Download citation
Download citation
link to html
The title complex, [Ni(C18H13Cl2FeN2O)2], results from the reaction of Ni(OAc)2·4H2O (Ac is acetyl) and 2,4-di­chloro­benzoyl­hydrazine in an­hydro­us ethanol. The complex mol­ecule is centrosymmetric, with the enolizable O atom and the azomethine N atom of the ligand coordinating to the nickel ion to form a five-membered chelate ring. The N2O2 coordinating atoms and the central Ni ion are coplanar.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802016872/ob6170sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802016872/ob6170Isup2.hkl
Contains datablock I

CCDC reference: 118976

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.036
  • wR factor = 0.094
  • Data-to-parameter ratio = 13.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Schiff bases from acylhydrazine and their complexes have strong antitumour and antivirus activities (Ali et al., 1984), while the ferrocenyl group can improve these properties (Ali et al., 1973). Some ferrocene derivatives are excellent non-linear optical materials (Long, 1995) because they can act as strong electron donors and contain electron-flow bridges. Due to the possible wide-ranging uses, the structures of these compounds are of interest. In the present work, we report a new crystal structure of an Ni complexe of a ferrocene derivative, (I).

In (I), the Ni atom is located at a center of symmetry (Fig. 1). The sum of the interior angles in the chelate ring is 540.0 (3)°, so the five atoms involved are coplanar. The sum of the three bond angles around C12 is 359.8 (2)°, which shows that atom C12 has almost sp2 hybridization. The Ni—O and Ni—N bond distances are normal (Table 1). As expected, the C12—O1 bond length [1.304 (3) Å] lies between those of a C—O single bond and a CO double bond. The bond lengths N1—C11 [1.299 (3) Å] and N2—C12 [1.305 (3) Å] are identical and close to that of typical CN (1.30 Å). Those data shows that the –CHN—NC—O fragment of the ligand remains as a conjugated system even after the loss of an H atom from its enolized carbonyl O atom. There are intramolecular non-traditional hydrogen bonds (Table 2). There are also intermolecular close contacts between the Cl and O atoms; O1···Cl2(x, 1/2 − y, −1/2 + z) 3.212 (2) Å (Fig. 2).

Experimental top

Ferrocenecarboxaldehyde was dissolved in anhydrous ethanol and the resulting solution was added dropwise to a solution of 2,4-dichlorobenzoylhydrazine in anhydrous ethanol under stirring and reflux. A red precipitate appeared immediately and the reaction mixture was allowed to reflux for 2 h under stirring. The mixture was cooled to room temperature and the product collected on a Buchner funnel, washed twice with ethanol and diethyl ether, respectively, recrystallized from anhydrous ethanol and dried in vacuo. The product obtained was dissolved in anhydrous ethanol, then a solution of Ni(OAc)2·4H2O in anhydrous ethanol was added dropwise to it under stirring at room temperature. The mixture was stirred continuously for 20 min at room temperature and for 6–8 h under reflux. A red solid formed, was filtered off, and the filtrate collected. After four weeks, red crystals of (I) suitable for diffraction analysis had precipitated from the mother solution.

Refinement top

The positions of all H atoms were fixed geometrically and refined as riding on their parent atoms (C—H 0.93 Å).

Computing details top

Data collection: CAD-4 SDP/VAX (Enraf-Nonius, 1989); cell refinement: CAD-4 SDP/VAX; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A packing diagram of (I), showing the Cl···O short contacts.
(I) top
Crystal data top
[Ni(C18H13Cl2FeN2O)2]F(000) = 868
Mr = 858.82Dx = 1.631 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.032 (1) Åθ = 12.1–14.9°
b = 22.455 (4) ŵ = 1.70 mm1
c = 11.075 (2) ÅT = 293 K
β = 91.36 (3)°Block, red
V = 1748.3 (5) Å30.3 × 0.25 × 0.2 mm
Z = 2
Data collection top
Enraf-Nonius CAD-4
diffractometer
2869 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
ω/2θ scansh = 88
Absorption correction: ψ scan
(North et al., 1968)
k = 026
Tmin = 0.599, Tmax = 0.716l = 013
5629 measured reflections5 standard reflections every 300 reflections
3082 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.01P)2]
where P = (Fo2 + 2Fc2)/3
3082 reflections(Δ/σ)max = 0.001
223 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Ni(C18H13Cl2FeN2O)2]V = 1748.3 (5) Å3
Mr = 858.82Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.032 (1) ŵ = 1.70 mm1
b = 22.455 (4) ÅT = 293 K
c = 11.075 (2) Å0.3 × 0.25 × 0.2 mm
β = 91.36 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2869 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.056
Tmin = 0.599, Tmax = 0.7165 standard reflections every 300 reflections
5629 measured reflections intensity decay: none
3082 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
3082 reflectionsΔρmin = 0.76 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The structure was solved by direct methods (Sheldrick, 1990) and successive difference Fourier syntheses. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.50000.00000.04017 (14)
Fe10.43926 (6)0.588888 (18)0.31346 (3)0.04755 (14)
Cl10.57023 (12)0.32689 (4)0.17712 (10)0.0783 (3)
Cl21.04987 (16)0.20171 (4)0.46311 (10)0.0853 (3)
O11.0429 (3)0.42910 (8)0.08031 (17)0.0456 (4)
N10.7827 (3)0.50276 (9)0.09227 (19)0.0411 (5)
N20.7607 (3)0.45365 (10)0.1710 (2)0.0478 (5)
C10.4726 (4)0.54552 (12)0.1523 (2)0.0436 (6)
C20.3918 (4)0.50612 (12)0.2412 (3)0.0504 (7)
H20.44440.47060.26960.060*
C30.2196 (4)0.53150 (14)0.2765 (3)0.0582 (8)
H30.13820.51550.33290.070*
C40.1895 (4)0.58517 (15)0.2129 (3)0.0613 (8)
H40.08450.61000.21970.074*
C50.3451 (4)0.59492 (13)0.1372 (3)0.0530 (7)
H50.36180.62750.08670.064*
C60.6994 (5)0.61289 (18)0.3808 (4)0.0744 (10)
H60.81490.60400.34590.089*
C70.6053 (5)0.57744 (17)0.4664 (3)0.0715 (9)
H70.64700.54110.49750.086*
C80.4394 (6)0.60700 (19)0.4951 (3)0.0766 (11)
H80.35000.59370.54950.092*
C90.4282 (7)0.66016 (18)0.4288 (4)0.0860 (12)
H90.33050.68800.43210.103*
C100.5874 (6)0.66429 (17)0.3574 (3)0.0793 (11)
H100.61530.69500.30420.095*
C110.6500 (4)0.54300 (12)0.0885 (2)0.0429 (6)
H110.67210.57490.03730.051*
C120.9064 (4)0.41871 (11)0.1551 (2)0.0417 (6)
C131.1072 (4)0.35503 (13)0.2872 (3)0.0569 (8)
H131.20250.38310.27610.068*
C141.1472 (5)0.30587 (13)0.3578 (3)0.0594 (8)
H141.26710.30070.39370.071*
C151.0048 (5)0.26434 (13)0.3741 (3)0.0546 (7)
C160.8277 (5)0.27134 (13)0.3190 (3)0.0580 (8)
H160.73360.24280.32920.070*
C170.7919 (4)0.32114 (12)0.2484 (3)0.0492 (7)
C180.9311 (4)0.36445 (11)0.2321 (2)0.0434 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0513 (3)0.0307 (3)0.0387 (3)0.00051 (18)0.0050 (2)0.00209 (18)
Fe10.0564 (3)0.0447 (3)0.0416 (2)0.00424 (16)0.00318 (19)0.00301 (17)
Cl10.0571 (5)0.0640 (6)0.1131 (8)0.0117 (4)0.0126 (5)0.0252 (5)
Cl20.1123 (8)0.0593 (6)0.0833 (7)0.0073 (5)0.0168 (5)0.0354 (5)
O10.0545 (11)0.0347 (10)0.0478 (11)0.0015 (8)0.0082 (9)0.0054 (8)
N10.0493 (13)0.0336 (11)0.0404 (12)0.0000 (9)0.0011 (10)0.0007 (9)
N20.0584 (14)0.0375 (12)0.0477 (13)0.0010 (10)0.0043 (11)0.0030 (10)
C10.0506 (15)0.0446 (14)0.0353 (13)0.0047 (11)0.0012 (11)0.0031 (11)
C20.0545 (17)0.0424 (16)0.0542 (17)0.0029 (11)0.0009 (13)0.0010 (12)
C30.0506 (18)0.067 (2)0.0573 (19)0.0056 (14)0.0046 (14)0.0010 (15)
C40.0479 (18)0.071 (2)0.065 (2)0.0122 (14)0.0005 (15)0.0032 (16)
C50.0556 (18)0.0581 (18)0.0452 (16)0.0112 (13)0.0004 (13)0.0019 (13)
C60.063 (2)0.088 (3)0.073 (2)0.0139 (19)0.0044 (18)0.017 (2)
C70.092 (3)0.068 (2)0.054 (2)0.0029 (19)0.0179 (18)0.0031 (17)
C80.093 (3)0.093 (3)0.0440 (19)0.008 (2)0.0051 (17)0.0210 (18)
C90.096 (3)0.073 (3)0.076 (3)0.017 (2)0.005 (2)0.027 (2)
C100.114 (3)0.059 (2)0.065 (2)0.020 (2)0.009 (2)0.0026 (17)
C110.0530 (16)0.0392 (14)0.0367 (13)0.0002 (11)0.0055 (12)0.0002 (11)
C120.0537 (16)0.0314 (13)0.0399 (14)0.0042 (11)0.0006 (12)0.0014 (10)
C130.0604 (19)0.0406 (16)0.069 (2)0.0055 (12)0.0089 (15)0.0063 (14)
C140.069 (2)0.0454 (17)0.063 (2)0.0063 (14)0.0158 (15)0.0084 (14)
C150.071 (2)0.0446 (16)0.0486 (16)0.0004 (14)0.0002 (14)0.0100 (13)
C160.069 (2)0.0447 (16)0.0599 (19)0.0087 (14)0.0036 (16)0.0115 (14)
C170.0588 (18)0.0409 (15)0.0478 (16)0.0001 (12)0.0016 (13)0.0051 (12)
C180.0533 (16)0.0367 (14)0.0404 (15)0.0000 (11)0.0066 (12)0.0016 (11)
Geometric parameters (Å, º) top
Ni1—O1i1.8450 (17)C3—H30.9300
Ni1—O11.8450 (17)C4—C51.411 (4)
Ni1—N1i1.859 (2)C4—H40.9300
Ni1—N11.859 (2)C5—H50.9300
Fe1—C62.032 (4)C6—C71.414 (5)
Fe1—C102.041 (4)C6—C101.418 (6)
Fe1—C32.045 (3)C6—H60.9300
Fe1—C22.048 (3)C7—C81.386 (5)
Fe1—C92.050 (4)C7—H70.9300
Fe1—C72.050 (4)C8—C91.403 (6)
Fe1—C52.051 (3)C8—H80.9300
Fe1—C12.052 (3)C9—C101.389 (5)
Fe1—C82.052 (3)C9—H90.9300
Fe1—C42.059 (3)C10—H100.9300
Cl1—C171.735 (3)C11—H110.9300
Cl2—C151.742 (3)C12—C181.495 (3)
O1—C121.304 (3)C13—C141.378 (4)
N1—C111.299 (3)C13—C181.383 (4)
N1—N21.416 (3)C13—H130.9300
N2—C121.305 (3)C14—C151.383 (4)
C1—C51.434 (4)C14—H140.9300
C1—C111.449 (4)C15—C161.383 (4)
C1—C21.450 (4)C16—C171.384 (4)
C2—C31.402 (4)C16—H160.9300
C2—H20.9300C17—C181.395 (4)
C3—C41.409 (4)
O1i—Ni1—O1180.00 (11)C4—C3—Fe170.44 (19)
O1i—Ni1—N1i83.73 (8)C2—C3—H3125.4
O1—Ni1—N1i96.27 (8)C4—C3—H3125.4
O1i—Ni1—N196.27 (8)Fe1—C3—H3125.7
O1—Ni1—N183.73 (8)C3—C4—C5108.7 (3)
N1i—Ni1—N1180.00 (12)C3—C4—Fe169.39 (19)
C6—Fe1—C1040.74 (16)C5—C4—Fe169.62 (18)
C6—Fe1—C3155.44 (15)C3—C4—H4125.7
C10—Fe1—C3161.66 (16)C5—C4—H4125.7
C6—Fe1—C2121.41 (15)Fe1—C4—H4126.9
C10—Fe1—C2157.48 (15)C4—C5—C1107.6 (3)
C3—Fe1—C240.06 (12)C4—C5—Fe170.22 (19)
C6—Fe1—C967.13 (17)C1—C5—Fe169.57 (16)
C10—Fe1—C939.70 (16)C4—C5—H5126.2
C3—Fe1—C9125.23 (16)C1—C5—H5126.2
C2—Fe1—C9160.67 (15)Fe1—C5—H5125.6
C6—Fe1—C740.53 (15)C7—C6—C10108.3 (4)
C10—Fe1—C768.26 (16)C7—C6—Fe170.5 (2)
C3—Fe1—C7119.92 (14)C10—C6—Fe170.0 (2)
C2—Fe1—C7107.05 (14)C7—C6—H6125.8
C9—Fe1—C767.20 (17)C10—C6—H6125.8
C6—Fe1—C5126.84 (14)Fe1—C6—H6125.3
C10—Fe1—C5108.88 (14)C8—C7—C6107.1 (4)
C3—Fe1—C568.03 (13)C8—C7—Fe170.3 (2)
C2—Fe1—C569.03 (12)C6—C7—Fe169.0 (2)
C9—Fe1—C5121.68 (15)C8—C7—H7126.5
C7—Fe1—C5163.58 (14)C6—C7—H7126.5
C6—Fe1—C1108.97 (14)Fe1—C7—H7125.8
C10—Fe1—C1122.21 (14)C7—C8—C9108.9 (4)
C3—Fe1—C168.16 (12)C7—C8—Fe170.18 (19)
C2—Fe1—C141.43 (11)C9—C8—Fe169.9 (2)
C9—Fe1—C1156.83 (15)C7—C8—H8125.5
C7—Fe1—C1125.78 (14)C9—C8—H8125.5
C5—Fe1—C140.90 (11)Fe1—C8—H8125.9
C6—Fe1—C866.92 (16)C10—C9—C8108.6 (4)
C10—Fe1—C867.27 (16)C10—C9—Fe169.8 (2)
C3—Fe1—C8107.69 (15)C8—C9—Fe170.1 (2)
C2—Fe1—C8123.99 (15)C10—C9—H9125.7
C9—Fe1—C839.99 (16)C8—C9—H9125.7
C7—Fe1—C839.48 (15)Fe1—C9—H9126.0
C5—Fe1—C8155.85 (15)C9—C10—C6107.0 (4)
C1—Fe1—C8161.71 (15)C9—C10—Fe170.5 (2)
C6—Fe1—C4163.41 (15)C6—C10—Fe169.3 (2)
C10—Fe1—C4125.92 (16)C9—C10—H10126.5
C3—Fe1—C440.17 (12)C6—C10—H10126.5
C2—Fe1—C467.84 (13)Fe1—C10—H10125.3
C9—Fe1—C4108.91 (16)N1—C11—C1129.6 (2)
C7—Fe1—C4154.61 (14)N1—C11—H11115.2
C5—Fe1—C440.17 (12)C1—C11—H11115.2
C1—Fe1—C467.90 (12)O1—C12—N2124.7 (2)
C8—Fe1—C4121.24 (15)O1—C12—C18115.5 (2)
C12—O1—Ni1110.27 (16)N2—C12—C18119.6 (2)
C11—N1—N2118.2 (2)C14—C13—C18122.8 (3)
C11—N1—Ni1127.21 (18)C14—C13—H13118.6
N2—N1—Ni1114.56 (16)C18—C13—H13118.6
C12—N2—N1106.7 (2)C13—C14—C15118.4 (3)
C5—C1—C11121.1 (2)C13—C14—H14120.8
C5—C1—C2107.3 (2)C15—C14—H14120.8
C11—C1—C2131.5 (3)C16—C15—C14120.9 (3)
C5—C1—Fe169.52 (16)C16—C15—Cl2119.4 (2)
C11—C1—Fe1124.0 (2)C14—C15—Cl2119.7 (3)
C2—C1—Fe169.13 (15)C15—C16—C17119.4 (3)
C3—C2—C1107.2 (3)C15—C16—H16120.3
C3—C2—Fe169.88 (17)C17—C16—H16120.3
C1—C2—Fe169.44 (15)C16—C17—C18121.1 (3)
C3—C2—H2126.4C16—C17—Cl1117.8 (2)
C1—C2—H2126.4C18—C17—Cl1121.0 (2)
Fe1—C2—H2125.9C13—C18—C17117.4 (3)
C2—C3—C4109.2 (3)C13—C18—C12117.8 (2)
C2—C3—Fe170.06 (17)C17—C18—C12124.7 (3)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N20.932.532.969 (4)109
C11—H11···O1i0.932.422.957 (3)117
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C18H13Cl2FeN2O)2]
Mr858.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.032 (1), 22.455 (4), 11.075 (2)
β (°) 91.36 (3)
V3)1748.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.3 × 0.25 × 0.2
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.599, 0.716
No. of measured, independent and
observed [I > 2σ(I)] reflections
5629, 3082, 2869
Rint0.056
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.01
No. of reflections3082
No. of parameters223
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.76

Computer programs: CAD-4 SDP/VAX (Enraf-Nonius, 1989), CAD-4 SDP/VAX, TEXSAN (Molecular Structure Corporation, 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Ni1—O11.8450 (17)N1—C111.299 (3)
Ni1—N11.859 (2)N1—N21.416 (3)
O1—C121.304 (3)N2—C121.305 (3)
O1—Ni1—N183.73 (8)C12—N2—N1106.7 (2)
C12—O1—Ni1110.27 (16)O1—C12—N2124.7 (2)
C11—N1—N2118.2 (2)O1—C12—C18115.5 (2)
N2—N1—Ni1114.56 (16)N2—C12—C18119.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N20.932.532.969 (4)109
C11—H11···O1i0.932.422.957 (3)117
Symmetry code: (i) x+2, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds