Download citation
Download citation
link to html
In the title compound, C7H4ClNO4·C6H5N3, two acid and two base components are connected by O—H...N and N—H...O hydrogen bonds to afford a centrosymmetric macrocycle with graph-set descriptor R44(16). C—H...O hydrogen bonds connect the ring units to form a ribbon structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802015969/ob6172sup1.cif
Contains datablocks General, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802015969/ob6172Isup2.hkl
Contains datablock I

CCDC reference: 198950

Key indicators

  • Single-crystal X-ray study
  • T = 300 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.052
  • wR factor = 0.132
  • Data-to-parameter ratio = 13.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The title compound, (I), was investigated as part of a study on D—H···A hydrogen bonding (D = N, O or C; A = N, O or Cl) in chloro-and nitro-substituted benzoic acid-amine systems (Ishida et al., 2001a,b,c,d,e). In the crystal, two acid and two base components are held together by short O—H···N hydrogen bonds and relatively long N—H···O hydrogen bonds (Table 2) to afford a centrosymmetric macro ring with graph-set descriptor R44(16) (Bernstein et al., 1995) (Fig. 1), which is similar to that found in benzotriazole 3-nitrobenzoic acid (Hashizume et al., 2001). The dihedral angle between the nitro group and the benzene ring is 10.03 (19)°, and that between the carboxyl group and the benzene ring is 22.79 (17)°. A C—H···O hydrogen bond (C5—H2···O4ii; Table 2) connects the hydrogen-bonded rings, resulting in the formation of molecular ribbon running parallel to the [011] direction (Fig. 2). The ribbons, related by a twofold screw axis, are stacked along the a axis. A short contact [Cl···O1iii, 3.164 (3) Å; symmetry code: (iii) 1/2 − x, 1/2 + y, 3/2 − z] is observed between the ribbons.

Experimental top

Crystals of (I) were obtained by slow evaporation from an acetonitrile solution of 1,2,3-benzotriazole with 2-chloro-4-nitrobenzoic acid with molar ratio of 1:1.

Refinement top

H atoms were found in difference Fourier maps and refined isotropically. Refined distances: C—H = 0.89 (3) − 1.03 (4), O—H = 0.78 (4) and N—H = 0.95 (4) Å.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997-1999); program(s) used to solve structure: SIR92 (Altomare, et al. 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: TEXSAN for Windows.

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of a hydrogen-bonded ring of (I), with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. O—H···N and N—H···O hydrogen bonds are indicated by dashed lines [symmetry code: (i) 1 − x, 1 − y, 2 − z].
[Figure 2] Fig. 2. Packing diagram, showing a molecular ribbon formed via C—H···O hydrogen bonds (indicated by dotted lines). O—H···N and N—H···O hydrogen bonds are shown by dashed lines [symmetry codes are as in Table 2].
(I) top
Crystal data top
C7H4ClNO4·C6H5N3F(000) = 656.00
Mr = 320.69Dx = 1.558 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.0590 (15) Åθ = 10.5–12.5°
b = 11.7721 (13) ŵ = 0.30 mm1
c = 16.4853 (17) ÅT = 300 K
β = 93.717 (13)°Prismatic, colorless
V = 1367.0 (4) Å30.40 × 0.30 × 0.25 mm
Z = 4
Data collection top
Rigaku AFC-5R
diffractometer
1816 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.020
Graphite monochromatorθmax = 27.5°, θmin = 2.1°
ω–2θ scansh = 19
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.913, Tmax = 0.927l = 2121
3894 measured reflections3 standard reflections every 97 reflections
3134 independent reflections intensity decay: 1.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052All H-atom parameters refined
wR(F2) = 0.132 w = 1/[σ2(Fo2) + 0.6722P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3134 reflectionsΔρmax = 0.25 e Å3
236 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 4.7 (11)×10-3
Crystal data top
C7H4ClNO4·C6H5N3V = 1367.0 (4) Å3
Mr = 320.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0590 (15) ŵ = 0.30 mm1
b = 11.7721 (13) ÅT = 300 K
c = 16.4853 (17) Å0.40 × 0.30 × 0.25 mm
β = 93.717 (13)°
Data collection top
Rigaku AFC-5R
diffractometer
1816 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.913, Tmax = 0.9273 standard reflections every 97 reflections
3894 measured reflections intensity decay: 1.4%
3134 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.132All H-atom parameters refined
S = 1.06Δρmax = 0.25 e Å3
3134 reflectionsΔρmin = 0.23 e Å3
236 parameters
Special details top

Experimental. The scan width was (1.73 + 0.30tanθ)° with an ω scan speed of 6° per minute (up to 3 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.38055 (15)0.51916 (6)0.64808 (5)0.0581 (3)
O10.3549 (4)0.2435 (2)0.82590 (14)0.0724 (9)
O20.4708 (4)0.41516 (18)0.80647 (13)0.0680 (8)
O30.3291 (5)0.2687 (2)0.39476 (13)0.0903 (11)
O40.3893 (4)0.09565 (19)0.42854 (13)0.0726 (8)
N10.3657 (4)0.1950 (2)0.44490 (15)0.0514 (7)
N20.3769 (4)0.2854 (2)0.98486 (14)0.0533 (7)
N30.3953 (5)0.3916 (2)1.00574 (15)0.0600 (8)
N40.4115 (4)0.3974 (2)1.08682 (16)0.0530 (8)
C10.3985 (4)0.2946 (2)0.69216 (16)0.0369 (7)
C20.3887 (4)0.3751 (2)0.63032 (16)0.0375 (7)
C30.3785 (5)0.3416 (2)0.54951 (17)0.0409 (7)
C40.3780 (4)0.2282 (2)0.53154 (16)0.0397 (7)
C50.3874 (5)0.1449 (2)0.59007 (18)0.0441 (7)
C60.3971 (5)0.1798 (2)0.67076 (18)0.0442 (8)
C70.4109 (5)0.3263 (2)0.78078 (16)0.0434 (7)
C80.4035 (4)0.2920 (2)1.12031 (16)0.0401 (7)
C90.4128 (5)0.2515 (3)1.20022 (18)0.0516 (9)
C100.4004 (5)0.1374 (3)1.2092 (2)0.0565 (9)
C110.3807 (5)0.0632 (3)1.1426 (2)0.0591 (9)
C120.3692 (5)0.1032 (3)1.0646 (2)0.0516 (9)
C130.3811 (4)0.2195 (2)1.05411 (16)0.0388 (7)
H10.368 (4)0.392 (2)0.5099 (15)0.033 (7)*
H20.385 (4)0.066 (2)0.5739 (16)0.047 (8)*
H30.408 (4)0.130 (2)0.7132 (16)0.037 (8)*
H40.370 (7)0.254 (4)0.872 (3)0.109 (17)*
H50.428 (6)0.470 (3)1.112 (2)0.096 (14)*
H60.433 (5)0.298 (3)1.2423 (19)0.061 (10)*
H70.407 (5)0.102 (3)1.266 (2)0.088 (12)*
H80.373 (4)0.015 (3)1.1547 (17)0.047 (8)*
H90.360 (5)0.052 (3)1.023 (2)0.072 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0957 (7)0.0265 (3)0.0514 (4)0.0006 (4)0.0012 (4)0.0044 (3)
O10.128 (3)0.0560 (14)0.0322 (11)0.0316 (16)0.0025 (14)0.0019 (11)
O20.114 (2)0.0458 (13)0.0436 (12)0.0215 (14)0.0032 (13)0.0104 (10)
O30.177 (3)0.0561 (15)0.0382 (12)0.0105 (18)0.0093 (17)0.0014 (11)
O40.111 (2)0.0508 (14)0.0555 (14)0.0127 (14)0.0034 (15)0.0230 (11)
N10.070 (2)0.0471 (15)0.0374 (13)0.0061 (14)0.0068 (13)0.0077 (12)
N20.079 (2)0.0463 (15)0.0338 (13)0.0107 (15)0.0017 (13)0.0009 (11)
N30.088 (2)0.0467 (16)0.0443 (15)0.0108 (15)0.0079 (15)0.0049 (12)
N40.076 (2)0.0358 (13)0.0456 (14)0.0014 (14)0.0075 (14)0.0061 (11)
C10.0415 (18)0.0323 (13)0.0364 (14)0.0014 (13)0.0007 (13)0.0025 (11)
C20.0445 (19)0.0266 (12)0.0415 (15)0.0016 (13)0.0025 (14)0.0043 (11)
C30.052 (2)0.0332 (14)0.0376 (15)0.0025 (14)0.0062 (14)0.0008 (12)
C40.0436 (18)0.0384 (15)0.0376 (15)0.0024 (14)0.0057 (13)0.0085 (12)
C50.055 (2)0.0304 (14)0.0471 (16)0.0029 (14)0.0042 (15)0.0077 (12)
C60.060 (2)0.0311 (14)0.0413 (16)0.0018 (14)0.0005 (15)0.0018 (12)
C70.057 (2)0.0379 (16)0.0350 (14)0.0033 (15)0.0001 (14)0.0036 (12)
C80.0410 (18)0.0418 (15)0.0374 (14)0.0007 (14)0.0018 (13)0.0050 (12)
C90.058 (2)0.064 (2)0.0326 (15)0.0011 (19)0.0013 (15)0.0045 (15)
C100.055 (2)0.068 (2)0.0462 (18)0.0038 (19)0.0022 (16)0.0165 (17)
C110.060 (2)0.0468 (18)0.070 (2)0.0041 (19)0.0025 (18)0.0155 (18)
C120.062 (2)0.0385 (16)0.0539 (19)0.0037 (16)0.0002 (17)0.0064 (15)
C130.0431 (18)0.0399 (15)0.0331 (13)0.0018 (14)0.0013 (13)0.0022 (11)
Geometric parameters (Å, º) top
Cl—C21.723 (3)C3—C41.367 (4)
O1—C71.303 (4)C3—H10.89 (3)
O1—H40.78 (4)C4—C51.374 (4)
O2—C71.196 (3)C5—C61.390 (4)
O3—N11.215 (3)C5—H20.97 (3)
O4—N11.214 (3)C6—H30.91 (3)
N1—C41.478 (3)C8—C131.387 (4)
N2—N31.302 (3)C8—C91.398 (4)
N2—C131.379 (3)C9—C101.356 (5)
N3—N41.336 (3)C9—H60.89 (3)
N4—C81.360 (4)C10—C111.403 (5)
N4—H50.95 (4)C10—H71.03 (4)
C1—C21.391 (4)C11—C121.368 (5)
C1—C61.396 (4)C11—H80.95 (3)
C1—C71.505 (4)C12—C131.383 (4)
C2—C31.387 (4)C12—H90.91 (3)
Cl···O1i3.164 (3)O4···C5vi3.265 (4)
Cl···O3ii3.335 (3)N2···C73.425 (4)
O1···N22.661 (3)N3···N3iii2.962 (4)
O2···N4iii2.909 (3)N3···N4iii3.260 (4)
O3···C9iv3.305 (4)N4···C5vii3.393 (5)
O4···N4v3.154 (4)C1···C9viii3.482 (5)
C7—O1—H4115 (3)C5—C6—C1121.8 (3)
O4—N1—O3124.3 (3)C5—C6—H3122.5 (16)
O4—N1—C4118.0 (2)C1—C6—H3115.6 (16)
O3—N1—C4117.7 (2)O2—C7—O1124.5 (3)
N3—N2—C13109.0 (2)O2—C7—C1123.9 (3)
N2—N3—N4108.3 (2)O1—C7—C1111.6 (2)
N3—N4—C8110.9 (2)N4—C8—C13104.3 (2)
N3—N4—H5118 (2)N4—C8—C9133.8 (3)
C8—N4—H5131 (2)C13—C8—C9121.8 (3)
C2—C1—C6118.4 (2)C10—C9—C8116.2 (3)
C2—C1—C7122.6 (2)C10—C9—H6122 (2)
C6—C1—C7119.0 (2)C8—C9—H6122 (2)
C3—C2—C1120.5 (2)C9—C10—C11122.4 (3)
C3—C2—Cl116.3 (2)C9—C10—H7120 (2)
C1—C2—Cl123.2 (2)C11—C10—H7117 (2)
C4—C3—C2119.0 (3)C12—C11—C10121.2 (3)
C4—C3—H1120.1 (17)C12—C11—H8122.2 (18)
C2—C3—H1120.9 (17)C10—C11—H8116.5 (18)
C3—C4—C5123.0 (3)C11—C12—C13117.2 (3)
C3—C4—N1117.8 (3)C11—C12—H9119 (2)
C5—C4—N1119.1 (2)C13—C12—H9124 (2)
C4—C5—C6117.2 (3)N2—C13—C12131.4 (3)
C4—C5—H2119.6 (17)N2—C13—C8107.5 (2)
C6—C5—H2123.2 (17)C12—C13—C8121.1 (3)
C13—N2—N3—N40.0 (4)C2—C1—C7—O224.0 (5)
N2—N3—N4—C80.1 (4)C6—C1—C7—O2155.9 (3)
C6—C1—C2—C30.2 (5)C2—C1—C7—O1158.3 (3)
C7—C1—C2—C3179.6 (3)C6—C1—C7—O121.8 (4)
C6—C1—C2—Cl177.6 (2)N3—N4—C8—C130.1 (4)
C7—C1—C2—Cl2.6 (4)N3—N4—C8—C9179.8 (4)
C1—C2—C3—C40.0 (5)N4—C8—C9—C10179.5 (4)
Cl—C2—C3—C4177.9 (2)C13—C8—C9—C100.6 (5)
C2—C3—C4—C50.1 (5)C8—C9—C10—C110.4 (6)
C2—C3—C4—N1179.6 (3)C9—C10—C11—C121.3 (6)
O4—N1—C4—C3170.9 (3)C10—C11—C12—C131.1 (6)
O3—N1—C4—C310.5 (5)N3—N2—C13—C12179.3 (4)
O4—N1—C4—C59.5 (5)N3—N2—C13—C80.0 (4)
O3—N1—C4—C5169.2 (3)C11—C12—C13—N2179.1 (3)
C3—C4—C5—C60.2 (5)C11—C12—C13—C80.1 (5)
N1—C4—C5—C6179.4 (3)N4—C8—C13—N20.0 (4)
C4—C5—C6—C10.4 (5)C9—C8—C13—N2179.9 (3)
C2—C1—C6—C50.4 (5)N4—C8—C13—C12179.3 (3)
C7—C1—C6—C5179.4 (3)C9—C8—C13—C120.7 (5)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x, y, z1; (v) x+1/2, y1/2, z+3/2; (vi) x+1, y, z+1; (vii) x+1/2, y+1/2, z+1/2; (viii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H4···N20.77 (5)1.89 (5)2.661 (3)173 (5)
N4—H5···O2iii0.95 (4)2.00 (3)2.909 (3)158 (3)
C5—H2···O4vi0.97 (2)2.48 (3)3.265 (4)138 (2)
Symmetry codes: (iii) x+1, y+1, z+2; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC7H4ClNO4·C6H5N3
Mr320.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)300
a, b, c (Å)7.0590 (15), 11.7721 (13), 16.4853 (17)
β (°) 93.717 (13)
V3)1367.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.913, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
3894, 3134, 1816
Rint0.020
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.132, 1.06
No. of reflections3134
No. of parameters236
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990), MSC/AFC Diffractometer Control Software, TEXSAN for Windows (Molecular Structure Corporation, 1997-1999), SIR92 (Altomare, et al. 1993), SHELXL97 (Sheldrick, 1997), TEXSAN for Windows.

Selected bond lengths (Å) top
Cl—C21.723 (3)N2—N31.302 (3)
O1—C71.303 (4)N2—C131.379 (3)
O2—C71.196 (3)N3—N41.336 (3)
O3—N11.215 (3)N4—C81.360 (4)
O4—N11.214 (3)C1—C71.505 (4)
N1—C41.478 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H4···N20.77 (5)1.89 (5)2.661 (3)173 (5)
N4—H5···O2i0.95 (4)2.00 (3)2.909 (3)158 (3)
C5—H2···O4ii0.97 (2)2.48 (3)3.265 (4)138 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds