Download citation
Download citation
link to html
In the title compound, [RuCl(C18H18N4)(C2H6OS)][RuCl3(C2H6OS)3], all the di­methyl sulfoxide (dmso) ligands coordinate through the S atom. In the anion, three chlorides and three dmso ligands form an octahedral coordination around the Ru atom in a facial coordination. In the cation, a chloride ligand is located trans to the amine–N atom and cis to the dmso ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803009395/ob6241sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803009395/ob6241Isup2.hkl
Contains datablock I

CCDC reference: 214769

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.027
  • wR factor = 0.066
  • Data-to-parameter ratio = 12.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
THETM_01 Alert B The value of sine(theta_max)/wavelength is less than 0.575 Calculated sin(theta_max)/wavelength = 0.5563
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

With regard to the interest in oxidation by non-heam enzymes containing iron, which is a congenerous atom of ruthenium, ruthenium complexes with polypyridyl ligands have been extensively studied. Since polydentate polypyridyl ligands were found to be useful biomimicing ligands (Yan et al., 1989), tris(2-pyridylmethyl)amine (TPA) and modified TPA have been applied to the preparation of ruthenium complexes toward redox and substrate-oxidizing agent by several groups including us (Kojima, 1996; Yamaguchi et al., 1997; Kojima & Hayashi et al., 2000; Kojima & Matsuo et al., 2000; Sugimoto et al., 2001; Jitsukawa et al., 2001).

In the course of constructing new ruthenium complexes for alkane-oxidizing catalysis, we have already reported that the combination of TPA with chloride and dimethyl sulfoxide in the ruthenium complex affords two isomers, Cl located cis and trans to the amine-N atom. The former complex was structurally determined by X-ray diffraction as a PF6 salt, but the structure of the latter, which showed higher oxidizing activity, has been confirmed only by the chemical shift of 1H NMR (Yamaguchi et al., 1997). Fortunately, we could find in situ formation of the title compound, trans(Namino,Cl)-[RuCl(dmso)(TPA)][RuCl3(dmso)3], (I), and the structure was determined.

The structure of the cation of (I) shows that the four N atoms of TPA, a chloride ligand and the S atom of dmso configure a distorted octahedron around the Ru1 atom (Fig. 1 and Table 1). The Ru1—S1 distance of 2.2385 (10) Å is slightly shorter than that in the cis-isomer of 2.264 (1) Å, whereas both isomers have similar Ru—Cl distances; cf. 2.4321 (9) and 2.433 (1) Å, respectively. The structure of the anion also shows an octahedral configuration around the Ru2 atom, formed by three chlorides and three dmso S atoms. The two chlorides and the dmso ligands occupy facial three-coordination sites, respectively. The three Ru—Cl distances range from 2.4307 (11) to 2.4503 (10) Å, and the three Ru—S distances from 2.2643 (10) to 2.2707 (11) Å. These Ru—Cl distances are slightly longer than those of the already reported for the same anion [2.420 (2)–2.438 (2) Å; Yamamoto et al., 1999], while the Ru—S distances are comparable [2.263 (2)–2.276 (2) Å].

Experimental top

The mother liquor from the recrystallization of the cis(Cl,Namino)- and trans(Cl,Namino)- mixture of [RuCl(dimethyl sulfoxide){tris(2-pyridylmethyl)amine}]Cl (Yamaguchi et al., 1997) was evaporated. The residue was redissolved in a mixture of methanol and ethyl acetate (1:9 v/v). The solution was stored at room temperature for a month. A yellow crystal of (I) deposited and was chosed for X-ray crystallographic analysis.

Refinement top

All H atoms bonded to C atoms were included in calculated positions, with C—H distances of 0.95 Å for aromatic H atoms, 0.99 Å for benzyl (picolinic) H atoms, and 0.98 Å for methyl.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. ORTEP-3 diagram (Farrugia, 1997) of the title compound, showing 50% displacement ellipsoids for non-H atoms.
(I) top
Crystal data top
[RuCl(C18H18N4)(C2H6OS)][RuCl3(C2H6OS)3]Z = 2
Mr = 946.82F(000) = 956
Triclinic, P1Dx = 1.749 Mg m3
a = 10.1817 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.221 (2) ÅCell parameters from 965 reflections
c = 14.664 (3) Åθ = 3.0–23.3°
α = 114.362 (3)°µ = 1.41 mm1
β = 96.804 (3)°T = 173 K
γ = 105.610 (3)°Block, yellow
V = 1798.1 (5) Å30.2 × 0.1 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4463 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 23.3°, θmin = 1.7°
Detector resolution: 66 pixels mm-1h = 1111
ϕ and ω scansk = 1514
8007 measured reflectionsl = 916
5113 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0351P)2]
where P = (Fo2 + 2Fc2)/3
5113 reflections(Δ/σ)max = 0.001
405 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[RuCl(C18H18N4)(C2H6OS)][RuCl3(C2H6OS)3]γ = 105.610 (3)°
Mr = 946.82V = 1798.1 (5) Å3
Triclinic, P1Z = 2
a = 10.1817 (18) ÅMo Kα radiation
b = 14.221 (2) ŵ = 1.41 mm1
c = 14.664 (3) ÅT = 173 K
α = 114.362 (3)°0.2 × 0.1 × 0.08 mm
β = 96.804 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4463 reflections with I > 2σ(I)
8007 measured reflectionsRint = 0.017
5113 independent reflectionsθmax = 23.3°
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 0.98Δρmax = 0.61 e Å3
5113 reflectionsΔρmin = 0.41 e Å3
405 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.94404 (3)0.26718 (2)0.19393 (2)0.01765 (9)
Ru20.64713 (3)0.77621 (2)0.27378 (2)0.02115 (9)
Cl10.99931 (10)0.43392 (7)0.17406 (7)0.0280 (2)
Cl20.87081 (10)0.89068 (7)0.27084 (8)0.0301 (2)
Cl30.57378 (10)0.70663 (8)0.08719 (7)0.0337 (2)
Cl40.55015 (10)0.92113 (8)0.29152 (8)0.0347 (2)
S10.95539 (9)0.17457 (7)0.03095 (7)0.0219 (2)
S20.43425 (10)0.65979 (7)0.25802 (8)0.0276 (2)
S30.71379 (10)0.86161 (7)0.44985 (7)0.0286 (2)
S40.74849 (10)0.64883 (7)0.25982 (7)0.0251 (2)
N11.1529 (3)0.2938 (2)0.2560 (2)0.0183 (6)
N20.9007 (3)0.3445 (2)0.3380 (2)0.0185 (6)
N30.7268 (3)0.2039 (2)0.1430 (2)0.0217 (7)
N40.9127 (3)0.1408 (2)0.2340 (2)0.0192 (6)
O10.8887 (3)0.05295 (18)0.02215 (18)0.0289 (6)
O20.4046 (3)0.6436 (2)0.3474 (2)0.0371 (7)
O30.7967 (3)0.8213 (2)0.5049 (2)0.0395 (7)
O40.6809 (3)0.5612 (2)0.2865 (2)0.0400 (7)
C11.2675 (4)0.3843 (3)0.2914 (3)0.0224 (8)
H11.25700.44730.28800.027*
C21.4001 (4)0.3905 (3)0.3328 (3)0.0300 (9)
H21.47960.45600.35660.036*
C31.4146 (4)0.3001 (3)0.3388 (3)0.0344 (10)
H31.50480.30200.36700.041*
C41.2976 (4)0.2065 (3)0.3036 (3)0.0289 (9)
H41.30660.14360.30810.035*
C51.1686 (4)0.2041 (3)0.2623 (3)0.0205 (8)
C61.0357 (4)0.1031 (3)0.2176 (3)0.0224 (8)
H6A1.02380.05810.14260.027*
H6B1.04200.05730.25250.027*
C70.8652 (4)0.4347 (3)0.3703 (3)0.0247 (8)
H70.88180.47800.33500.030*
C80.8056 (4)0.4677 (3)0.4527 (3)0.0278 (9)
H80.78510.53380.47530.033*
C90.7766 (4)0.4028 (3)0.5015 (3)0.0298 (9)
H90.73400.42300.55760.036*
C100.8099 (4)0.3082 (3)0.4679 (3)0.0273 (9)
H100.79120.26260.50090.033*
C110.8710 (3)0.2806 (3)0.3858 (3)0.0204 (8)
C120.9146 (4)0.1819 (3)0.3467 (3)0.0243 (8)
H12A0.84960.12250.35570.029*
H12B1.01100.20120.38780.029*
C130.6383 (4)0.2505 (3)0.1193 (3)0.0265 (9)
H130.67700.31790.11700.032*
C140.4936 (4)0.2042 (3)0.0981 (3)0.0298 (9)
H140.43370.23750.07870.036*
C150.4375 (4)0.1092 (3)0.1054 (3)0.0295 (9)
H150.33820.07670.09270.035*
C160.5273 (4)0.0610 (3)0.1317 (3)0.0246 (8)
H160.49030.00390.13860.030*
C170.6703 (4)0.1079 (3)0.1477 (3)0.0209 (8)
C180.7732 (4)0.0544 (3)0.1653 (3)0.0231 (8)
H18A0.73540.00810.19800.028*
H18B0.78590.00630.09800.028*
C191.1303 (4)0.2057 (3)0.0150 (3)0.0311 (9)
H19A1.18410.17640.04960.047*
H19B1.17670.28580.04580.047*
H19C1.12630.17200.05900.047*
C200.8780 (5)0.2169 (3)0.0542 (3)0.0407 (11)
H20A0.88910.17680.12370.061*
H20B0.92510.29630.02830.061*
H20C0.77730.20090.05720.061*
C210.3902 (4)0.5250 (3)0.1532 (3)0.0373 (10)
H21A0.44790.48720.17160.056*
H21B0.40840.53080.09120.056*
H21C0.29000.48310.13910.056*
C220.2927 (4)0.6932 (4)0.2111 (4)0.0542 (13)
H22A0.20240.63800.20020.081*
H22B0.30030.69380.14530.081*
H22C0.29760.76620.26200.081*
C230.5703 (4)0.8760 (3)0.5071 (3)0.0373 (10)
H23A0.51470.80500.50150.056*
H23B0.51000.89990.47070.056*
H23C0.60740.93100.58030.056*
C240.8108 (5)1.0056 (3)0.4998 (3)0.0449 (11)
H24A0.84081.04040.57570.067*
H24B0.75051.04020.47850.067*
H24C0.89411.01490.47250.067*
C250.7701 (5)0.5813 (3)0.1329 (3)0.0432 (11)
H25A0.82820.53630.13260.065*
H25B0.81670.63650.11240.065*
H25C0.67730.53390.08390.065*
C260.9288 (4)0.7058 (3)0.3312 (3)0.0351 (10)
H26A0.93540.74220.40560.053*
H26B0.98220.75980.31170.053*
H26C0.96810.64680.31570.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01933 (17)0.01801 (16)0.02149 (17)0.00828 (13)0.00947 (13)0.01239 (13)
Ru20.02429 (18)0.02137 (17)0.02435 (18)0.00811 (14)0.00873 (13)0.01590 (14)
Cl10.0309 (5)0.0255 (5)0.0403 (6)0.0135 (4)0.0167 (4)0.0229 (5)
Cl20.0286 (5)0.0267 (5)0.0422 (6)0.0076 (4)0.0125 (4)0.0230 (5)
Cl30.0358 (6)0.0466 (6)0.0275 (5)0.0129 (5)0.0100 (4)0.0256 (5)
Cl40.0400 (6)0.0363 (5)0.0487 (6)0.0217 (5)0.0218 (5)0.0310 (5)
S10.0229 (5)0.0245 (5)0.0226 (5)0.0091 (4)0.0094 (4)0.0136 (4)
S20.0272 (5)0.0295 (5)0.0327 (6)0.0079 (4)0.0106 (4)0.0209 (5)
S30.0364 (6)0.0264 (5)0.0247 (5)0.0112 (5)0.0089 (4)0.0131 (4)
S40.0296 (5)0.0220 (5)0.0281 (5)0.0098 (4)0.0074 (4)0.0153 (4)
N10.0219 (17)0.0181 (15)0.0159 (16)0.0061 (14)0.0076 (13)0.0085 (13)
N20.0170 (16)0.0172 (15)0.0192 (16)0.0038 (13)0.0052 (13)0.0078 (13)
N30.0228 (17)0.0252 (16)0.0208 (17)0.0100 (14)0.0091 (13)0.0122 (14)
N40.0202 (17)0.0180 (15)0.0243 (17)0.0080 (13)0.0087 (13)0.0126 (14)
O10.0293 (15)0.0252 (14)0.0273 (15)0.0059 (12)0.0104 (12)0.0092 (12)
O20.0477 (18)0.0333 (15)0.0301 (16)0.0061 (14)0.0182 (14)0.0173 (13)
O30.0516 (19)0.0447 (17)0.0269 (16)0.0223 (15)0.0064 (13)0.0185 (14)
O40.0423 (18)0.0350 (16)0.058 (2)0.0143 (14)0.0147 (15)0.0348 (15)
C10.026 (2)0.0186 (19)0.022 (2)0.0044 (17)0.0095 (17)0.0098 (16)
C20.021 (2)0.029 (2)0.028 (2)0.0037 (18)0.0014 (17)0.0112 (19)
C30.023 (2)0.048 (3)0.037 (3)0.011 (2)0.0022 (18)0.025 (2)
C40.029 (2)0.038 (2)0.035 (2)0.0154 (19)0.0122 (18)0.028 (2)
C50.026 (2)0.0240 (19)0.019 (2)0.0112 (17)0.0119 (16)0.0137 (17)
C60.023 (2)0.0199 (19)0.028 (2)0.0115 (16)0.0095 (17)0.0117 (17)
C70.023 (2)0.023 (2)0.031 (2)0.0091 (17)0.0079 (17)0.0144 (18)
C80.027 (2)0.023 (2)0.028 (2)0.0103 (18)0.0116 (18)0.0057 (18)
C90.030 (2)0.032 (2)0.022 (2)0.0100 (19)0.0117 (18)0.0066 (18)
C100.029 (2)0.030 (2)0.024 (2)0.0060 (18)0.0099 (18)0.0155 (18)
C110.0172 (19)0.0207 (19)0.020 (2)0.0030 (16)0.0031 (16)0.0097 (17)
C120.030 (2)0.027 (2)0.026 (2)0.0137 (18)0.0134 (17)0.0178 (18)
C130.030 (2)0.030 (2)0.031 (2)0.0142 (18)0.0117 (18)0.0208 (19)
C140.022 (2)0.043 (2)0.036 (2)0.0182 (19)0.0107 (18)0.024 (2)
C150.018 (2)0.042 (2)0.027 (2)0.0085 (19)0.0077 (17)0.016 (2)
C160.021 (2)0.027 (2)0.021 (2)0.0018 (17)0.0072 (16)0.0096 (17)
C170.025 (2)0.0216 (19)0.018 (2)0.0086 (17)0.0084 (16)0.0099 (16)
C180.025 (2)0.0234 (19)0.028 (2)0.0102 (17)0.0132 (17)0.0159 (18)
C190.026 (2)0.035 (2)0.027 (2)0.0054 (18)0.0130 (18)0.0112 (19)
C200.051 (3)0.050 (3)0.031 (2)0.025 (2)0.010 (2)0.024 (2)
C210.038 (3)0.036 (2)0.027 (2)0.001 (2)0.0063 (19)0.013 (2)
C220.024 (3)0.065 (3)0.092 (4)0.013 (2)0.011 (2)0.055 (3)
C230.050 (3)0.041 (2)0.032 (2)0.023 (2)0.022 (2)0.020 (2)
C240.055 (3)0.028 (2)0.038 (3)0.005 (2)0.009 (2)0.009 (2)
C250.055 (3)0.044 (3)0.031 (3)0.031 (2)0.012 (2)0.010 (2)
C260.030 (2)0.033 (2)0.046 (3)0.0136 (19)0.0057 (19)0.022 (2)
Geometric parameters (Å, º) top
Ru1—N32.060 (3)C7—H70.9500
Ru1—N42.070 (3)C8—C91.378 (5)
Ru1—N12.078 (3)C8—H80.9500
Ru1—N22.106 (3)C9—C101.382 (5)
Ru1—S12.2385 (10)C9—H90.9500
Ru1—Cl12.4321 (9)C10—C111.382 (5)
Ru2—S22.2643 (10)C10—H100.9500
Ru2—S42.2668 (9)C11—C121.493 (5)
Ru2—S32.2707 (11)C12—H12A0.9900
Ru2—Cl32.4307 (11)C12—H12B0.9900
Ru2—Cl22.4341 (9)C13—C141.379 (5)
Ru2—Cl42.4503 (10)C13—H130.9500
S1—O11.480 (2)C14—C151.372 (5)
S1—C191.784 (3)C14—H140.9500
S1—C201.784 (4)C15—C161.388 (5)
S2—O21.472 (2)C15—H150.9500
S2—C221.783 (4)C16—C171.373 (5)
S2—C211.784 (4)C16—H160.9500
S3—O31.474 (3)C17—C181.507 (5)
S3—C231.786 (4)C18—H18A0.9900
S3—C241.791 (4)C18—H18B0.9900
S4—O41.478 (2)C19—H19A0.9800
S4—C261.780 (4)C19—H19B0.9800
S4—C251.780 (4)C19—H19C0.9800
N1—C11.336 (4)C20—H20A0.9800
N1—C51.366 (4)C20—H20B0.9800
N2—C71.338 (4)C20—H20C0.9800
N2—C111.355 (4)C21—H21A0.9800
N3—C131.344 (4)C21—H21B0.9800
N3—C171.365 (4)C21—H21C0.9800
N4—C61.497 (4)C22—H22A0.9800
N4—C181.497 (4)C22—H22B0.9800
N4—C121.503 (4)C22—H22C0.9800
C1—C21.377 (5)C23—H23A0.9800
C1—H10.9500C23—H23B0.9800
C2—C31.370 (5)C23—H23C0.9800
C2—H20.9500C24—H24A0.9800
C3—C41.375 (5)C24—H24B0.9800
C3—H30.9500C24—H24C0.9800
C4—C51.366 (5)C25—H25A0.9800
C4—H40.9500C25—H25B0.9800
C5—C61.514 (5)C25—H25C0.9800
C6—H6A0.9900C26—H26A0.9800
C6—H6B0.9900C26—H26B0.9800
C7—C81.382 (5)C26—H26C0.9800
N3—Ru1—N482.90 (11)N2—C7—C8122.8 (3)
N3—Ru1—N1163.45 (10)N2—C7—H7118.6
N4—Ru1—N180.55 (10)C8—C7—H7118.6
N3—Ru1—N282.12 (10)C9—C8—C7118.7 (3)
N4—Ru1—N280.75 (10)C9—C8—H8120.7
N1—Ru1—N295.40 (10)C7—C8—H8120.7
N3—Ru1—S189.39 (8)C8—C9—C10119.3 (3)
N4—Ru1—S198.48 (8)C8—C9—H9120.4
N1—Ru1—S192.81 (7)C10—C9—H9120.4
N2—Ru1—S1171.51 (8)C11—C10—C9119.1 (3)
N3—Ru1—Cl1101.71 (8)C11—C10—H10120.4
N4—Ru1—Cl1171.41 (8)C9—C10—H10120.4
N1—Ru1—Cl194.73 (7)N2—C11—C10121.8 (3)
N2—Ru1—Cl192.62 (7)N2—C11—C12115.4 (3)
S1—Ru1—Cl188.87 (3)C10—C11—C12122.7 (3)
S2—Ru2—S491.39 (4)C11—C12—N4111.2 (3)
S2—Ru2—S395.66 (4)C11—C12—H12A109.4
S4—Ru2—S393.37 (4)N4—C12—H12A109.4
S2—Ru2—Cl386.94 (3)C11—C12—H12B109.4
S4—Ru2—Cl393.32 (3)N4—C12—H12B109.4
S3—Ru2—Cl3172.76 (3)H12A—C12—H12B108.0
S2—Ru2—Cl2173.93 (4)N3—C13—C14122.6 (3)
S4—Ru2—Cl287.57 (3)N3—C13—H13118.7
S3—Ru2—Cl290.37 (4)C14—C13—H13118.7
Cl3—Ru2—Cl287.15 (3)C15—C14—C13118.9 (3)
S2—Ru2—Cl491.61 (4)C15—C14—H14120.6
S4—Ru2—Cl4176.96 (3)C13—C14—H14120.6
S3—Ru2—Cl485.81 (3)C14—C15—C16119.3 (3)
Cl3—Ru2—Cl487.37 (3)C14—C15—H15120.4
Cl2—Ru2—Cl489.51 (3)C16—C15—H15120.4
O1—S1—C19106.78 (15)C17—C16—C15119.5 (3)
O1—S1—C20104.51 (17)C17—C16—H16120.3
C19—S1—C2099.28 (19)C15—C16—H16120.3
O1—S1—Ru1118.17 (10)N3—C17—C16121.4 (3)
C19—S1—Ru1113.86 (13)N3—C17—C18115.9 (3)
C20—S1—Ru1112.22 (14)C16—C17—C18122.7 (3)
O2—S2—C22106.60 (19)N4—C18—C17110.1 (3)
O2—S2—C21105.86 (16)N4—C18—H18A109.6
C22—S2—C2197.8 (2)C17—C18—H18A109.6
O2—S2—Ru2119.96 (12)N4—C18—H18B109.6
C22—S2—Ru2111.67 (14)C17—C18—H18B109.6
C21—S2—Ru2112.47 (13)H18A—C18—H18B108.2
O3—S3—C23106.77 (17)S1—C19—H19A109.5
O3—S3—C24106.23 (19)S1—C19—H19B109.5
C23—S3—C2497.19 (19)H19A—C19—H19B109.5
O3—S3—Ru2119.97 (11)S1—C19—H19C109.5
C23—S3—Ru2113.30 (15)H19A—C19—H19C109.5
C24—S3—Ru2110.79 (14)H19B—C19—H19C109.5
O4—S4—C26105.20 (17)S1—C20—H20A109.5
O4—S4—C25106.55 (18)S1—C20—H20B109.5
C26—S4—C2598.76 (19)H20A—C20—H20B109.5
O4—S4—Ru2118.54 (11)S1—C20—H20C109.5
C26—S4—Ru2114.13 (13)H20A—C20—H20C109.5
C25—S4—Ru2111.56 (14)H20B—C20—H20C109.5
C1—N1—C5118.2 (3)S2—C21—H21A109.5
C1—N1—Ru1129.5 (2)S2—C21—H21B109.5
C5—N1—Ru1112.3 (2)H21A—C21—H21B109.5
C7—N2—C11118.2 (3)S2—C21—H21C109.5
C7—N2—Ru1124.9 (2)H21A—C21—H21C109.5
C11—N2—Ru1114.5 (2)H21B—C21—H21C109.5
C13—N3—C17118.3 (3)S2—C22—H22A109.5
C13—N3—Ru1128.8 (2)S2—C22—H22B109.5
C17—N3—Ru1112.3 (2)H22A—C22—H22B109.5
C6—N4—C18113.8 (2)S2—C22—H22C109.5
C6—N4—C12108.2 (3)H22A—C22—H22C109.5
C18—N4—C12111.3 (2)H22B—C22—H22C109.5
C6—N4—Ru1105.68 (18)S3—C23—H23A109.5
C18—N4—Ru1106.7 (2)S3—C23—H23B109.5
C12—N4—Ru1111.10 (19)H23A—C23—H23B109.5
N1—C1—C2123.0 (3)S3—C23—H23C109.5
N1—C1—H1118.5H23A—C23—H23C109.5
C2—C1—H1118.5H23B—C23—H23C109.5
C3—C2—C1118.4 (3)S3—C24—H24A109.5
C3—C2—H2120.8S3—C24—H24B109.5
C1—C2—H2120.8H24A—C24—H24B109.5
C2—C3—C4119.6 (3)S3—C24—H24C109.5
C2—C3—H3120.2H24A—C24—H24C109.5
C4—C3—H3120.2H24B—C24—H24C109.5
C5—C4—C3119.8 (3)S4—C25—H25A109.5
C5—C4—H4120.1S4—C25—H25B109.5
C3—C4—H4120.1H25A—C25—H25B109.5
N1—C5—C4121.1 (3)S4—C25—H25C109.5
N1—C5—C6115.5 (3)H25A—C25—H25C109.5
C4—C5—C6123.3 (3)H25B—C25—H25C109.5
N4—C6—C5108.1 (3)S4—C26—H26A109.5
N4—C6—H6A110.1S4—C26—H26B109.5
C5—C6—H6A110.1H26A—C26—H26B109.5
N4—C6—H6B110.1S4—C26—H26C109.5
C5—C6—H6B110.1H26A—C26—H26C109.5
H6A—C6—H6B108.4H26B—C26—H26C109.5

Experimental details

Crystal data
Chemical formula[RuCl(C18H18N4)(C2H6OS)][RuCl3(C2H6OS)3]
Mr946.82
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.1817 (18), 14.221 (2), 14.664 (3)
α, β, γ (°)114.362 (3), 96.804 (3), 105.610 (3)
V3)1798.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.2 × 0.1 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8007, 5113, 4463
Rint0.017
θmax (°)23.3
(sin θ/λ)max1)0.556
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.066, 0.98
No. of reflections5113
No. of parameters405
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.41

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Ru1—N32.060 (3)Ru2—S22.2643 (10)
Ru1—N42.070 (3)Ru2—S42.2668 (9)
Ru1—N12.078 (3)Ru2—S32.2707 (11)
Ru1—N22.106 (3)Ru2—Cl32.4307 (11)
Ru1—S12.2385 (10)Ru2—Cl22.4341 (9)
Ru1—Cl12.4321 (9)Ru2—Cl42.4503 (10)
N3—Ru1—N482.90 (11)S2—Ru2—S491.39 (4)
N3—Ru1—N1163.45 (10)S2—Ru2—S395.66 (4)
N4—Ru1—N180.55 (10)S4—Ru2—S393.37 (4)
N3—Ru1—N282.12 (10)S2—Ru2—Cl386.94 (3)
N4—Ru1—N280.75 (10)S4—Ru2—Cl393.32 (3)
N1—Ru1—N295.40 (10)S3—Ru2—Cl3172.76 (3)
N3—Ru1—S189.39 (8)S2—Ru2—Cl2173.93 (4)
N4—Ru1—S198.48 (8)S4—Ru2—Cl287.57 (3)
N1—Ru1—S192.81 (7)S3—Ru2—Cl290.37 (4)
N2—Ru1—S1171.51 (8)Cl3—Ru2—Cl287.15 (3)
N3—Ru1—Cl1101.71 (8)S2—Ru2—Cl491.61 (4)
N4—Ru1—Cl1171.41 (8)S4—Ru2—Cl4176.96 (3)
N1—Ru1—Cl194.73 (7)S3—Ru2—Cl485.81 (3)
N2—Ru1—Cl192.62 (7)Cl3—Ru2—Cl487.37 (3)
S1—Ru1—Cl188.87 (3)Cl2—Ru2—Cl489.51 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds