Download citation
Download citation
link to html
In the title compound, C17H25N6O4+·Cl·CH4O, the cation adopts a bowed conformation with π-conjugation via two pyrrole rings and and two peptide groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803004677/ob6217sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803004677/ob6217Isup2.hkl
Contains datablock I

CCDC reference: 209918

Key indicators

  • Single-crystal X-ray study
  • T = 183 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.068
  • wR factor = 0.097
  • Data-to-parameter ratio = 12.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

All living organisms (excluding certain viruses) store their genetic information in the form of double-helical DNA. Biochemical access to this information is based on specific protein–DNA interactions. Despite recent progress using biological selection methods (phage display), predictive chemical principles for protein–DNA recognition are still considered complex (Greisman & Pabo, 1997; Choo & Klug, 1997); thus, this problem has attracted the interest of chemists to synthesize small molecules to the problem of DNA recognition. Inspired by the natural products netropsin and ditamycin, which bind to the AATT and AAATT sequences, respectively, in the minor grove of DNA, chemists have recently developed polyamides containing N-methylpyrrole and N-methylimidazole amino acids which can recognize and bind in the minor groove of predetermined DNA sequences with high affinity and specificity comparable to naturally occurring DNA-binding proteins (Trauger et al., 1996; Swalley et al., 1997; Turner et al., 1997; Trauger et al., 1998; Dervan & Buril, 1999). The co-crystal structures of netropsin, ditamycin and some polyamides showed that the polyamides exerted an influence on DNA structures, and DNA also influenced the structure of the polyamides (Berman et al., 1979; Kopka et al., 1985; Coll et al., 1987; Balendiran et al., 1995; Kielkopf, Baird et al., 1998; Kielkopf, White et al., 1998; Shi et al., 2002). To understand the principle of the interaction, which is significant for the design of new DNA-binding compounds, more structure information of polyamide–DNA and polyamides alone is needed. In this paper, we discuss the structure of the title polyamide, which contains two N-methylpyrrole rings.

The overall appearance of the cation in the title compound, (I), is a bowed molecule (Fig. 1). The bond lengthes and angles are not unusual (Table 1). There is a π-conjugation bond containing two pyrrole groups and two peptide bonds. Their adjacent atoms are essentially coplanar, forming a plane consisting of 22 atoms (N2–N6, O1–O4 and C3–C15). The maximum deviations from the plane are 0.250 (2) and −0.247 (2) Å for O1 and O2, and the minimum deviations only 0.001 (3) and −0.003 (3) Å for C13 and N5, respectively. The dihedral angle between the two pyrrole portions is 3.7 (2)°, i.e. there is only a slight distortion between the two pyrrole planes. A better planar character can be drawn from the dihedral angles of the pyrrole ring groups (Table 1). Meanwhile, an obvious difference from the similar compound, such as netropsin, is a smaller rotation [8.7 (5)°] about the C10—C11 bond than that of netropsin (26° rotation about the C6—C9 bond), which causes the two pyrrole groups of netropsin to be skewed with respect to one another (Berman et al., 1979). The plane angle between two peptide regions is 16.9 (2)°. This is larger than that between the two pyrrole rings, and may be due to one peptide bond connecting an unconjugated dimethylaminopropyl group.

Hydrogen-bond parameters are listed in Table 2 and a packing diagram is shown in Fig. 2. In the crystal packing, the molecules are held together by a number of intermolecular hydrogen bonds involving atoms N1, N2 and N4 of the cation, as well as the O atom of the sovent methanol molecule and the chlorine anion.

Experimental top

The literature procedure for the preparation of 3-[1-methyl-4-(1-methyl-4-nitropyrrole-2-carboxamido)pyrrole-2- carboxamido]dimethylaminopropane was followed (Nishiwaki et al., 1988), with a little modification, and the compound obtained was dissolved in methanol (100%) with a few drops of 1 N HCl. The solution was left at 277 K and the crystals of (I) appeared after several months.

Refinement top

H atoms attached to C and O atoms were placed in geometrically idealized positions, with Csp2—H = 0.95 Å, Csp3—H = 0.98 Å, Csp3—H = 0.98 Å, and Osp3—H = 0.84 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) and Uiso(H)= 1.5Ueq(O). H atoms on N atoms were located in difference Fourier maps and refined with a common Uiso value. The N—H distances are in the range 0.77–0.86 Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2000); program(s) used to refine structure: SHELXL97 (Sheldrick, 2000); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. The structure of the cation in the title compound, (I), with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the a axis.
Dimethyl{3-[1-methyl-4-(1-methyl-4-nitropyrrole-2-carboxamido)pyrrole-2- carboxamido]propyl}ammonium chloride monomethanol top
Crystal data top
C17H25N6O4+·Cl·CH4OF(000) = 944
Mr = 444.92Dx = 1.374 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1027 reflections
a = 6.2129 (13) Åθ = 2.4–19.6°
b = 17.801 (4) ŵ = 0.22 mm1
c = 19.442 (4) ÅT = 183 K
β = 90.765 (4)°Block, yellow
V = 2150.1 (8) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
SMART 1K CCD area-detector
diffractometer
2335 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.074
Graphite monochromatorθmax = 24.8°, θmin = 2.1°
ω scansh = 76
8201 measured reflectionsk = 2019
3529 independent reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0108P)2]
where P = (Fo2 + 2Fc2)/3
3529 reflections(Δ/σ)max < 0.001
278 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H25N6O4+·Cl·CH4OV = 2150.1 (8) Å3
Mr = 444.92Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.2129 (13) ŵ = 0.22 mm1
b = 17.801 (4) ÅT = 183 K
c = 19.442 (4) Å0.20 × 0.20 × 0.20 mm
β = 90.765 (4)°
Data collection top
SMART 1K CCD area-detector
diffractometer
2335 reflections with I > 2σ(I)
8201 measured reflectionsRint = 0.074
3529 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.98Δρmax = 0.19 e Å3
3529 reflectionsΔρmin = 0.21 e Å3
278 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1155 (6)0.52134 (19)0.8850 (2)0.0355 (10)
H1A0.00870.52950.91540.043*
H1B0.17470.57130.87330.043*
C20.2860 (6)0.47772 (19)0.9244 (2)0.0358 (10)
H2A0.41510.47320.89540.043*
H2B0.32770.50670.96600.043*
C30.2176 (5)0.40062 (19)0.94611 (19)0.0290 (10)
H3A0.10200.40500.98040.035*
H3B0.15810.37350.90570.035*
C40.4357 (6)0.35272 (19)1.0438 (2)0.0258 (9)
C50.6261 (5)0.30744 (19)1.06192 (19)0.0227 (9)
C60.7847 (5)0.28059 (18)1.02045 (19)0.0238 (9)
H60.79330.28800.97220.029*
C70.9313 (6)0.24071 (18)1.0608 (2)0.0248 (9)
C80.8599 (6)0.24328 (18)1.1281 (2)0.0274 (9)
H80.92800.22071.16700.033*
C90.5459 (6)0.29557 (19)1.18982 (19)0.0346 (10)
H9A0.60770.26611.22780.052*
H9B0.39750.27921.18090.052*
H9C0.54680.34891.20220.052*
C101.2441 (5)0.15836 (19)1.07096 (19)0.0224 (9)
C111.4251 (5)0.12558 (19)1.0313 (2)0.0272 (10)
C121.4636 (6)0.12780 (17)0.9627 (2)0.0280 (9)
H121.37480.14980.92810.034*
C131.6589 (6)0.09136 (19)0.9534 (2)0.0272 (9)
C141.7379 (6)0.06712 (18)1.0158 (2)0.0305 (10)
H141.86870.04071.02380.037*
C151.6255 (6)0.0724 (2)1.1371 (2)0.0393 (11)
H15A1.52020.03491.15180.059*
H15B1.60620.11871.16350.059*
H15C1.77130.05301.14500.059*
C160.2105 (6)0.4578 (2)0.7743 (2)0.0418 (11)
H16A0.29670.50070.75920.063*
H16B0.14670.43270.73400.063*
H16C0.30290.42230.79950.063*
C170.1120 (6)0.5362 (2)0.7823 (2)0.0460 (12)
H17A0.21830.55650.81410.069*
H17B0.18610.50860.74530.069*
H17C0.02920.57760.76240.069*
N10.0362 (5)0.48461 (16)0.82003 (16)0.0286 (8)
H10.03750.44740.83390.023*
N20.3939 (4)0.35759 (16)0.97553 (16)0.0324 (8)
H20.48320.34420.95130.023*
N30.6736 (4)0.28424 (14)1.12818 (15)0.0233 (7)
N41.1142 (4)0.20392 (15)1.03479 (15)0.0284 (8)
H41.12760.20840.99100.023*
N51.5937 (5)0.08810 (15)1.06375 (16)0.0289 (8)
N61.7679 (5)0.07992 (17)0.88990 (18)0.0369 (9)
O10.3218 (4)0.38337 (13)1.08637 (13)0.0354 (7)
O21.2177 (4)0.14425 (14)1.13204 (14)0.0424 (7)
O31.6775 (5)0.10320 (15)0.83639 (15)0.0508 (8)
O41.9404 (4)0.04654 (14)0.89035 (14)0.0474 (8)
Cl10.27650 (15)0.64975 (5)0.16446 (5)0.0355 (3)
C180.8187 (7)0.7770 (2)0.1817 (2)0.0514 (13)
H18A0.91870.78530.22040.077*
H18B0.73930.73020.18900.077*
H18C0.71710.81900.17860.077*
O50.9346 (4)0.77204 (15)0.12045 (13)0.0427 (8)
H51.04560.74600.12710.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (3)0.029 (2)0.032 (3)0.003 (2)0.004 (2)0.005 (2)
C20.032 (2)0.031 (2)0.044 (3)0.0031 (19)0.010 (2)0.001 (2)
C30.022 (2)0.040 (2)0.026 (2)0.0023 (18)0.0016 (18)0.0000 (19)
C40.032 (2)0.021 (2)0.025 (2)0.0104 (18)0.0042 (19)0.0016 (19)
C50.025 (2)0.022 (2)0.021 (2)0.0046 (17)0.0023 (17)0.0004 (17)
C60.022 (2)0.027 (2)0.023 (2)0.0050 (17)0.0059 (17)0.0030 (18)
C70.025 (2)0.023 (2)0.027 (2)0.0024 (17)0.0083 (18)0.0002 (18)
C80.033 (2)0.022 (2)0.027 (2)0.0056 (18)0.0001 (18)0.0042 (17)
C90.043 (3)0.038 (2)0.022 (2)0.004 (2)0.0068 (19)0.002 (2)
C100.020 (2)0.024 (2)0.023 (2)0.0007 (17)0.0072 (17)0.0037 (18)
C110.025 (2)0.028 (2)0.029 (3)0.0006 (18)0.0062 (19)0.0028 (18)
C120.032 (2)0.024 (2)0.028 (3)0.0088 (18)0.0046 (19)0.0003 (18)
C130.033 (2)0.025 (2)0.024 (2)0.0016 (18)0.0070 (19)0.0020 (18)
C140.025 (2)0.029 (2)0.038 (3)0.0018 (18)0.0038 (19)0.000 (2)
C150.031 (2)0.055 (3)0.031 (3)0.011 (2)0.000 (2)0.009 (2)
C160.050 (3)0.048 (3)0.028 (3)0.008 (2)0.017 (2)0.002 (2)
C170.061 (3)0.049 (3)0.028 (3)0.026 (2)0.006 (2)0.001 (2)
N10.0324 (19)0.0314 (18)0.022 (2)0.0008 (15)0.0070 (15)0.0030 (15)
N20.0297 (19)0.0396 (19)0.028 (2)0.0121 (16)0.0063 (16)0.0008 (17)
N30.0249 (18)0.0225 (17)0.023 (2)0.0034 (14)0.0001 (14)0.0031 (15)
N40.0243 (18)0.0357 (19)0.025 (2)0.0041 (15)0.0042 (15)0.0051 (16)
N50.0285 (19)0.0300 (18)0.028 (2)0.0033 (15)0.0025 (15)0.0023 (16)
N60.040 (2)0.031 (2)0.041 (3)0.0121 (17)0.0058 (19)0.0071 (18)
O10.0349 (16)0.0438 (16)0.0280 (18)0.0137 (13)0.0107 (13)0.0065 (14)
O20.0386 (16)0.0586 (18)0.0302 (18)0.0122 (15)0.0085 (13)0.0146 (16)
O30.060 (2)0.064 (2)0.0287 (19)0.0261 (17)0.0009 (16)0.0015 (16)
O40.0471 (19)0.0509 (18)0.045 (2)0.0238 (16)0.0154 (15)0.0001 (15)
Cl10.0332 (6)0.0392 (6)0.0340 (6)0.0015 (5)0.0020 (4)0.0005 (5)
C180.056 (3)0.066 (3)0.032 (3)0.019 (2)0.014 (2)0.002 (2)
O50.0449 (19)0.0530 (19)0.0304 (19)0.0163 (15)0.0090 (14)0.0002 (15)
Geometric parameters (Å, º) top
C1—N11.499 (4)C11—N51.387 (4)
C1—C21.514 (5)C12—C131.390 (4)
C1—H1A0.9900C12—H120.9500
C1—H1B0.9900C13—C141.372 (5)
C2—C31.499 (4)C13—N61.430 (4)
C2—H2A0.9900C14—N51.355 (4)
C2—H2B0.9900C14—H140.9500
C3—N21.448 (4)C15—N51.463 (4)
C3—H3A0.9900C15—H15A0.9800
C3—H3B0.9900C15—H15B0.9800
C4—O11.225 (4)C15—H15C0.9800
C4—N21.351 (4)C16—N11.489 (4)
C4—C51.470 (5)C16—H16A0.9800
C5—C61.368 (4)C16—H16B0.9800
C5—N31.381 (4)C16—H16C0.9800
C6—C71.389 (5)C17—N11.488 (4)
C6—H60.9500C17—H17A0.9800
C7—C81.387 (5)C17—H17B0.9800
C7—N41.411 (4)C17—H17C0.9800
C8—N31.368 (4)N1—H10.8515
C8—H80.9500N2—H20.7708
C9—N31.460 (4)N4—H40.8598
C9—H9A0.9800N6—O41.225 (3)
C9—H9B0.9800N6—O31.247 (4)
C9—H9C0.9800C18—O51.403 (4)
C10—O21.227 (4)C18—H18A0.9800
C10—N41.337 (4)C18—H18B0.9800
C10—C111.490 (4)C18—H18C0.9800
C11—C121.359 (5)O5—H50.8400
N1—C1—C2115.0 (3)C12—C13—N6127.1 (4)
N1—C1—H1A108.5N5—C14—C13106.9 (3)
C2—C1—H1A108.5N5—C14—H14126.6
N1—C1—H1B108.5C13—C14—H14126.6
C2—C1—H1B108.5N5—C15—H15A109.5
H1A—C1—H1B107.5N5—C15—H15B109.5
C3—C2—C1114.4 (3)H15A—C15—H15B109.5
C3—C2—H2A108.7N5—C15—H15C109.5
C1—C2—H2A108.7H15A—C15—H15C109.5
C3—C2—H2B108.7H15B—C15—H15C109.5
C1—C2—H2B108.7N1—C16—H16A109.5
H2A—C2—H2B107.6N1—C16—H16B109.5
N2—C3—C2112.3 (3)H16A—C16—H16B109.5
N2—C3—H3A109.1N1—C16—H16C109.5
C2—C3—H3A109.1H16A—C16—H16C109.5
N2—C3—H3B109.1H16B—C16—H16C109.5
C2—C3—H3B109.1N1—C17—H17A109.5
H3A—C3—H3B107.9N1—C17—H17B109.5
O1—C4—N2122.0 (4)H17A—C17—H17B109.5
O1—C4—C5123.5 (4)N1—C17—H17C109.5
N2—C4—C5114.5 (3)H17A—C17—H17C109.5
C6—C5—N3107.4 (3)H17B—C17—H17C109.5
C6—C5—C4129.3 (4)C16—N1—C17110.7 (3)
N3—C5—C4123.3 (3)C16—N1—C1114.2 (3)
C5—C6—C7108.5 (3)C17—N1—C1109.9 (3)
C5—C6—H6125.7C16—N1—H1109.8
C7—C6—H6125.7C17—N1—H1107.8
C8—C7—C6107.5 (3)C1—N1—H1104.2
C8—C7—N4128.5 (3)C4—N2—C3123.8 (3)
C6—C7—N4124.0 (3)C4—N2—H2116.8
N3—C8—C7107.4 (3)C3—N2—H2117.9
N3—C8—H8126.3C8—N3—C5109.2 (3)
C7—C8—H8126.3C8—N3—C9122.9 (3)
N3—C9—H9A109.5C5—N3—C9127.8 (3)
N3—C9—H9B109.5C10—N4—C7125.2 (3)
H9A—C9—H9B109.5C10—N4—H4120.7
N3—C9—H9C109.5C7—N4—H4113.6
H9A—C9—H9C109.5C14—N5—C11108.8 (3)
H9B—C9—H9C109.5C14—N5—C15122.4 (3)
O2—C10—N4123.0 (3)C11—N5—C15128.8 (3)
O2—C10—C11122.1 (3)O4—N6—O3123.5 (3)
N4—C10—C11114.8 (3)O4—N6—C13119.2 (3)
C12—C11—N5108.6 (3)O3—N6—C13117.4 (3)
C12—C11—C10129.8 (4)O5—C18—H18A109.5
N5—C11—C10121.6 (3)O5—C18—H18B109.5
C11—C12—C13106.3 (3)H18A—C18—H18B109.5
C11—C12—H12126.9O5—C18—H18C109.5
C13—C12—H12126.9H18A—C18—H18C109.5
C14—C13—C12109.5 (3)H18B—C18—H18C109.5
C14—C13—N6123.4 (3)C18—O5—H5109.5
N1—C1—C2—C358.7 (5)O1—C4—N2—C32.0 (5)
C1—C2—C3—N2172.4 (3)C5—C4—N2—C3178.6 (3)
O1—C4—C5—C6168.4 (3)C2—C3—N2—C495.4 (4)
N2—C4—C5—C612.2 (5)C7—C8—N3—C50.1 (4)
O1—C4—C5—N311.7 (5)C7—C8—N3—C9176.7 (3)
N2—C4—C5—N3167.8 (3)C6—C5—N3—C80.0 (4)
N3—C5—C6—C70.1 (4)C4—C5—N3—C8179.9 (3)
C4—C5—C6—C7180.0 (3)C6—C5—N3—C9176.4 (3)
C5—C6—C7—C80.1 (4)C4—C5—N3—C93.5 (5)
C5—C6—C7—N4178.8 (3)O2—C10—N4—C70.7 (5)
C6—C7—C8—N30.1 (4)C11—C10—N4—C7179.2 (3)
N4—C7—C8—N3178.7 (3)C8—C7—N4—C106.3 (6)
O2—C10—C11—C12171.3 (4)C6—C7—N4—C10172.1 (3)
N4—C10—C11—C128.7 (5)C13—C14—N5—C110.2 (4)
O2—C10—C11—N511.4 (5)C13—C14—N5—C15179.3 (3)
N4—C10—C11—N5168.7 (3)C12—C11—N5—C140.2 (4)
N5—C11—C12—C130.2 (4)C10—C11—N5—C14177.6 (3)
C10—C11—C12—C13177.4 (3)C12—C11—N5—C15179.3 (3)
C11—C12—C13—C140.1 (4)C10—C11—N5—C151.5 (5)
C11—C12—C13—N6179.5 (3)C14—C13—N6—O40.4 (5)
C12—C13—C14—N50.0 (4)C12—C13—N6—O4179.9 (3)
N6—C13—C14—N5179.6 (3)C14—C13—N6—O3178.5 (3)
C2—C1—N1—C1648.8 (4)C12—C13—N6—O31.9 (6)
C2—C1—N1—C17173.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···Cl1i0.842.343.152 (3)162
N1—H1···Cl1ii0.852.283.099 (3)161
N4—H4···O5iii0.862.223.060 (4)164
N2—H2···Cl1iv0.772.723.430 (3)154
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H25N6O4+·Cl·CH4O
Mr444.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)183
a, b, c (Å)6.2129 (13), 17.801 (4), 19.442 (4)
β (°) 90.765 (4)
V3)2150.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerSMART 1K CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8201, 3529, 2335
Rint0.074
(sin θ/λ)max1)0.590
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.097, 0.98
No. of reflections3529
No. of parameters278
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 2000), SHELXL97 (Sheldrick, 2000), SHELXTL/PC (Sheldrick, 1999), SHELXTL/PC.

Selected geometric parameters (Å, º) top
C1—N11.499 (4)C10—O21.227 (4)
C1—C21.514 (5)C10—N41.337 (4)
C2—C31.499 (4)C10—C111.490 (4)
C3—N21.448 (4)C11—C121.359 (5)
C4—O11.225 (4)C11—N51.387 (4)
C4—N21.351 (4)C12—C131.390 (4)
C4—C51.470 (5)C13—C141.372 (5)
C5—C61.368 (4)C13—N61.430 (4)
C5—N31.381 (4)C14—N51.355 (4)
C6—C71.389 (5)C15—N51.463 (4)
C7—C81.387 (5)C16—N11.489 (4)
C7—N41.411 (4)C17—N11.488 (4)
C8—N31.368 (4)N6—O41.225 (3)
C9—N31.460 (4)N6—O31.247 (4)
N2—C4—C5—C612.2 (5)C5—C4—N2—C3178.6 (3)
N4—C10—C11—C128.7 (5)O2—C10—N4—C70.7 (5)
O1—C4—N2—C32.0 (5)C11—C10—N4—C7179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···Cl1i0.842.343.152 (3)162
N1—H1···Cl1ii0.852.283.099 (3)161
N4—H4···O5iii0.862.223.060 (4)164
N2—H2···Cl1iv0.772.723.430 (3)154
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds