)C1—C2—H2C110.0
C3—Mo1—C3iii129.02 (7)N2—C2—H2D110.0
C3i—Mo1—C3iii129.01 (7)C1—C2—H2D110.0
C3ii—Mo1—C3iii74.99 (11)H2C—C2—H2D108.4
N2iv—Cu1—N298.14 (13)N3—C3—Mo1177.2 (2)
N2iv—Cu1—N1iv84.51 (8)N4—C4—Mo1178.03 (19)
N2iv—Cu1—N1—C1122.2 (5)C4—Mo1—C3—N368 (4)
N2—Cu1—N1—C115.89 (15)C3i—Mo1—C3—N3147 (4)
N1iv—Cu1—N1—C1154.38 (17)C3ii—Mo1—C3—N384 (4)
N2iv—Cu1—N2—C2158.26 (19)C3iii—Mo1—C3—N319 (4)
N1iv—Cu1—N2—C296.5 (5)C4i—Mo1—C4—N416 (6)
N1—Cu1—N2—C212.29 (16)C4ii—Mo1—C4—N491 (6)
Cu1—N1—C1—C240.6 (2)C4iii—Mo1—C4—N4123 (6)
Cu1—N2—C2—C138.1 (2)C3—Mo1—C4—N423 (6)
N1—C1—C2—N252.3 (3)C3i—Mo1—C4—N455 (6)
C4i—Mo1—C3—N3135 (4)C3ii—Mo1—C4—N4163 (6)
C4ii—Mo1—C3—N334 (4)C3iii—Mo1—C4—N4165 (6)
C4iii—Mo1—C3—N3146 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) y+1/2, x, z+1/2; (iii) y, x+1/2, z+1/2; (iv) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4v0.902.123.004 (3)168
N2—H2A···N4vi0.902.363.150 (3)147
N2—H2B···N3iv0.902.603.084 (3)115
Symmetry codes: (iv) x+1/2, y+3/2, z; (v) y, x+3/2, z+1/2; (vi) x+1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds