Download citation
Download citation
link to html
The title compound, C10H14N4S2, obtained from the alkyl­ation of methimazole with ethyl­ene dibromide, is centrosymmetric and the two imidazole-2-thione ring moieties are anti-parallel to one another.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803003623/ob6214sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803003623/ob6214Isup2.hkl
Contains datablock I

CCDC reference: 206791

Key indicators

  • Single-crystal X-ray study
  • T = 288 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.039
  • wR factor = 0.104
  • Data-to-parameter ratio = 14.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

1,1'-(1,2-Ethanediyl)bis(2,3-dihydro-3-methyl-1H-imidazole-2-thione) top
Crystal data top
C10H14N4S2F(000) = 268
Mr = 254.37Dx = 1.365 Mg m3
Monoclinic, P21/cMelting point = 467–468.5 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 4.667 (1) ÅCell parameters from 27 reflections
b = 19.720 (3) Åθ = 4.8–13.6°
c = 7.037 (1) ŵ = 0.41 mm1
β = 107.08 (1)°T = 288 K
V = 619.0 (2) Å3Plate, colourless
Z = 20.40 × 0.28 × 0.20 mm
Data collection top
Siemens P4
diffractometer
804 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω scansh = 05
Absorption correction: empirical (using intensity measurements)
(SHELXS97; Sheldrick, 1990)
k = 023
Tmin = 0.860, Tmax = 0.921l = 88
1339 measured reflections3 standard reflections every 97 reflections
1097 independent reflections intensity decay: 2.9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0578P)2]
where P = (Fo2 + 2Fc2)/3
1097 reflections(Δ/σ)max < 0.001
74 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The structure was solved by direct methods(Sheldrick, 1990) and successive difference Fourier syntheses. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.73870 (16)0.35819 (4)0.32720 (10)0.0483 (3)
N11.0288 (4)0.35026 (10)0.7244 (3)0.0364 (5)
N20.6764 (4)0.42550 (10)0.6515 (3)0.0351 (5)
C10.8145 (5)0.37769 (11)0.5692 (4)0.0335 (6)
C21.0220 (7)0.38040 (13)0.8990 (4)0.0477 (7)
H21.14590.37011.02540.057*
C30.8064 (6)0.42695 (14)0.8548 (4)0.0466 (7)
H30.75290.45530.94450.056*
C40.4371 (5)0.46939 (11)0.5390 (4)0.0400 (6)
H4A0.31830.48430.62350.048*
H4B0.30710.44430.42850.048*
C51.2262 (6)0.29465 (13)0.7078 (4)0.0506 (8)
H5A1.12460.25230.70670.061*
H5B1.40420.29580.81900.061*
H5C1.27960.29930.58670.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0456 (4)0.0641 (5)0.0335 (4)0.0011 (4)0.0089 (3)0.0072 (3)
N10.0343 (11)0.0357 (11)0.0377 (12)0.0028 (9)0.0081 (9)0.0053 (9)
N20.0364 (11)0.0330 (11)0.0343 (12)0.0016 (9)0.0081 (9)0.0009 (9)
C10.0313 (13)0.0323 (13)0.0366 (14)0.0043 (10)0.0096 (11)0.0043 (10)
C20.0504 (17)0.0559 (17)0.0304 (14)0.0039 (14)0.0018 (12)0.0038 (12)
C30.0541 (17)0.0499 (16)0.0347 (15)0.0032 (14)0.0111 (13)0.0073 (12)
C40.0283 (13)0.0378 (14)0.0528 (16)0.0026 (11)0.0103 (12)0.0043 (12)
C50.0438 (17)0.0422 (16)0.066 (2)0.0083 (13)0.0163 (15)0.0104 (13)
Geometric parameters (Å, º) top
S—C11.679 (2)C2—H20.9300
N1—C11.358 (3)C3—H30.9300
N1—C21.374 (3)C4—H4A0.9700
N1—C51.459 (3)C4—H4B0.9700
N2—C11.364 (3)C5—H5A0.9600
N2—C31.381 (3)C5—H5B0.9600
N2—C41.451 (3)C5—H5C0.9600
C2—C31.329 (4)
C1—N1—C2110.0 (2)C2—C3—N2107.5 (2)
C1—N1—C5124.6 (2)C2—C3—H3126.3
C2—N1—C5125.3 (2)N2—C3—H3126.3
C1—N2—C3109.6 (2)N2—C4—H4A109.5
C1—N2—C4124.4 (2)N2—C4—H4B109.5
C3—N2—C4125.9 (2)H4A—C4—H4B108.1
N1—C1—N2105.2 (2)N1—C5—H5A109.5
N1—C1—S127.63 (19)N1—C5—H5B109.5
N2—C1—S127.16 (18)H5A—C5—H5B109.5
C3—C2—N1107.7 (2)N1—C5—H5C109.5
C3—C2—H2126.1H5A—C5—H5C109.5
N1—C2—H2126.1H5B—C5—H5C109.5
C2—N1—C1—N20.2 (3)C4—N2—C1—S1.1 (3)
C5—N1—C1—N2177.4 (2)C1—N1—C2—C30.4 (3)
C2—N1—C1—S179.3 (2)C5—N1—C2—C3177.6 (2)
C5—N1—C1—S3.6 (3)N1—C2—C3—N20.4 (3)
C3—N2—C1—N10.0 (3)C1—N2—C3—C20.3 (3)
C4—N2—C1—N1177.93 (19)C4—N2—C3—C2178.2 (2)
C3—N2—C1—S178.99 (19)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds