Download citation
Download citation
link to html
The title compound, [Au(4,6-Me2pymS)(PPh3)] or [Au(C6H7N2S)(C18H15P)], exhibits a linear Au atom S—Au—P geometry, with Au—P = 2.247 (2) Å, Au—S = 2.289 (2) Å and P—Au—S = 178.19 (11)°. There is an intramolecular interaction between one N atom of the 4,6-Me2pymS ligand and the Au atom, with an Au...N distance of 3.154 (8) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802013776/ob6162sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802013776/ob6162Isup2.hkl
Contains datablock I

CCDC reference: 197443

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.015 Å
  • R factor = 0.047
  • wR factor = 0.100
  • Data-to-parameter ratio = 18.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The preparation of the novel two triphenylphosphanegold(I) complexes of the anions derived from pyridine-2-thione (2-pySH) and 1H-pyrimidine-2-thione (2-pymSH) have been recently reported with their X-ray crystal structures determination (Cookson & Tiekink, 1993). In this paper, we report the preparation, structural characterization, and some observations about the title compound, (I).

The anionic 4,6-Me2pymS ligand is coordinated via the S atom (Fig. 1 and Table 1). The Au—S bond length and S—Au—P angle in (I) are close to those found for the two complexes [Au(2-pyS)(PPh3)] [2.297 (2) Å and 177.9 (1)°, respectively] and [Au(2-pymS)(PPh3)] [2.310 (3) Å and 174.7 (1)°, respectively]. The Au atom shows nearly linear coordination with the S and P atoms, despite a fairly close intermolecular interaction with an N atom of the 4,6-Me2pymS ligand. This interaction Au1···N42 of 3.154 (8) Å, is slightly less than the sum of the van der Waals radii (Pauling, 1960) of the Au and N atoms, 3.25 Å. Given the linearity of the S–Au–P angle, the 4,6-Me2pymS ligand appears to be ligating essentially in the monodentate mode through its S atom. There is no metal–metal interaction in the solid state but a weak intermolecular C—H···N hydrogen bond is present (Desiraju & Steiner, 1999). three-centered hydrogen bond exists between atom N46 and the H atoms of two phenyl groups of different molecules (Table 2).

In CDCl3 solution at room temperature, the 1H NMR data shows inequivalent methyl groups for the anionic 4,6-Me2pymS ligand. This suggests that the ligand is not permitted to rotate freely in solution, which is consistent with the persistence of the intramolecular interaction between the N atom of the ligand and the Au atom.

Experimental top

The compound 4,6-dimethylpyrimidine-2(1H)-thione (4,6-Me2pymSH) was prepared according to the literature method (Nigam et al., 1983) and the title complex was synthesized by the following procedure: 0.28 g (2 mmol) of 4,6-Me2pymSH was dissolved in 30 ml of THF (freshly distilled) in a Schlenk tube kept under N2 atmosphere. To the solution, 0.84 ml (6 mmol) of triethylamine, NEt3, was added and the resulting mixture was stirred for 30 min. To this solution, 0.99 g (2 mmol) of [AuClP(Ph3)] dissolved in 10 ml of THF was added, over a period of 10 min, and the mixture was stirred for about 3 h. A white flocculent precipitate was filtered off and identified as triethylamine hydrochloride, [(HNEt3)Cl]. Slow evaporation of the solvent led to the appearance of a white microcrystalline solid [yield 1.0 g (92%)]. Well developed crystals of (I) suitable for X-ray analysis were obtained by recrystallization from a 1:1 (v/v) mixture of dichloromethane and n-hexane (m.p. 470–472 K).

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of molecule (I) with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
(4,6-Dimethylpyrimidine-2-thiolato)triphenylphosphanegold(I) top
Crystal data top
[Au(C6H7N2S)(C18H15P)]Z = 2
Mr = 598.43F(000) = 580
Triclinic, P1Dx = 1.730 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8282 (17) ÅCell parameters from 25 reflections
b = 11.144 (2) Åθ = 7.3–15.2°
c = 12.318 (3) ŵ = 6.58 mm1
α = 97.104 (19)°T = 293 K
β = 105.586 (18)°Block, colorless
γ = 95.05 (2)°0.20 × 0.15 × 0.10 mm
V = 1148.9 (4) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.089
Graphite monochromatorθmax = 27.0°, θmin = 3.1°
ω/2θ scansh = 1111
Absorption correction: ψ scan
(ABSPSI routine in PLATON; Spek, 1995)
k = 1414
Tmin = 0.318, Tmax = 0.518l = 1515
8437 measured reflections3 standard reflections every 300 reflections
5002 independent reflections intensity decay: 12.4%
2962 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0366P)2]
where P = (Fo2 + 2Fc2)/3
5002 reflections(Δ/σ)max = 0.016
264 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 1.43 e Å3
Crystal data top
[Au(C6H7N2S)(C18H15P)]γ = 95.05 (2)°
Mr = 598.43V = 1148.9 (4) Å3
Triclinic, P1Z = 2
a = 8.8282 (17) ÅMo Kα radiation
b = 11.144 (2) ŵ = 6.58 mm1
c = 12.318 (3) ÅT = 293 K
α = 97.104 (19)°0.20 × 0.15 × 0.10 mm
β = 105.586 (18)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2962 reflections with I > 2σ(I)
Absorption correction: ψ scan
(ABSPSI routine in PLATON; Spek, 1995)
Rint = 0.089
Tmin = 0.318, Tmax = 0.5183 standard reflections every 300 reflections
8437 measured reflections intensity decay: 12.4%
5002 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.98Δρmax = 0.88 e Å3
5002 reflectionsΔρmin = 1.43 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.12719 (5)0.01807 (3)0.33320 (4)0.04768 (13)
P10.0603 (3)0.19773 (18)0.3973 (2)0.0412 (6)
C110.1190 (9)0.3162 (7)0.3212 (8)0.044 (2)
C120.0856 (12)0.2900 (8)0.2039 (9)0.062 (3)
H120.03730.21290.16650.074*
C130.1231 (14)0.3775 (11)0.1421 (10)0.082 (3)
H130.09650.36060.06290.099*
C140.2003 (14)0.4897 (9)0.1984 (11)0.075 (3)
H140.22820.54850.15750.090*
C150.2355 (13)0.5143 (8)0.3128 (12)0.074 (3)
H150.28900.59020.34990.089*
C160.1936 (11)0.4285 (7)0.3775 (9)0.057 (3)
H160.21590.44730.45630.069*
C210.1516 (9)0.1998 (7)0.3777 (7)0.0393 (19)
C220.2205 (11)0.3069 (8)0.3699 (8)0.052 (2)
H220.15840.38070.37620.062*
C230.3832 (13)0.3027 (12)0.3526 (10)0.075 (3)
H230.43020.37410.34790.090*
C240.4722 (13)0.1965 (13)0.3428 (10)0.082 (3)
H240.58110.19560.32990.099*
C250.4085 (12)0.0881 (11)0.3512 (9)0.074 (3)
H250.47300.01550.34470.089*
C260.2459 (11)0.0900 (8)0.3697 (8)0.058 (3)
H260.20010.01830.37670.070*
C310.1562 (10)0.2533 (7)0.5460 (8)0.044 (2)
C320.3148 (12)0.2374 (8)0.5904 (10)0.062 (3)
H320.36700.19530.54450.074*
C330.3925 (12)0.2832 (10)0.7004 (10)0.069 (3)
H330.49910.27440.72870.083*
C340.3165 (14)0.3422 (10)0.7707 (10)0.076 (3)
H340.37070.37250.84630.091*
C350.1593 (14)0.3563 (10)0.7282 (10)0.079 (3)
H350.10590.39620.77460.095*
C360.0829 (12)0.3107 (8)0.6170 (9)0.060 (3)
H360.02380.31930.58880.072*
S10.2033 (4)0.1631 (2)0.2715 (3)0.0678 (8)
C410.2393 (9)0.1429 (7)0.1417 (8)0.047 (2)
N420.2222 (8)0.0352 (6)0.1043 (7)0.0515 (19)
C430.2557 (11)0.0261 (8)0.0062 (9)0.057 (2)
C440.3061 (13)0.1215 (9)0.0503 (8)0.067 (3)
H440.33250.11320.11740.080*
C4310.2333 (14)0.0916 (10)0.0381 (10)0.087 (4)
H43A0.12660.08760.08560.130*
H43B0.30600.10640.08200.130*
H43C0.25290.15670.02470.130*
C450.3174 (13)0.2289 (9)0.0075 (9)0.064 (3)
C4510.3623 (17)0.3385 (10)0.0653 (10)0.098 (4)
H45A0.45240.31580.09150.148*
H45B0.27510.37560.12920.148*
H45C0.38880.39540.01280.148*
N460.2823 (9)0.2391 (6)0.0898 (7)0.054 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0466 (2)0.03640 (17)0.0677 (3)0.00784 (13)0.02587 (17)0.01328 (14)
P10.0348 (13)0.0367 (11)0.0559 (16)0.0047 (9)0.0171 (12)0.0117 (10)
C110.032 (5)0.037 (4)0.070 (7)0.011 (3)0.019 (5)0.018 (4)
C120.066 (7)0.057 (6)0.063 (7)0.002 (5)0.019 (6)0.016 (5)
C130.093 (9)0.090 (8)0.071 (8)0.003 (7)0.026 (7)0.035 (7)
C140.091 (9)0.062 (7)0.097 (10)0.021 (6)0.054 (8)0.042 (7)
C150.075 (8)0.040 (5)0.119 (11)0.000 (5)0.050 (8)0.012 (6)
C160.067 (7)0.037 (5)0.075 (7)0.004 (4)0.033 (6)0.009 (5)
C210.029 (4)0.053 (5)0.036 (5)0.001 (4)0.009 (4)0.007 (4)
C220.046 (6)0.053 (5)0.058 (6)0.007 (4)0.017 (5)0.011 (4)
C230.048 (7)0.102 (9)0.077 (9)0.024 (6)0.015 (6)0.015 (7)
C240.039 (6)0.129 (11)0.075 (9)0.007 (7)0.012 (6)0.016 (8)
C250.040 (6)0.100 (8)0.083 (9)0.008 (6)0.017 (6)0.027 (7)
C260.045 (6)0.064 (6)0.069 (7)0.009 (4)0.022 (5)0.020 (5)
C310.035 (5)0.039 (4)0.061 (6)0.003 (4)0.016 (5)0.015 (4)
C320.051 (6)0.061 (6)0.073 (8)0.017 (5)0.011 (6)0.020 (5)
C330.031 (6)0.086 (7)0.074 (8)0.001 (5)0.012 (6)0.012 (6)
C340.073 (8)0.088 (8)0.057 (8)0.007 (6)0.010 (7)0.000 (6)
C350.060 (8)0.099 (8)0.074 (9)0.011 (6)0.018 (7)0.001 (7)
C360.050 (6)0.070 (6)0.055 (7)0.001 (5)0.014 (6)0.006 (5)
S10.097 (2)0.0404 (12)0.091 (2)0.0262 (13)0.0551 (18)0.0249 (13)
C410.031 (5)0.041 (5)0.061 (6)0.001 (4)0.000 (4)0.009 (4)
N420.041 (4)0.046 (4)0.063 (6)0.000 (3)0.008 (4)0.008 (4)
C430.048 (6)0.062 (6)0.058 (7)0.001 (5)0.006 (5)0.017 (5)
C440.075 (8)0.081 (7)0.036 (6)0.006 (6)0.004 (5)0.009 (5)
C4310.091 (9)0.093 (8)0.088 (9)0.019 (7)0.029 (7)0.045 (7)
C450.070 (7)0.063 (6)0.055 (7)0.010 (5)0.014 (6)0.001 (5)
C4510.134 (12)0.096 (9)0.057 (8)0.024 (8)0.019 (8)0.006 (6)
N460.048 (5)0.054 (4)0.055 (6)0.004 (4)0.010 (4)0.002 (4)
Geometric parameters (Å, º) top
Au1—P12.247 (2)C31—C361.352 (12)
Au1—S12.289 (2)C31—C321.396 (12)
Au1—N423.154 (8)C32—C331.355 (13)
P1—C311.802 (9)C32—H320.9300
P1—C211.823 (8)C33—C341.372 (15)
P1—C111.827 (8)C33—H330.9300
C11—C161.370 (11)C34—C351.375 (14)
C11—C121.382 (12)C34—H340.9300
C12—C131.379 (13)C35—C361.364 (13)
C12—H120.9300C35—H350.9300
C13—C141.375 (15)C36—H360.9300
C13—H130.9300S1—C411.749 (10)
C14—C151.346 (14)C41—N461.316 (10)
C14—H140.9300C41—N421.344 (10)
C15—C161.404 (13)N42—C431.332 (12)
C15—H150.9300C43—C441.371 (13)
C16—H160.9300C43—C4311.492 (13)
C21—C221.388 (11)C44—C451.367 (13)
C21—C261.396 (11)C44—H440.9300
C22—C231.390 (13)C431—H43A0.9600
C22—H220.9300C431—H43B0.9600
C23—C241.335 (15)C431—H43C0.9600
C23—H230.9300C45—N461.332 (12)
C24—C251.380 (15)C45—C4511.476 (14)
C24—H240.9300C451—H45A0.9600
C25—C261.390 (13)C451—H45B0.9600
C25—H250.9300C451—H45C0.9600
C26—H260.9300
P1—Au1—S1178.19 (11)C36—C31—P1123.5 (7)
P1—Au1—N42123.97 (14)C32—C31—P1118.4 (7)
S1—Au1—N4256.27 (14)C33—C32—C31119.9 (10)
C31—P1—C21106.3 (4)C33—C32—H32120.0
C31—P1—C11105.1 (4)C31—C32—H32120.0
C21—P1—C11105.5 (4)C32—C33—C34121.0 (10)
C31—P1—Au1114.3 (3)C32—C33—H33119.5
C21—P1—Au1114.6 (3)C34—C33—H33119.5
C11—P1—Au1110.2 (3)C33—C34—C35119.4 (10)
C16—C11—C12120.2 (8)C33—C34—H34120.3
C16—C11—P1121.6 (8)C35—C34—H34120.3
C12—C11—P1118.2 (6)C36—C35—C34119.0 (11)
C13—C12—C11120.5 (9)C36—C35—H35120.5
C13—C12—H12119.7C34—C35—H35120.5
C11—C12—H12119.7C31—C36—C35122.6 (10)
C14—C13—C12119.5 (11)C31—C36—H36118.7
C14—C13—H13120.3C35—C36—H36118.7
C12—C13—H13120.3C41—S1—Au1104.4 (3)
C15—C14—C13120.0 (10)N46—C41—N42126.4 (9)
C15—C14—H14120.0N46—C41—S1114.3 (6)
C13—C14—H14120.0N42—C41—S1119.3 (7)
C14—C15—C16121.7 (10)C43—N42—C41115.7 (8)
C14—C15—H15119.1C43—N42—Au1164.3 (6)
C16—C15—H15119.1C41—N42—Au180.0 (5)
C11—C16—C15118.1 (10)N42—C43—C44120.9 (9)
C11—C16—H16121.0N42—C43—C431116.4 (9)
C15—C16—H16121.0C44—C43—C431122.6 (10)
C22—C21—C26119.7 (8)C45—C44—C43119.6 (10)
C22—C21—P1121.8 (6)C45—C44—H44120.2
C26—C21—P1118.5 (6)C43—C44—H44120.2
C21—C22—C23119.4 (9)C43—C431—H43A109.5
C21—C22—H22120.3C43—C431—H43B109.5
C23—C22—H22120.3H43A—C431—H43B109.5
C24—C23—C22120.2 (11)C43—C431—H43C109.5
C24—C23—H23119.9H43A—C431—H43C109.5
C22—C23—H23119.9H43B—C431—H43C109.5
C23—C24—C25122.4 (11)N46—C45—C44119.7 (9)
C23—C24—H24118.8N46—C45—C451116.7 (9)
C25—C24—H24118.8C44—C45—C451123.6 (11)
C24—C25—C26118.6 (10)C45—C451—H45A109.5
C24—C25—H25120.7C45—C451—H45B109.5
C26—C25—H25120.7H45A—C451—H45B109.5
C25—C26—C21119.8 (9)C45—C451—H45C109.5
C25—C26—H26120.1H45A—C451—H45C109.5
C21—C26—H26120.1H45B—C451—H45C109.5
C36—C31—C32118.1 (9)C41—N46—C45117.6 (8)
N42—Au1—P1—C31133.1 (3)C21—P1—C31—C32166.6 (6)
N42—Au1—P1—C21103.8 (3)C11—P1—C31—C3281.8 (7)
N42—Au1—P1—C1115.0 (4)Au1—P1—C31—C3239.1 (7)
C31—P1—C11—C1611.2 (8)C36—C31—C32—C332.6 (13)
C21—P1—C11—C16100.9 (7)P1—C31—C32—C33176.9 (7)
Au1—P1—C11—C16134.8 (7)C31—C32—C33—C342.0 (15)
C31—P1—C11—C12169.1 (7)C32—C33—C34—C350.7 (17)
C21—P1—C11—C1278.8 (7)C33—C34—C35—C360.1 (17)
Au1—P1—C11—C1245.5 (7)C32—C31—C36—C352.1 (14)
C16—C11—C12—C131.6 (15)P1—C31—C36—C35177.4 (8)
P1—C11—C12—C13178.1 (8)C34—C35—C36—C310.9 (17)
C11—C12—C13—C142.7 (17)N42—Au1—S1—C410.6 (3)
C12—C13—C14—C151.4 (18)Au1—S1—C41—N46178.7 (6)
C13—C14—C15—C160.8 (17)Au1—S1—C41—N421.4 (7)
C12—C11—C16—C150.6 (13)N46—C41—N42—C431.4 (13)
P1—C11—C16—C15179.7 (7)S1—C41—N42—C43178.4 (7)
C14—C15—C16—C111.9 (15)N46—C41—N42—Au1179.2 (8)
C31—P1—C21—C2278.1 (8)S1—C41—N42—Au11.0 (5)
C11—P1—C21—C2233.2 (8)P1—Au1—N42—C431 (2)
Au1—P1—C21—C22154.6 (6)S1—Au1—N42—C43177 (2)
C31—P1—C21—C26102.4 (7)P1—Au1—N42—C41178.7 (4)
C11—P1—C21—C26146.4 (7)S1—Au1—N42—C410.8 (4)
Au1—P1—C21—C2624.9 (8)C41—N42—C43—C440.8 (13)
C26—C21—C22—C230.8 (14)Au1—N42—C43—C44177.0 (16)
P1—C21—C22—C23178.7 (8)C41—N42—C43—C431178.5 (8)
C21—C22—C23—C240.5 (16)Au1—N42—C43—C4314 (3)
C22—C23—C24—C251.2 (19)N42—C43—C44—C452.1 (15)
C23—C24—C25—C260.5 (18)C431—C43—C44—C45177.1 (10)
C24—C25—C26—C210.9 (16)C43—C44—C45—N461.3 (15)
C22—C21—C26—C251.5 (14)C43—C44—C45—C451176.7 (10)
P1—C21—C26—C25178.0 (8)N42—C41—N46—C452.2 (13)
C21—P1—C31—C3613.9 (8)S1—C41—N46—C45177.6 (7)
C11—P1—C31—C3697.6 (8)C44—C45—N46—C410.7 (14)
Au1—P1—C31—C36141.4 (7)C451—C45—N46—C41178.9 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N46i0.932.653.547 (13)162
C33—H33···N46ii0.932.633.426 (14)144
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Au(C6H7N2S)(C18H15P)]
Mr598.43
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.8282 (17), 11.144 (2), 12.318 (3)
α, β, γ (°)97.104 (19), 105.586 (18), 95.05 (2)
V3)1148.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)6.58
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(ABSPSI routine in PLATON; Spek, 1995)
Tmin, Tmax0.318, 0.518
No. of measured, independent and
observed [I > 2σ(I)] reflections
8437, 5002, 2962
Rint0.089
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.100, 0.98
No. of reflections5002
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 1.43

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), SET4 in CAD-4 Software, HELENA (Spek, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Au1—P12.247 (2)Au1—N423.154 (8)
Au1—S12.289 (2)S1—C411.749 (10)
P1—Au1—S1178.19 (11)S1—Au1—N4256.27 (14)
P1—Au1—N42123.97 (14)C41—S1—Au1104.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N46i0.932.653.547 (13)162
C33—H33···N46ii0.932.633.426 (14)144
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds