Download citation
Download citation
link to html
In the title compound, [Na(C9H6NO4S)], the sodium ion is coordinated by the N and O atoms of the quinolinol moiety (usual bidentate chelation) and three O atoms from three different sulfonate groups. The quinolinol O atom and one of the sulfonate O atoms are in the axial positions and the ring N atom and two O atoms from two different sulfonate groups lie in the equatorial positions of the trigonal bipyramid around sodium. Unlike other metal sulfoxinates, the quinolinol O atom is not deprotonated, but is involved in hydrogen bonding. Moreover, all three sulfonate O atoms are involved in coordination, leading to a supramolecular three-dimensional network structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802015118/ob6168sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802015118/ob6168Isup2.hkl
Contains datablock I

CCDC reference: 187220

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.031
  • wR factor = 0.091
  • Data-to-parameter ratio = 15.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 30.55 From the CIF: _reflns_number_total 2662 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 2826 Completeness (_total/calc) 94.20% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Oxine and its derivatives are well known analytical reagents and antiamoebic agents (Bambury, 1979). Oxine is a bidentate chelator forming complexes with many metal ions through the quinoline N and deprotonated quinolinol O atoms. Metal chelation has been implicated in the biological activity of oxine derivatives (Martel & Calvin, 1959). The incorporation of sulfonic acid in the oxine moiety provides additional metal-binding and potential hydrogen-bonding acceptor sites/modes. This type of ligand is called sulfoxine (sulfonic acid + oxine). In metal sulfoxinates, in addition to the usual bidentate chelation of the oxine moiety through the N and O atoms, sulfonic-O atoms also coordinate to the metal. Hydrogen-bonding patterns and metal-binding modes of sulfoxinates are of current interest (Cai, Chen, Liao, Feng & Chen, 2001; Cai, Chen, Liao, Yao et al., 2001; Cai, Chen, Feng et al., 2001). It has recently been demonstrated that the combination of coordination and the sulfonate group can result in the formation of strong supramolecular aggregates through hydrogen bonding and this represents a new strategy for the design of SHG (second harmonic generation) materials (Xie et al., 2002). Information on the structural chemistry of metal sulfoxinates is relatively rare due to the poor coordination strength of sulfoxinates compared with that of phosphonates. The various remarkable structural features of metal sulfoxinates have prompted us to investigate systematically the structural chemistry of these compounds. The crystal structures of 7-iodo-8-hydroxyquinoline-5-sulfonic acid (ferron; Balasubramanian & Muthiah, 1996a), 7-nitro-8-hydroxyquinoline-5-sulfonic acid monohydrate (Balasubramanian & Muthiah, 1996b), the cobalt complex of ferron (Balasubramanian, 1995), the nickel complex of 8-hydroxyquinoline-5-sulfonic acid (HQS; Baskar Raj et al., 2001), the nickel complex of ferron (Baskar Raj et al., 2002) and the lithium complex of HQS (Murugesan & Muthiah, 1997) have also been reported from our laboratory.

In metal sulfoxinates, the sulfonate motifs can be linked in two ways. In one type, in addition to the usual bidentate chelation of the oxine motif, two centrosymmetrically related monomers are bridged by one of the sulfonate O atoms involved in the coordination, forming a cage-like dimer, as observed in the copper–sulfoxinate complexes (Petit, Coquerel et al., 1993; Petit, Ammor et al., 1993), the cobalt complex of ferron (Balasubramanian, 1995), the nickel complex of ferron (Baskar Raj et al., 2002) and the lithium complex of HQS (Murugesan & Muthiah, 1997). In another type, in addition to the usual bidentate chelation, a sulfonic acid O atom of one molecule is coordinated to the metal atom of another molecule, leading to a one-dimensional polymeric arrangement, as observed in the copper–sulfoxinate complex (Petit, Coquerel et al., 1993).

In the sodium complex of HQS, (I), the coordination geometry around the sodium ion is distorted trigonal bipyramidal. In addition to the usual bidentate chelation involving the N and O atoms of the oxine moiety, three sulfonate O atoms from three different sulfonate groups are coordinated to the sodium ion. The O atom of the quinolinol moiety and one of the O atoms (O3) from the sulfonate group bind to the Na+ ion at the axial positions and two O atoms (O2 and O4) from two different sulfonate groups and the ring N atom lie in the equatorial positions. A view of the complex unit of (I), with the atom-labelling scheme, is shown in Fig. 1. One of the sulfonate O atoms bridges the two inversion-related monomers, leading to a cage-like dimeric unit (Fig. 2). The distance between two neighbouring Na atoms is 5.4718 (15) Å. A view of the packing is shown in Fig. 3. The present sodium complex is quite different from other metal sulfoxinates reported in the literature (Balasubramanian, 1996; Murugesan & Muthiah, 1997; Petit, Coquerel et al., 1993; Petit, Ammor et al., 1993; Baskar Raj et al., 2001, 2002) in the sense that all tthree sulfonate O atoms are involved in the coordination, leading to a supramolecular network structure. The smaller N—Na—O bite angle in (I) may be the result of longer coordination bonds than those in the Co and Ni complexes. The Na—O(quinolinol) and Na—N(ring) bond distances are not significantly different from one another. The Na—N(ring) distance [2.4418 (15) Å] in (I) agrees with the range of values [2.459 (7)–2.539 (6) Å] reported in the literature (Papadimitriou et al., 1998). Also, the Na—O(quinolinol) distance [2.4892 (14) Å] in (I) agrees with the corresponding distance [2.42 (9) Å] in small molecules (Harding, 2002) reported in the Cambridge Structural Database (Allen & Kennard, 1993). The Na—O(sulfonate) distances agree with the corresponding distance reported in the literature (Cai, Chen, Liao, Feng & Chen, 2001; Cai, Chen, Liao, Yao et al., 2001; Cai, Chen, Feng et al., 2001) and are significantly shorter than the Na—O(quinolinol) distance (Table 1).

Unlike other sulfoxinates, the quinolinol O atom is not deprotonated, but is involved in a hydrogen bond with a symmetry-related O atom of the sulfonic acid group [O1—H1···O3i: symmetry code: (i) 1 + x, y, z]. Atoms C4 and C6 are also involved in intramolecular hydrogen bonding with atoms O4 and O2 of the sulfonate group (Table 2), forming five-membered rings on both sides of the S—C bond. Intramolecular hydrogen bonding involving atom C6 with one of the sulfonate O atoms has also been observed in both 7-nitro-8-hydroxyquinoline-5-sulfonic acid monohydrate (Balasubramanian & Muthiah, 1996b) and ferron (Balasubramanian & Muthiah, 1996a). There is also a glide-related C—H···π interaction [H···Cg 2.6341 (6) Å and C2—H2···Cg 134.02 (5)°; atoms C2 is in the pyridine ring and Cg is the phenyl-ring centroid]. Stacking interactions between the pyridine and phenyl rings in adjacent complex units is observed. The centroid-to-centroid and interplanar distances are 3.499 (9) and 3.303 (4) Å, respectively. The slip angles (angle between the centroid vector and the normal to the plane) is 20.73 (3)°.

Experimental top

An aqueous solution of sodium diethyldithiocarbomate (0.113 g) and an aqueous solution of 8-hydroxyquinoline-5-sulfonic acid monohydrate were mixed and warmed over a water bath for 30 min. The product was then recrystallized from acetonitrile.

Refinement top

The H atoms were located in difference fourier maps and refined with isotropic displacement parameters. The C—H and O—H bond lengths are 0.883 (18)–0.98 (3) and 0.805 (18) Å, respectively.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1997); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. View of (I) with the atom-labelling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The cage-like dimeric arrangement of (I), made up of two inversion-related monomers.
[Figure 3] Fig. 3. View of the packing diagram of (I), showing the dimeric arrangement in the bc plane.
(8-hydroxyquinoline-5-sulfonato-N1,O8)sodium(I) top
Crystal data top
[Na(C9H6NO4S)]F(000) = 504
Mr = 247.21Dx = 1.779 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 50 reflections
a = 8.284 (2) Åθ = 3.0–29.6°
b = 10.488 (2) ŵ = 0.39 mm1
c = 10.916 (2) ÅT = 293 K
β = 103.25 (2)°Cubic, colourless
V = 923.2 (3) Å30.34 × 0.26 × 0.17 mm
Z = 4
Data collection top
Bruker AXS SMART with CCD
diffractometer
2662 independent reflections
Radiation source: fine-focus sealed tube2119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 30.6°, θmin = 2.5°
Absorption correction: ψ scan
(SHELXTL-NT; Bruker, 1997)
h = 1111
Tmin = 0.787, Tmax = 0.936k = 1414
132007 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0587P)2]
where P = (Fo2 + 2Fc2)/3
2662 reflections(Δ/σ)max = 0.003
169 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.29 e Å3
0 constraints
Crystal data top
[Na(C9H6NO4S)]V = 923.2 (3) Å3
Mr = 247.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.284 (2) ŵ = 0.39 mm1
b = 10.488 (2) ÅT = 293 K
c = 10.916 (2) Å0.34 × 0.26 × 0.17 mm
β = 103.25 (2)°
Data collection top
Bruker AXS SMART with CCD
diffractometer
2662 independent reflections
Absorption correction: ψ scan
(SHELXTL-NT; Bruker, 1997)
2119 reflections with I > 2σ(I)
Tmin = 0.787, Tmax = 0.936Rint = 0.032
132007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.091All H-atom parameters refined
S = 1.01Δρmax = 0.35 e Å3
2662 reflectionsΔρmin = 0.29 e Å3
169 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.62753 (4)0.20423 (3)0.04879 (3)0.0218 (1)
Na0.41137 (7)0.03354 (5)0.23651 (5)0.0289 (2)
O11.33869 (13)0.33975 (11)0.13065 (11)0.0312 (3)
O20.62324 (13)0.08738 (11)0.12015 (11)0.0340 (3)
O30.56791 (13)0.18555 (10)0.06713 (10)0.0289 (3)
O40.54382 (13)0.31155 (10)0.12117 (10)0.0317 (3)
N11.11475 (14)0.49135 (11)0.19225 (11)0.0246 (3)
C21.00318 (18)0.57073 (14)0.21803 (13)0.0268 (4)
C30.83086 (19)0.55232 (14)0.17862 (14)0.0273 (4)
C40.77215 (17)0.44641 (13)0.10996 (13)0.0243 (4)
C50.83967 (16)0.24662 (12)0.00206 (12)0.0205 (3)
C60.95901 (17)0.16969 (13)0.02792 (13)0.0242 (4)
C71.12987 (18)0.19806 (13)0.01441 (14)0.0260 (4)
C81.17851 (16)0.30424 (12)0.08708 (13)0.0225 (4)
C91.05738 (16)0.38597 (12)0.12076 (12)0.0203 (3)
C100.88590 (16)0.35824 (12)0.07735 (12)0.0196 (3)
H11.401 (2)0.2898 (18)0.1096 (17)0.035 (5)*
H21.049 (2)0.6485 (19)0.2615 (17)0.040 (5)*
H30.765 (2)0.6107 (18)0.1993 (16)0.032 (5)*
H40.657 (2)0.4366 (16)0.0846 (17)0.034 (5)*
H60.918 (2)0.0955 (18)0.0790 (16)0.035 (5)*
H71.208 (2)0.1434 (16)0.0072 (15)0.026 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0180 (2)0.0221 (2)0.0238 (2)0.0022 (1)0.0020 (1)0.0004 (1)
Na0.0246 (3)0.0284 (3)0.0305 (3)0.0002 (2)0.0002 (2)0.0018 (2)
O10.0169 (5)0.0344 (6)0.0404 (6)0.0006 (4)0.0027 (4)0.0065 (5)
O20.0269 (5)0.0319 (6)0.0407 (6)0.0058 (4)0.0025 (5)0.0137 (5)
O30.0248 (5)0.0329 (5)0.0308 (5)0.0004 (4)0.0099 (4)0.0048 (4)
O40.0246 (5)0.0332 (6)0.0329 (6)0.0012 (4)0.0023 (4)0.0076 (4)
N10.0239 (6)0.0254 (6)0.0229 (6)0.0031 (4)0.0020 (4)0.0025 (5)
C20.0305 (7)0.0242 (7)0.0249 (7)0.0029 (5)0.0044 (6)0.0050 (5)
C30.0279 (7)0.0261 (7)0.0284 (7)0.0036 (5)0.0076 (6)0.0035 (6)
C40.0209 (6)0.0262 (7)0.0255 (7)0.0005 (5)0.0049 (5)0.0014 (5)
C50.0189 (6)0.0212 (6)0.0203 (6)0.0016 (5)0.0023 (5)0.0006 (5)
C60.0238 (7)0.0215 (6)0.0269 (7)0.0013 (5)0.0048 (5)0.0025 (5)
C70.0219 (6)0.0251 (7)0.0312 (7)0.0035 (5)0.0064 (5)0.0017 (6)
C80.0179 (6)0.0260 (7)0.0222 (6)0.0002 (5)0.0020 (5)0.0028 (5)
C90.0199 (6)0.0210 (6)0.0192 (6)0.0010 (5)0.0028 (5)0.0009 (5)
C100.0194 (6)0.0204 (6)0.0184 (6)0.0006 (4)0.0033 (5)0.0015 (5)
Geometric parameters (Å, º) top
S—O21.4482 (12)C3—C41.366 (2)
S—O31.4731 (12)C4—C101.423 (2)
S—O41.4563 (12)C5—C101.4312 (18)
S—C51.7740 (15)C5—C61.373 (2)
Na—O22.2979 (14)C6—C71.416 (2)
Na—O4i2.3357 (13)C7—C81.3730 (19)
Na—O3ii2.4175 (13)C8—C91.4304 (19)
Na—O1iii2.4892 (14)C9—C101.4207 (19)
Na—N1iii2.4418 (15)C2—H20.98 (2)
O1—C81.3551 (18)C3—H30.883 (18)
O1—H10.805 (18)C4—H40.936 (17)
N1—C21.3213 (19)C6—H60.972 (18)
N1—C91.3735 (18)C7—H70.934 (17)
C2—C31.407 (2)
S···H1iv2.967 (18)C7···C3vi3.423 (2)
S···H42.821 (17)C7···C2vi3.500 (2)
O1···O3v2.7029 (17)C8···C2vi3.575 (2)
O1···N12.6445 (18)C8···C4vi3.469 (2)
O1···C4vi3.416 (2)C8···C3vi3.252 (2)
O2···C3vii3.415 (2)C9···C10vi3.544 (2)
O3···C43.1943 (19)C9···C9vi3.525 (2)
O3···O1iv2.7029 (17)C10···N1vi3.3380 (19)
O4···C43.1235 (19)C10···C9vi3.544 (2)
O4···C3viii3.343 (2)C2···H6x3.027 (18)
O2···H62.381 (17)C3···H6x3.008 (18)
O3···H1iv1.902 (18)C5···H2xi2.735 (18)
O3···H42.729 (17)C6···H6xii3.097 (19)
O4···H42.584 (18)C6···H2xi2.933 (18)
O4···H3viii2.634 (17)C8···H3xi3.046 (18)
N1···O12.6445 (18)C9···H2xi3.025 (19)
N1···C10vi3.3380 (19)C10···H2xi2.791 (19)
C2···C5ix3.551 (2)H1···Sv2.967 (18)
C2···C6ix3.483 (2)H1···O3v1.902 (18)
C2···C5vi3.545 (2)H1···H72.37 (2)
C2···C6vi3.481 (2)H2···C5ix2.735 (18)
C2···C7vi3.500 (2)H2···C6ix2.933 (18)
C2···C8vi3.575 (2)H2···C9ix3.025 (19)
C3···C8vi3.252 (2)H2···C10ix2.791 (19)
C3···O4viii3.343 (2)H3···C8ix3.046 (18)
C3···C7vi3.423 (2)H3···O4viii2.634 (17)
C3···O2x3.415 (2)H4···S2.821 (17)
C4···O43.1235 (19)H4···O32.729 (17)
C4···O1vi3.416 (2)H4···O42.584 (18)
C4···O33.1943 (19)H6···O22.381 (17)
C4···C8vi3.469 (2)H6···C6xii3.097 (19)
C5···C2xi3.551 (2)H6···C2vii3.027 (18)
C5···C2vi3.545 (2)H6···C3vii3.008 (18)
C6···C2vi3.481 (2)H7···H12.37 (2)
C6···C2xi3.483 (2)
O2—S—O3112.20 (7)C2—C3—C4119.23 (14)
O2—S—O4114.35 (7)C3—C4—C10119.54 (13)
O2—S—C5106.31 (7)C6—C5—C10120.35 (13)
O3—S—O4110.92 (7)S—C5—C10120.01 (10)
O3—S—C5105.53 (7)S—C5—C6119.61 (10)
O4—S—C5106.88 (7)C5—C6—C7121.29 (13)
O2—Na—O4i122.27 (5)C6—C7—C8119.86 (13)
O2—Na—O3ii91.71 (5)O1—C8—C9115.68 (12)
O1iii—Na—O285.61 (5)O1—C8—C7124.04 (13)
O2—Na—N1iii131.41 (5)C7—C8—C9120.28 (13)
O3ii—Na—O4i93.20 (5)N1—C9—C10122.93 (12)
O1iii—Na—O4i103.57 (5)C8—C9—C10119.89 (12)
O4i—Na—N1iii102.47 (5)N1—C9—C8117.16 (12)
O1iii—Na—O3ii161.68 (5)C5—C10—C9118.32 (12)
O3ii—Na—N1iii104.65 (5)C4—C10—C5124.75 (13)
O1iii—Na—N1iii64.86 (4)C4—C10—C9116.90 (12)
Naxiii—O1—C8121.03 (9)N1—C2—H2114.7 (10)
S—O2—Na133.30 (7)C3—C2—H2121.2 (10)
S—O3—Naii139.97 (7)C2—C3—H3118.0 (12)
S—O4—Naxiv140.35 (7)C4—C3—H3122.8 (11)
Naxiii—O1—H1127.8 (13)C3—C4—H4117.5 (11)
C8—O1—H1111.2 (13)C10—C4—H4122.9 (11)
Naxiii—N1—C2121.33 (10)C5—C6—H6115.5 (10)
C2—N1—C9117.40 (12)C7—C6—H6123.2 (10)
Naxiii—N1—C9121.24 (9)C6—C7—H7119.1 (10)
N1—C2—C3123.97 (13)C8—C7—H7121.0 (10)
O3—S—C5—C1059.77 (12)Naxiii—O1—C8—C7179.42 (11)
O4—S—C5—C1058.38 (12)Naxiii—O1—C8—C91.00 (16)
O3—S—O2—Na70.79 (11)C2—N1—C9—C8176.52 (12)
O4—S—O2—Na56.65 (11)Naxiii—N1—C9—C81.68 (16)
C5—S—O2—Na174.33 (9)C9—N1—C2—C31.2 (2)
O2—S—C5—C61.11 (13)Naxiii—N1—C2—C3179.35 (11)
O2—S—O4—Naxiv80.24 (12)Naxiii—N1—C9—C10179.89 (9)
O3—S—O4—Naxiv151.67 (9)C2—N1—C9—C101.69 (19)
C5—S—O4—Naxiv37.11 (12)N1—C2—C3—C40.3 (2)
O2—S—O3—Naii41.33 (12)C2—C3—C4—C101.3 (2)
O4—S—O3—Naii170.58 (9)C3—C4—C10—C5177.57 (13)
C5—S—O3—Naii74.02 (11)C3—C4—C10—C90.79 (19)
O4—S—C5—C6123.64 (11)C10—C5—C6—C70.1 (2)
O2—S—C5—C10179.09 (11)S—C5—C6—C7177.91 (11)
O3—S—C5—C6118.21 (11)C6—C5—C10—C90.64 (19)
O4i—Na—O2—S164.24 (8)C6—C5—C10—C4177.71 (13)
O3ii—Na—O2—S100.90 (10)S—C5—C10—C9177.32 (10)
O1—Naxiii—N1—C2176.60 (12)S—C5—C10—C44.33 (18)
O2xiii—Naxiii—N1—C2125.17 (11)C5—C6—C7—C80.1 (2)
O1—Naxiii—N1—C91.53 (10)C6—C7—C8—C90.3 (2)
O2xiii—Naxiii—N1—C956.70 (12)C6—C7—C8—O1179.24 (13)
O1iii—Na—O2—S60.95 (10)C7—C8—C9—C100.9 (2)
N1iii—Na—O2—S10.43 (13)C7—C8—C9—N1179.18 (13)
O2xiv—Naxiv—O4—S166.12 (9)O1—C8—C9—N10.42 (18)
N1—Naxiii—O1—C81.31 (10)O1—C8—C9—C10178.68 (12)
O2xiii—Naxiii—O1—C8138.94 (11)C8—C9—C10—C51.06 (19)
O2ii—Naii—O3—S84.62 (11)N1—C9—C10—C40.74 (19)
O2xiii—Naxiii—O1—H139.0 (16)N1—C9—C10—C5179.22 (12)
N1—Naxiii—O1—H1179.2 (17)C8—C9—C10—C4177.42 (12)
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x+1, y, z; (iii) x1, y+1/2, z1/2; (iv) x1, y, z; (v) x+1, y, z; (vi) x+2, y+1, z; (vii) x, y+1/2, z1/2; (viii) x+1, y+1, z; (ix) x+2, y+1/2, z+1/2; (x) x, y+1/2, z+1/2; (xi) x+2, y1/2, z+1/2; (xii) x+2, y, z; (xiii) x+1, y+1/2, z+1/2; (xiv) x+1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3v0.805 (18)1.902 (18)2.7029 (17)173.4 (17)
C4—H4···O40.936 (17)2.584 (18)3.1235 (19)117.1 (13)
C6—H6···O20.972 (18)2.381 (17)2.8657 (19)110.2 (12)
Symmetry code: (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Na(C9H6NO4S)]
Mr247.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.284 (2), 10.488 (2), 10.916 (2)
β (°) 103.25 (2)
V3)923.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.34 × 0.26 × 0.17
Data collection
DiffractometerBruker AXS SMART with CCD
diffractometer
Absorption correctionψ scan
(SHELXTL-NT; Bruker, 1997)
Tmin, Tmax0.787, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
132007, 2662, 2119
Rint0.032
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.091, 1.01
No. of reflections2662
No. of parameters169
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.35, 0.29

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1997), PLATON.

Selected geometric parameters (Å, º) top
S—O21.4482 (12)Na—O3ii2.4175 (13)
S—O31.4731 (12)Na—O1iii2.4892 (14)
S—O41.4563 (12)Na—N1iii2.4418 (15)
S—C51.7740 (15)O1—C81.3551 (18)
Na—O22.2979 (14)N1—C21.3213 (19)
Na—O4i2.3357 (13)N1—C91.3735 (18)
O2—S—O3112.20 (7)O1iii—Na—N1iii64.86 (4)
O2—S—O4114.35 (7)Naiv—O1—C8121.03 (9)
O2—S—C5106.31 (7)S—O2—Na133.30 (7)
O3—S—O4110.92 (7)S—O3—Naii139.97 (7)
O3—S—C5105.53 (7)S—O4—Nav140.35 (7)
O4—S—C5106.88 (7)Naiv—N1—C2121.33 (10)
O2—Na—O4i122.27 (5)C2—N1—C9117.40 (12)
O2—Na—O3ii91.71 (5)Naiv—N1—C9121.24 (9)
O1iii—Na—O285.61 (5)N1—C2—C3123.97 (13)
O2—Na—N1iii131.41 (5)S—C5—C10120.01 (10)
O3ii—Na—O4i93.20 (5)S—C5—C6119.61 (10)
O1iii—Na—O4i103.57 (5)O1—C8—C9115.68 (12)
O4i—Na—N1iii102.47 (5)O1—C8—C7124.04 (13)
O1iii—Na—O3ii161.68 (5)N1—C9—C10122.93 (12)
O3ii—Na—N1iii104.65 (5)N1—C9—C8117.16 (12)
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x+1, y, z; (iii) x1, y+1/2, z1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3vi0.805 (18)1.902 (18)2.7029 (17)173.4 (17)
C4—H4···O40.936 (17)2.584 (18)3.1235 (19)117.1 (13)
C6—H6···O20.972 (18)2.381 (17)2.8657 (19)110.2 (12)
Symmetry code: (vi) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds