Download citation
Download citation
link to html
The title compound, C11H15NO, also known as N-(2,4,6-tri­methyl­phenyl)­acet­amide, is an organic non-linear optical material. It crystallizes in the monoclinic system, in a non-centrosymmetric space group Pn.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802014228/ob6164sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802014228/ob6164Isup2.hkl
Contains datablock I

CCDC reference: 197470

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.045
  • wR factor = 0.116
  • Data-to-parameter ratio = 17.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
STRVAL_01 From the CIF: _refine_ls_abs_structure_Flack -0.900 From the CIF: _refine_ls_abs_structure_Flack_su 1.700 Alert C Flack parameter is too small General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.01 From the CIF: _reflns_number_total 2182 Count of symmetry unique reflns 1291 Completeness (_total/calc) 169.02% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 891 Fraction of Friedel pairs measured 0.690 Are heavy atom types Z>Si present no ALERT: MoKa measured Friedel data cannot be used to determine absolute structure in a light-atom study EXCEPT under VERY special conditions. It is preferred that Friedel data is merged in such cases.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The title compound, (I), is found to be of interest as an organic non-linear optical material. The crystals show optical second harmonic generation with the fundamental beam (λ = 1064 nm) of Nd–YAG laser. The single-crystal structure elucidation in a non-centrosymmetric space group further reinforces this observation.

Fig. 1 shows the title molecule. The torsion angle about the C1—N1 bond is 71.4 (3)°, which shows that the amide group is almost perpendicular to the plane of the phenyl ring (Table 1). The packing shows intermolecular (N—H···O) hydrogen bonds running along [101] (Fig. 2 and Table 2).

Experimental top

The title compound, (I), was prepared by the direct reaction of 2,4,6-trimethylaniline and acetic anhydride at room tempertaure for 10 min. Crystals of (I) suitable for single-crystal diffraction study were grown at ambient temperature by slow evaporation of a methanol solution. The compound crystallizes as colorless prisms.

Refinement top

The absolute structure could not be determined by the Flack (1983) test.

Computing details top

Data collection: SMART (Bruker 1998); cell refinement: SMART (Bruker 1998); data reduction: SAINT (Bruker 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I), viewed down the b axis.
N-[2,4,6-trimethylphenyl]acetamide top
Crystal data top
C11H15NOF(000) = 192
Mr = 177.24Dx = 1.106 Mg m3
Monoclinic, PnMelting point: 492 K
Hall symbol: P -2yacMo Kα radiation, λ = 0.71073 Å
a = 8.200 (4) ÅCell parameters from 775 reflections
b = 8.538 (4) Åθ = 3.6–26.2°
c = 8.295 (4) ŵ = 0.07 mm1
β = 113.626 (6)°T = 293 K
V = 532.1 (4) Å3Prism, colorless
Z = 20.52 × 0.44 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1932 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 28.0°, θmin = 2.4°
ϕ and ω scansh = 910
4076 measured reflectionsk = 1011
2182 independent reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.066P)2 + 0.0215P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.010
2182 reflectionsΔρmax = 0.17 e Å3
122 parametersΔρmin = 0.15 e Å3
2 restraintsAbsolute structure: Flack (1983), 891 Friedel pairs
0 constraintsAbsolute structure parameter: 0.9 (17)
Primary atom site location: structure-invariant direct methods
Crystal data top
C11H15NOV = 532.1 (4) Å3
Mr = 177.24Z = 2
Monoclinic, PnMo Kα radiation
a = 8.200 (4) ŵ = 0.07 mm1
b = 8.538 (4) ÅT = 293 K
c = 8.295 (4) Å0.52 × 0.44 × 0.21 mm
β = 113.626 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1932 reflections with I > 2σ(I)
4076 measured reflectionsRint = 0.021
2182 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.116Δρmax = 0.17 e Å3
S = 1.13Δρmin = 0.15 e Å3
2182 reflectionsAbsolute structure: Flack (1983), 891 Friedel pairs
122 parametersAbsolute structure parameter: 0.9 (17)
2 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1327 (2)0.38285 (16)0.54089 (19)0.0631 (4)
N10.3689 (2)0.53910 (16)0.69428 (18)0.0446 (4)
C10.3345 (2)0.66024 (19)0.5633 (2)0.0403 (5)
C20.3574 (3)0.6313 (2)0.4070 (2)0.0482 (5)
C30.3264 (3)0.7532 (2)0.2860 (3)0.0512 (6)
C40.2747 (2)0.9031 (2)0.3171 (2)0.0485 (6)
C50.2531 (2)0.9278 (2)0.4732 (3)0.0474 (6)
C60.2818 (2)0.8088 (2)0.5982 (2)0.0422 (5)
C70.4160 (4)0.4708 (3)0.3697 (3)0.0732 (9)
C80.2465 (3)1.0344 (3)0.1842 (3)0.0691 (8)
C90.2569 (3)0.8398 (3)0.7665 (3)0.0594 (7)
C100.2654 (2)0.41175 (19)0.6758 (2)0.0446 (5)
C110.3229 (3)0.3045 (2)0.8345 (3)0.0608 (6)
H10.461880.548730.790810.0536*
H30.340380.734580.181780.0615*
H50.218531.026380.495320.0569*
H7A0.318220.398790.338280.1099*
H7B0.513040.433450.472970.1099*
H7C0.453830.479000.274470.1099*
H8A0.357811.059820.177980.1037*
H8B0.200751.125240.220380.1037*
H8C0.163011.000960.070580.1037*
H9A0.203920.941130.760210.0892*
H9B0.370400.836890.864510.0892*
H9C0.180540.761090.781470.0892*
H11A0.219830.268650.851340.0912*
H11B0.399700.360650.937120.0912*
H11C0.385520.216140.815630.0912*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0576 (8)0.0547 (8)0.0502 (7)0.0125 (7)0.0064 (6)0.0068 (6)
N10.0454 (8)0.0388 (8)0.0367 (7)0.0024 (6)0.0028 (6)0.0016 (6)
C10.0370 (8)0.0382 (9)0.0394 (8)0.0029 (7)0.0087 (7)0.0011 (7)
C20.0504 (10)0.0423 (9)0.0462 (9)0.0014 (8)0.0134 (8)0.0046 (7)
C30.0555 (11)0.0564 (11)0.0412 (8)0.0023 (9)0.0188 (8)0.0028 (8)
C40.0444 (10)0.0469 (10)0.0465 (9)0.0036 (8)0.0103 (8)0.0053 (8)
C50.0426 (10)0.0378 (9)0.0582 (10)0.0006 (7)0.0164 (9)0.0002 (8)
C60.0386 (9)0.0384 (9)0.0458 (9)0.0055 (7)0.0129 (8)0.0045 (7)
C70.103 (2)0.0545 (12)0.0714 (14)0.0153 (12)0.0448 (14)0.0060 (11)
C80.0726 (15)0.0601 (14)0.0684 (13)0.0018 (11)0.0216 (12)0.0202 (11)
C90.0722 (14)0.0527 (10)0.0596 (12)0.0006 (10)0.0329 (11)0.0055 (9)
C100.0417 (9)0.0389 (9)0.0420 (9)0.0027 (7)0.0050 (8)0.0013 (7)
C110.0587 (12)0.0511 (10)0.0524 (11)0.0018 (9)0.0011 (9)0.0142 (9)
Geometric parameters (Å, º) top
O1—C101.233 (2)C3—H30.9302
N1—C11.444 (2)C5—H50.9296
N1—C101.350 (2)C7—H7A0.9599
N1—H10.8602C7—H7B0.9604
C1—C61.407 (2)C7—H7C0.9600
C1—C21.404 (3)C8—H8A0.9595
C2—C31.397 (3)C8—H8B0.9605
C2—C71.524 (3)C8—H8C0.9598
C3—C41.404 (3)C9—H9A0.9601
C4—C51.392 (3)C9—H9B0.9598
C4—C81.524 (3)C9—H9C0.9599
C5—C61.403 (3)C11—H11A0.9603
C6—C91.513 (3)C11—H11B0.9599
C10—C111.515 (3)C11—H11C0.9601
O1···C23.282 (3)H1···H11B2.1926
O1···C73.259 (4)H1···O1ii2.0682
O1···N1i2.899 (2)H3···H7C2.3759
O1···H7A2.6845H5···H8B2.3809
O1···H1i2.0682H5···H9A2.3629
O1···H9Bi2.7865H7A···O12.6845
O1···H11Bi2.8052H7A···C103.0017
N1···O1ii2.899 (2)H7A···H8Biv2.5660
N1···H9B2.9060H7B···N12.7055
N1···H9C2.7196H7C···H32.3759
N1···H7B2.7055H8B···H52.3809
C2···O13.282 (3)H8B···H7Av2.5660
C7···C103.277 (4)H9A···H52.3629
C7···O13.259 (4)H9B···N12.9060
C10···C73.277 (4)H9B···O1ii2.7865
C3···H11Aiii3.0553H9C···N12.7196
C5···H11Ci3.0243H11A···C3vi3.0553
C9···H12.9615H11B···H12.1926
C10···H7A3.0017H11B···O1ii2.8052
H1···C92.9615H11C···C5ii3.0243
C1—N1—C10124.57 (14)C2—C7—H7A109.51
C10—N1—H1117.72C2—C7—H7B109.47
C1—N1—H1117.71C2—C7—H7C109.49
N1—C1—C6118.33 (14)H7A—C7—H7B109.44
N1—C1—C2120.71 (15)H7A—C7—H7C109.48
C2—C1—C6120.95 (15)H7B—C7—H7C109.43
C3—C2—C7120.36 (18)C4—C8—H8A109.48
C1—C2—C7121.01 (16)C4—C8—H8B109.46
C1—C2—C3118.63 (17)C4—C8—H8C109.47
C2—C3—C4121.9 (2)H8A—C8—H8B109.46
C5—C4—C8121.52 (17)H8A—C8—H8C109.51
C3—C4—C5118.00 (16)H8B—C8—H8C109.44
C3—C4—C8120.47 (17)C6—C9—H9A109.45
C4—C5—C6122.13 (16)C6—C9—H9B109.48
C1—C6—C9120.91 (16)C6—C9—H9C109.46
C5—C6—C9120.71 (17)H9A—C9—H9B109.47
C1—C6—C5118.38 (15)H9A—C9—H9C109.48
N1—C10—C11115.19 (15)H9B—C9—H9C109.49
O1—C10—N1123.38 (15)C10—C11—H11A109.48
O1—C10—C11121.44 (16)C10—C11—H11B109.50
C2—C3—H3119.07C10—C11—H11C109.50
C4—C3—H3119.03H11A—C11—H11B109.46
C4—C5—H5118.91H11A—C11—H11C109.43
C6—C5—H5118.95H11B—C11—H11C109.47
C10—N1—C1—C271.4 (3)N1—C1—C6—C5178.27 (16)
C10—N1—C1—C6110.12 (19)C6—C1—C2—C30.1 (3)
C1—N1—C10—O12.7 (3)C7—C2—C3—C4179.1 (2)
C1—N1—C10—C11177.07 (17)C1—C2—C3—C40.5 (3)
N1—C1—C6—C91.6 (3)C2—C3—C4—C50.6 (3)
C2—C1—C6—C50.2 (3)C2—C3—C4—C8178.5 (2)
N1—C1—C2—C3178.55 (19)C8—C4—C5—C6178.80 (19)
N1—C1—C2—C71.1 (3)C3—C4—C5—C60.2 (3)
C2—C1—C6—C9179.91 (18)C4—C5—C6—C10.1 (3)
C6—C1—C2—C7179.5 (2)C4—C5—C6—C9179.95 (18)
Symmetry codes: (i) x1/2, y+1, z1/2; (ii) x+1/2, y+1, z+1/2; (iii) x+1/2, y+1, z1/2; (iv) x, y1, z; (v) x, y+1, z; (vi) x1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.862.072.899 (2)162
Symmetry code: (ii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H15NO
Mr177.24
Crystal system, space groupMonoclinic, Pn
Temperature (K)293
a, b, c (Å)8.200 (4), 8.538 (4), 8.295 (4)
β (°) 113.626 (6)
V3)532.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.52 × 0.44 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4076, 2182, 1932
Rint0.021
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 1.13
No. of reflections2182
No. of parameters122
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15
Absolute structureFlack (1983), 891 Friedel pairs
Absolute structure parameter0.9 (17)

Computer programs: SMART (Bruker 1998), SAINT (Bruker 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1996), PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
O1—C101.233 (2)N1—C101.350 (2)
N1—C11.444 (2)
C1—N1—C10124.57 (14)N1—C10—C11115.19 (15)
N1—C1—C6118.33 (14)O1—C10—N1123.38 (15)
N1—C1—C2120.71 (15)O1—C10—C11121.44 (16)
C10—N1—C1—C271.4 (3)C10—N1—C1—C6110.12 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.072.899 (2)162
Symmetry code: (i) x+1/2, y+1, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds