Download citation
Download citation
link to html
The crystal structures of 4,10-dibromo-anthanthrone (Pigment Red 168; 4,10-dibromo-dibenzo[def,mno]chrysene-6,12-dione), 4,10-dichloro- and 4,10-diiodo-anthanthrone have been determined by single-crystal X-ray analyses. The dibromo and diiodo derivatives crystallize in P21/c, Z = 2, the dichloro derivative in P\bar 1, Z = 1. The molecular structures are almost identical and the unit-cell parameters show some similarities for all three compounds, but the crystal structures are neither isotypic to another nor to the unsubstituted anthanthrone, which crystallizes in P21/c, Z = 8. In order to explain why the four anthanthrone derivatives have four different crystal structures, lattice-energy minimizations were performed using anisotropic atom–atom model potentials as well as using the semi-classical density sums (SCDS-Pixel) approach. The calculations showed the crystal structures of the dichloro and the diiodo derivatives to be the most stable ones for the corresponding compound; whereas for dibromo-anthanthrone the calculations suggest that the dichloro and diiodo structure types should be more stable than the experimentally observed structure. An experimental search for new polymorphs of dibromo-anthanthrone was carried out, but the experiments were hampered by the remarkable insolubility of the compound. A metastable nanocrystalline second polymorph of the dibromo derivative does exist, but it is not isostructural to the dichloro or diiodo compound. In order to determine the crystal structure of this phase, crystal structure predictions were performed in various space groups, using anisotropic atom–atom potentials. For all low-energy structures, X-ray powder patterns were calculated and compared with the experimental diagram, which consisted of a few broad lines only. It turned out that the crystallinity of this phase was not sufficient to determine which of the calculated structures corresponds to the actual structure of this nanocrystalline polymorph.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768110028247/og5041sup1.cif
Contains datablocks pu280, pu287, pu288

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110028247/og5041pu280sup2.fcf
Contains datablock pu280

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110028247/og5041pu287sup3.fcf
Contains datablock pu287

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110028247/og5041pu288sup4.fcf
Contains datablock pu288

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108768110028247/og5041sup5.pdf
Tables of atomic coordinates, model potential parameters and unit-cell data

CCDC references: 798609; 798610; 798611

Computing details top

Data collection: R3m/V-software (Siemens) for pu280, pu288; R3m/V-software (Sioemens) for pu287. Cell refinement: R3m/V-software (Siemens) for pu280, pu288; R3m/V-software (Sioemens) for pu287. Data reduction: R3m/V-software (Siemens) for pu280, pu288; R3m/V-software (Sioemens) for pu287. For all structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus97 (Sheldrick, 1997); software used to prepare material for publication: SHELXTL-Plus97 (Sheldrick, 1997).

'4,10-Dibromo-anthanthrone, alpha-phase' (pu280) top
Crystal data top
C22H8Br2O2Dx = 2.032 Mg m3
Mr = 464.10Melting point > 300 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
a = 3.865 (1) ÅCell parameters from 25 reflections
b = 19.424 (2) Åθ = 4.5–24.0°
c = 10.113 (1) ŵ = 5.36 mm1
β = 92.56 (1)°T = 293 K
V = 758.5 (2) Å3Plate, red
Z = 20.50 × 0.25 × 0.01 mm
F(000) = 452
Data collection top
R3m/V (Siemens)
diffractometer
1499 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 28.1°, θmin = 2.1°
ω–2θ scansh = 55
Absorption correction: ψ scank = 025
Tmin = 0.218, Tmax = 0.948l = 1313
3661 measured reflections1 standard reflections every 69 reflections
1838 independent reflections intensity decay: <1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.118All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0803P)2 + 0.1814P]
where P = (Fo2 + 2Fc2)/3
1838 reflections(Δ/σ)max < 0.001
134 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.58 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C010.2997 (9)0.19363 (18)0.0111 (4)0.0353 (7)
C020.2213 (10)0.22540 (18)0.1302 (4)0.0406 (8)
C030.0647 (9)0.18868 (19)0.2269 (4)0.0374 (7)
C040.0190 (9)0.11848 (16)0.2087 (3)0.0304 (7)
C050.0539 (8)0.08627 (16)0.0862 (3)0.0277 (6)
C060.0361 (7)0.01604 (16)0.0635 (3)0.0269 (6)
C070.1726 (8)0.07663 (18)0.3070 (3)0.0321 (7)
C080.2574 (9)0.00979 (19)0.2847 (3)0.0343 (7)
C090.1921 (8)0.02116 (16)0.1614 (3)0.0291 (6)
C100.3004 (9)0.09342 (17)0.1398 (3)0.0316 (7)
C110.2147 (8)0.12559 (17)0.0119 (3)0.0301 (7)
H010.429 (11)0.220 (2)0.055 (4)0.040 (11)*
H020.271 (8)0.2695 (17)0.159 (3)0.017 (8)*
H030.041 (12)0.207 (3)0.308 (5)0.066 (15)*
H080.384 (12)0.020 (2)0.351 (5)0.054 (13)*
Br10.26710 (10)0.11466 (2)0.47457 (4)0.04355 (18)
O10.4590 (9)0.12517 (13)0.2226 (3)0.0473 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C010.0380 (18)0.0255 (16)0.0421 (18)0.0025 (13)0.0023 (14)0.0017 (13)
C020.047 (2)0.0272 (17)0.047 (2)0.0009 (15)0.0057 (16)0.0060 (14)
C030.0398 (18)0.0332 (17)0.0388 (18)0.0013 (14)0.0035 (14)0.0074 (14)
C040.0303 (15)0.0285 (15)0.0320 (16)0.0034 (12)0.0035 (12)0.0028 (11)
C050.0286 (14)0.0263 (14)0.0280 (14)0.0023 (12)0.0007 (11)0.0012 (12)
C060.0258 (14)0.0261 (14)0.0286 (15)0.0036 (11)0.0015 (11)0.0009 (11)
C070.0321 (16)0.0359 (17)0.0282 (14)0.0085 (13)0.0003 (12)0.0067 (12)
C080.0360 (17)0.0373 (18)0.0295 (15)0.0015 (14)0.0025 (13)0.0016 (13)
C090.0305 (15)0.0272 (15)0.0296 (14)0.0023 (12)0.0000 (12)0.0031 (12)
C100.0336 (16)0.0302 (16)0.0311 (15)0.0016 (13)0.0022 (12)0.0039 (13)
C110.0324 (16)0.0251 (16)0.0326 (16)0.0015 (12)0.0021 (12)0.0035 (11)
Br10.0465 (3)0.0503 (3)0.0344 (2)0.00144 (16)0.00691 (15)0.01158 (14)
O10.0681 (19)0.0342 (14)0.0407 (15)0.0112 (12)0.0141 (13)0.0060 (10)
Geometric parameters (Å, º) top
C01—C111.379 (5)C06—C09i1.385 (4)
C01—C021.399 (5)C06—C06i1.465 (6)
C01—H010.99 (4)C07—C081.356 (5)
C02—C031.373 (5)C07—C04i1.433 (5)
C02—H020.92 (3)C07—Br11.899 (3)
C03—C041.412 (5)C08—C091.417 (4)
C03—H030.90 (5)C08—H081.02 (5)
C04—C051.427 (4)C09—C06i1.385 (4)
C04—C07i1.433 (5)C09—C101.478 (5)
C05—C111.417 (4)C10—O11.226 (4)
C05—C061.424 (4)C10—C111.487 (5)
C11—C01—C02120.6 (3)C05—C06—C06i119.6 (3)
C11—C01—H01120 (2)C08—C07—C04i122.2 (3)
C02—C01—H01119 (2)C08—C07—Br1117.8 (3)
C03—C02—C01120.2 (3)C04i—C07—Br1120.0 (2)
C03—C02—H02110 (2)C07—C08—C09120.1 (3)
C01—C02—H02129 (2)C07—C08—H08123 (3)
C02—C03—C04121.0 (3)C09—C08—H08117 (3)
C02—C03—H03120 (3)C06i—C09—C08120.5 (3)
C04—C03—H03118 (3)C06i—C09—C10121.3 (3)
C03—C04—C05119.0 (3)C08—C09—C10118.2 (3)
C03—C04—C07i123.8 (3)O1—C10—C09121.6 (3)
C05—C04—C07i117.2 (3)O1—C10—C11121.3 (3)
C11—C05—C06121.0 (3)C09—C10—C11117.0 (3)
C11—C05—C04118.8 (3)C01—C11—C05120.5 (3)
C06—C05—C04120.2 (3)C01—C11—C10119.2 (3)
C09i—C06—C05119.7 (3)C05—C11—C10120.3 (3)
C09i—C06—C06i120.7 (4)
C11—C01—C02—C031.3 (6)C07—C08—C09—C10177.9 (3)
C01—C02—C03—C040.2 (6)C06i—C09—C10—O1175.1 (3)
C02—C03—C04—C051.5 (5)C08—C09—C10—O13.8 (5)
C02—C03—C04—C07i178.0 (3)C06i—C09—C10—C113.7 (4)
C03—C04—C05—C111.3 (5)C08—C09—C10—C11177.4 (3)
C07i—C04—C05—C11178.2 (3)C02—C01—C11—C051.5 (5)
C03—C04—C05—C06178.3 (3)C02—C01—C11—C10179.8 (3)
C07i—C04—C05—C062.1 (4)C06—C05—C11—C01179.8 (3)
C11—C05—C06—C09i179.8 (3)C04—C05—C11—C010.2 (5)
C04—C05—C06—C09i0.6 (4)C06—C05—C11—C101.5 (4)
C11—C05—C06—C06i0.5 (5)C04—C05—C11—C10178.9 (3)
C04—C05—C06—C06i179.1 (3)O1—C10—C11—C013.4 (5)
C04i—C07—C08—C090.6 (5)C09—C10—C11—C01177.8 (3)
Br1—C07—C08—C09179.9 (2)O1—C10—C11—C05175.3 (3)
C07—C08—C09—C06i1.1 (5)C09—C10—C11—C053.5 (4)
Symmetry code: (i) x, y, z.
'4,10-diiodo-anthanthrone' (pu287) top
Crystal data top
C22H8I2O2Dx = 2.309 Mg m3
Mr = 558.08Melting point > 300 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71072 Å
a = 4.202 (1) ÅCell parameters from 25 reflections
b = 20.956 (4) Åθ = 3.5–23.5°
c = 9.276 (2) ŵ = 3.93 mm1
β = 100.63 (3)°T = 293 K
V = 802.8 (3) Å3Needle, red
Z = 20.38 × 0.08 × 0.04 mm
F(000) = 524
Data collection top
R3m/V (Siemens)
diffractometer
1277 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.080
Graphite monochromatorθmax = 28.1°, θmin = 1.9°
ω–2θ scansh = 55
Absorption correction: ψ scank = 027
Tmin = 0.278, Tmax = 0.337l = 1212
3914 measured reflections1 standard reflections every 69 reflections
1965 independent reflections intensity decay: <1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099Riding
S = 0.98 w = 1/[σ2(Fo2) + (0.0268P)2]
where P = (Fo2 + 2Fc2)/3
1965 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.62 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C010.6629 (15)0.0254 (3)0.3524 (8)0.0426 (15)
H01A0.75820.00520.41950.051*
C020.7531 (16)0.0890 (3)0.3743 (8)0.0474 (16)
H02A0.90840.10090.45470.057*
C030.6102 (14)0.1339 (3)0.2758 (7)0.0428 (15)
H03A0.67250.17630.29040.051*
C040.3734 (13)0.1181 (2)0.1537 (7)0.0333 (13)
C050.2823 (13)0.0522 (3)0.1321 (7)0.0330 (13)
C060.0459 (13)0.0334 (3)0.0101 (7)0.0308 (12)
C070.2127 (14)0.1636 (3)0.0507 (7)0.0367 (14)
C080.0120 (14)0.1447 (3)0.0650 (7)0.0378 (14)
H08A0.11210.17510.13130.045*
C090.0976 (13)0.0800 (3)0.0872 (6)0.0319 (12)
C100.3482 (15)0.0620 (3)0.2160 (7)0.0397 (14)
C110.4361 (13)0.0067 (2)0.2338 (7)0.0358 (13)
O10.4752 (12)0.1020 (2)0.3042 (5)0.0608 (15)
I10.31891 (10)0.261059 (19)0.08029 (6)0.04868 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C010.049 (4)0.036 (3)0.039 (4)0.002 (3)0.000 (3)0.004 (3)
C020.051 (4)0.046 (4)0.043 (4)0.004 (3)0.002 (3)0.006 (3)
C030.052 (4)0.026 (3)0.053 (4)0.003 (3)0.017 (3)0.007 (3)
C040.039 (3)0.023 (3)0.041 (3)0.000 (2)0.013 (3)0.005 (3)
C050.040 (3)0.024 (3)0.037 (3)0.000 (2)0.012 (3)0.000 (3)
C060.036 (3)0.024 (3)0.035 (3)0.001 (2)0.012 (2)0.001 (2)
C070.044 (3)0.022 (3)0.047 (4)0.001 (2)0.014 (3)0.001 (3)
C080.049 (3)0.026 (3)0.041 (4)0.005 (2)0.018 (3)0.007 (3)
C090.041 (3)0.025 (3)0.031 (3)0.003 (2)0.009 (2)0.004 (2)
C100.052 (4)0.028 (3)0.038 (4)0.008 (3)0.004 (3)0.006 (3)
C110.043 (4)0.026 (3)0.040 (4)0.001 (2)0.010 (3)0.002 (3)
O10.074 (3)0.034 (2)0.062 (4)0.002 (2)0.017 (3)0.008 (2)
I10.0523 (3)0.02271 (19)0.0701 (3)0.00457 (19)0.00879 (19)0.0004 (2)
Geometric parameters (Å, º) top
C01—C111.373 (8)C06—C09i1.389 (8)
C01—C021.391 (9)C06—C06i1.456 (11)
C01—H01A0.9300C07—C081.351 (8)
C02—C031.370 (9)C07—C04i1.427 (8)
C02—H02A0.9300C07—I12.098 (5)
C03—C041.402 (8)C08—C091.409 (8)
C03—H03A0.9300C08—H08A0.9300
C04—C07i1.427 (8)C09—C06i1.389 (8)
C04—C051.437 (8)C09—C101.488 (8)
C05—C111.412 (7)C10—O11.222 (7)
C05—C061.417 (8)C10—C111.489 (8)
C11—C01—C02121.3 (6)C05—C06—C06i120.0 (6)
C11—C01—H01A119.3C08—C07—C04i120.7 (5)
C02—C01—H01A119.3C08—C07—I1119.3 (4)
C03—C02—C01119.1 (6)C04i—C07—I1119.9 (4)
C03—C02—H02A120.4C07—C08—C09121.4 (5)
C01—C02—H02A120.4C07—C08—H08A119.3
C02—C03—C04122.4 (6)C09—C08—H08A119.3
C02—C03—H03A118.8C06i—C09—C08120.8 (5)
C04—C03—H03A118.8C06i—C09—C10120.2 (5)
C03—C04—C07i124.2 (5)C08—C09—C10119.0 (5)
C03—C04—C05118.0 (5)O1—C10—C09121.4 (5)
C07i—C04—C05117.8 (5)O1—C10—C11121.3 (6)
C11—C05—C06120.8 (5)C09—C10—C11117.3 (5)
C11—C05—C04118.6 (5)C01—C11—C05120.5 (5)
C06—C05—C04120.5 (5)C01—C11—C10119.1 (5)
C09i—C06—C05118.7 (5)C05—C11—C10120.4 (5)
C09i—C06—C06i121.3 (6)
C11—C01—C02—C030.5 (12)C07—C08—C09—C10179.6 (6)
C01—C02—C03—C040.5 (11)C06i—C09—C10—O1179.1 (7)
C02—C03—C04—C07i178.3 (7)C08—C09—C10—O11.6 (10)
C02—C03—C04—C050.5 (10)C06i—C09—C10—C110.4 (9)
C03—C04—C05—C110.4 (9)C08—C09—C10—C11178.8 (6)
C07i—C04—C05—C11179.3 (6)C02—C01—C11—C051.5 (11)
C03—C04—C05—C06179.6 (6)C02—C01—C11—C10179.9 (7)
C07i—C04—C05—C061.5 (9)C06—C05—C11—C01179.4 (6)
C11—C05—C06—C09i179.7 (6)C04—C05—C11—C011.3 (9)
C04—C05—C06—C09i0.6 (9)C06—C05—C11—C101.0 (9)
C11—C05—C06—C06i1.2 (11)C04—C05—C11—C10179.7 (6)
C04—C05—C06—C06i179.6 (6)O1—C10—C11—C010.5 (11)
C04i—C07—C08—C090.7 (10)C09—C10—C11—C01179.1 (6)
I1—C07—C08—C09178.3 (5)O1—C10—C11—C05178.9 (7)
C07—C08—C09—C06i0.3 (10)C09—C10—C11—C050.6 (9)
Symmetry code: (i) x, y, z.
'4,10-Dichloro-anthanthrone' (pu288) top
Crystal data top
C22H8Cl2O2F(000) = 190
Mr = 375.18Dx = 1.693 Mg m3
Triclinic, P_1Melting point > 300 K
a = 3.795 (1) ÅMo Kα radiation, λ = 0.71072 Å
b = 9.527 (1) ÅCell parameters from 25 reflections
c = 10.662 (1) Åθ = 4.5–24.0°
α = 105.78 (1)°µ = 0.46 mm1
β = 93.27 (1)°T = 293 K
γ = 95.26 (1)°Plate, orange
V = 368.04 (11) Å30.51 × 0.05 × 0.02 mm
Z = 1
Data collection top
R3m/V (Siemens)
diffractometer
842 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.091
Graphite monochromatorθmax = 28.1°, θmin = 2.0°
ω–2θ scansh = 55
Absorption correction: ψ scank = 1212
Tmin = 0.973, Tmax = 0.991l = 1414
3548 measured reflections1 standard reflections every 69 reflections
1774 independent reflections intensity decay: <1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: difference Fourier map
wR(F2) = 0.178All H-atom parameters refined
S = 0.93 w = 1/[σ2(Fo2) + (0.0685P)2]
where P = (Fo2 + 2Fc2)/3
1774 reflections(Δ/σ)max < 0.001
134 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.45 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C010.1611 (13)0.4177 (5)0.1222 (5)0.0341 (11)
C020.0342 (14)0.4797 (5)0.2518 (5)0.0403 (12)
C030.1114 (14)0.3947 (5)0.3236 (4)0.0364 (12)
C040.1422 (12)0.2445 (5)0.2644 (4)0.0295 (10)
C050.0233 (12)0.1824 (4)0.1315 (4)0.0269 (10)
C060.0598 (11)0.0314 (4)0.0684 (4)0.0249 (9)
C070.2934 (13)0.1530 (5)0.3335 (4)0.0317 (11)
C080.3311 (13)0.0092 (5)0.2740 (4)0.0343 (11)
C090.2136 (12)0.0514 (4)0.1409 (4)0.0279 (10)
C100.2648 (13)0.2075 (5)0.0785 (4)0.0337 (11)
C110.1315 (12)0.2716 (4)0.0601 (4)0.0283 (10)
H010.270 (13)0.470 (5)0.076 (4)0.037 (13)*
H020.066 (14)0.575 (6)0.302 (4)0.049 (14)*
H030.201 (11)0.440 (4)0.416 (4)0.024 (11)*
H080.427 (14)0.055 (6)0.323 (5)0.054 (15)*
O10.4278 (10)0.2779 (3)0.1395 (3)0.0465 (10)
Cl10.4434 (4)0.22487 (14)0.49922 (11)0.0470 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C010.039 (3)0.018 (2)0.048 (3)0.010 (2)0.008 (2)0.011 (2)
C020.051 (3)0.018 (2)0.046 (3)0.004 (2)0.009 (2)0.001 (2)
C030.043 (3)0.024 (2)0.036 (2)0.001 (2)0.006 (2)0.0005 (19)
C040.032 (3)0.023 (2)0.033 (2)0.006 (2)0.0045 (18)0.0065 (18)
C050.033 (3)0.016 (2)0.032 (2)0.0040 (19)0.0074 (18)0.0070 (17)
C060.027 (3)0.0162 (19)0.033 (2)0.0037 (18)0.0064 (17)0.0083 (16)
C070.038 (3)0.030 (2)0.024 (2)0.004 (2)0.0011 (18)0.0040 (17)
C080.044 (3)0.027 (2)0.035 (2)0.009 (2)0.002 (2)0.012 (2)
C090.034 (3)0.015 (2)0.036 (2)0.0058 (19)0.0003 (19)0.0091 (17)
C100.037 (3)0.023 (2)0.042 (2)0.005 (2)0.003 (2)0.0110 (19)
C110.028 (3)0.017 (2)0.041 (2)0.0025 (19)0.0021 (19)0.0094 (18)
O10.061 (3)0.0259 (18)0.054 (2)0.0145 (18)0.0081 (17)0.0141 (15)
Cl10.0667 (10)0.0367 (7)0.0324 (6)0.0097 (6)0.0079 (5)0.0022 (5)
Geometric parameters (Å, º) top
C01—C021.384 (6)C06—C09i1.387 (5)
C01—C111.388 (6)C06—C06i1.446 (7)
C01—H010.90 (4)C07—C081.369 (6)
C02—C031.385 (7)C07—C04i1.423 (6)
C02—H020.94 (5)C07—Cl11.752 (4)
C03—C041.417 (6)C08—C091.407 (6)
C03—H030.99 (4)C08—H080.99 (5)
C04—C051.409 (5)C09—C06i1.387 (5)
C04—C07i1.423 (6)C09—C101.491 (6)
C05—C111.427 (6)C10—O11.234 (5)
C05—C061.437 (5)C10—C111.476 (6)
C02—C01—C11121.0 (4)C05—C06—C06i120.0 (5)
C02—C01—H01121 (3)C08—C07—C04i122.0 (4)
C11—C01—H01118 (3)C08—C07—Cl1118.2 (3)
C01—C02—C03120.3 (4)C04i—C07—Cl1119.9 (3)
C01—C02—H02125 (3)C07—C08—C09119.4 (4)
C03—C02—H02114 (3)C07—C08—H08122 (3)
C02—C03—C04120.5 (4)C09—C08—H08119 (3)
C02—C03—H03120 (2)C06i—C09—C08121.5 (4)
C04—C03—H03120 (2)C06i—C09—C10120.5 (4)
C05—C04—C03119.2 (4)C08—C09—C10118.0 (4)
C05—C04—C07i118.1 (4)O1—C10—C11121.5 (4)
C03—C04—C07i122.6 (4)O1—C10—C09120.7 (4)
C04—C05—C11119.2 (4)C11—C10—C09117.7 (4)
C04—C05—C06120.3 (4)C01—C11—C05119.7 (4)
C11—C05—C06120.4 (4)C01—C11—C10120.3 (4)
C09i—C06—C05118.7 (4)C05—C11—C10120.0 (4)
C09i—C06—C06i121.3 (5)
C11—C01—C02—C032.8 (8)C07—C08—C09—C10178.9 (5)
C01—C02—C03—C041.9 (8)C06i—C09—C10—O1173.9 (4)
C02—C03—C04—C050.1 (7)C08—C09—C10—O15.0 (7)
C02—C03—C04—C07i179.3 (5)C06i—C09—C10—C112.8 (6)
C03—C04—C05—C111.2 (7)C08—C09—C10—C11178.2 (4)
C07i—C04—C05—C11179.6 (4)C02—C01—C11—C051.7 (7)
C03—C04—C05—C06178.4 (4)C02—C01—C11—C10179.4 (5)
C07i—C04—C05—C060.8 (6)C04—C05—C11—C010.3 (7)
C04—C05—C06—C09i0.0 (6)C06—C05—C11—C01179.3 (4)
C11—C05—C06—C09i179.6 (4)C04—C05—C11—C10178.6 (4)
C04—C05—C06—C06i179.5 (5)C06—C05—C11—C101.8 (6)
C11—C05—C06—C06i0.1 (7)O1—C10—C11—C015.4 (7)
C04i—C07—C08—C090.8 (8)C09—C10—C11—C01177.9 (4)
Cl1—C07—C08—C09179.9 (4)O1—C10—C11—C05173.5 (5)
C07—C08—C09—C06i0.1 (7)C09—C10—C11—C053.2 (6)
Symmetry code: (i) x, y, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds