Download citation
Download citation
link to html
Both the cation and anion in the title compound, [Mg(H2O)6][Mo2O5(C6H7NO6)2]·6H2O, lie on centers of sym­metry, and their metals are both six-coordinate in octahedral environments.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801020748/ob6100sup1.cif
Contains datablocks I, mo

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801020748/ob6100Isup2.hkl
Contains datablock I

CCDC reference: 180519

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.028
  • wR factor = 0.076
  • Data-to-parameter ratio = 14.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_701 Alert C Bond Calc 1.8796(3), Rep 1.8800(10), Dev. 1.33 Sigma MO1 -O7 1.555 1.555 PLAT_731 Alert C Bond Calc 1.8796(3), Rep 1.8800(10) .... 3.33 s.u-Ratio MO1 -O7 1.555 1.555 PLAT_731 Alert C Bond Calc 0.84(3), Rep 0.842(10) .... 3.00 s.u-Ratio O5 -H5 1.555 1.555 PLAT_735 Alert C D-H Calc 0.84(3), Rep 0.840(10) .... 3.00 s.u-Ratio O5 -H5 1.555 1.555
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
4 Alert Level C = Please check

Comment top

Oxomolybdate(VI) complexes are of interest as possible models for molybdenum sites in metalloenzymes (Chan et al., 1993; Hille, 1996; Stiefel, 1977). Among the complexes, those chelated by tridentate ligands derive their stability through the binding of the ligand to the vacant coordination sites (Gebreyes et al., 1985). The deprotonated nitrilotriacetato ligand, which functions as a tetradentate entity in a number of metal complexes, is only tridentate in the dipyridinium (Matsumoto et al., 1984), monohydrated bis(tetrabutylammonium) (Liu et al., 1990) and octahydrated disodium (Knobler et al., 1980, 1983) µ-oxobis(hydrogennitrilotriacetatodioxomolybdates). In the peroxo complex, potassium nitrilotriacetato(oxo)(peroxo)molybdenate monohydate, the ligand behaves as a tetradentate chelate (Won et al., 1994). On the other hand, as the hexaaquamagnesium(II) cation has been used to balance the charges of a number of organic (Arranz Mascarós et al., 2000; Castellari et al., 1999, Kariuki et al., 1994; Solans, Font-Altaba, Aguilo et al., 1983) and inorganic (Coiro & Mazza, 1991; Kariuki & Jones, 1989; Maslen et al., 1988; Solans, Font-Altaba, Oliva & Herrera, 1983) derivatives, we have used this dication as counter-ion in the title compound, (I).

Both the cation and anion lies at the center of symmetry; for the anion, this symmetry requires the Mo—O—Mo unit to be linear. The Mo—O bond distance is similar to that [Mo—O = 1.880 (1) Å] found in the sodium salt (Knobler et al., 1983), which is also centrosymmetric. In the related dipotassium tetrasodium oxobis(citratodioxomolybdate), the Mo—O—Mo unit is bent [Mo—O—Mo = 144.7 (2)°; Zhou et al., 1997]. In the title compound, the anions and the water-coordinated cations are linked by hydrogen bonds into a three-dimensional network motif.

Experimental top

Magnesium molybdate (10 mmol) dissolved in water (10 ml) was added to nitrilotriacetic acid (20 mmol) dissolved in water (5 ml) and the mixture was stirred for several hours. The solution was concentrated to about 10 ml; colorless crystals of the title hydrate, (I), separated from the solution in 35% yield when it was set aside for several days.

Refinement top

The acid H atom was located and refined. The H atoms of the water molecules were located in the difference maps, but these were not refined. For the O3w water, one of its H atoms is disordered over two positions.

Computing details top

Data collection: CAD-4 VAX/PC Fortran System (Enraf-Nonius, 1988); cell refinement: CAD-4 VAX/PC Fortran System; data reduction: XCAD4 (Harms, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the anion of the title compound at the 50% probability level.
Hexaaquamagnesium bis[trans[nitrilotriacetato(2-)-O1,N,O2]-µ-oxo-cis-dioxomolybdate(VI)] hexahydrate top
Crystal data top
[Mg(H2O)6][Mo2O5(C6H7NO6)2]·6H2OZ = 1
Mr = 890.63F(000) = 452
Triclinic, P1Dx = 1.881 Mg m3
a = 6.4787 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2555 (6) ÅCell parameters from 25 reflections
c = 13.9995 (6) Åθ = 12.5–13.0°
α = 91.014 (4)°µ = 0.93 mm1
β = 101.315 (3)°T = 293 K
γ = 106.592 (4)°Irregular block, colorless
V = 786.44 (7) Å30.58 × 0.58 × 0.36 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2877 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.010
Graphite monochromatorθmax = 26.0°, θmin = 1.5°
ω scansh = 07
Absorption correction: empirical (using intensity measurements)
via ψ scans (North et al., 1968)
k = 1110
Tmin = 0.618, Tmax = 0.716l = 1716
3339 measured reflections3 standard reflections every 60 min
3079 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.3336P]
where P = (Fo2 + 2Fc2)/3
3079 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.52 e Å3
Crystal data top
[Mg(H2O)6][Mo2O5(C6H7NO6)2]·6H2Oγ = 106.592 (4)°
Mr = 890.63V = 786.44 (7) Å3
Triclinic, P1Z = 1
a = 6.4787 (3) ÅMo Kα radiation
b = 9.2555 (6) ŵ = 0.93 mm1
c = 13.9995 (6) ÅT = 293 K
α = 91.014 (4)°0.58 × 0.58 × 0.36 mm
β = 101.315 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2877 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scans (North et al., 1968)
Rint = 0.010
Tmin = 0.618, Tmax = 0.7163 standard reflections every 60 min
3339 measured reflections intensity decay: none
3079 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0281 restraint
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.38 e Å3
3079 reflectionsΔρmin = 0.52 e Å3
215 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.34964 (4)0.47655 (3)0.603349 (16)0.02808 (9)
Mg11.00001.00001.00000.0343 (3)
O10.3185 (3)0.4629 (3)0.74794 (15)0.0404 (5)
O20.3638 (4)0.3656 (3)0.89032 (17)0.0577 (7)
O30.6482 (3)0.6415 (2)0.68279 (15)0.0389 (5)
O40.9863 (4)0.6962 (2)0.77156 (18)0.0506 (6)
O50.7428 (4)0.0227 (3)0.57847 (17)0.0511 (6)
O60.8650 (4)0.1455 (2)0.72709 (15)0.0459 (5)
O70.50000.50000.50000.0396 (7)
O80.2116 (4)0.6077 (2)0.58794 (16)0.0428 (5)
O90.1564 (3)0.3076 (2)0.56796 (16)0.0444 (5)
O1w1.0316 (4)0.9713 (2)0.85900 (14)0.0426 (5)
O2w1.0153 (5)1.2215 (3)0.9790 (2)0.0599 (7)
O3w0.6571 (4)0.9411 (3)0.95741 (19)0.0623 (7)
O4w0.7418 (7)1.3545 (5)1.0429 (3)0.1053 (13)
O5w1.0722 (4)0.0913 (3)0.60962 (18)0.0542 (6)
O6w0.4555 (5)0.8498 (4)0.7693 (2)0.0842 (10)
N10.5904 (3)0.3352 (2)0.67952 (15)0.0267 (4)
C10.3885 (5)0.3731 (3)0.8055 (2)0.0377 (6)
C20.4974 (6)0.2705 (4)0.7630 (2)0.0452 (7)
H2A0.61400.25500.81310.054*
H2B0.38990.17280.74150.054*
C30.8167 (4)0.6052 (3)0.7247 (2)0.0318 (6)
C40.8117 (5)0.4423 (3)0.7110 (3)0.0443 (7)
H4A0.89780.43400.66290.053*
H4B0.88240.41320.77220.053*
C50.7485 (5)0.1248 (3)0.6462 (2)0.0354 (6)
C60.5926 (5)0.2150 (3)0.6092 (2)0.0353 (6)
H6A0.63170.26100.55100.042*
H6B0.44470.14610.59020.042*
H50.843 (4)0.016 (4)0.601 (2)0.056 (12)*
H1w11.02330.88580.83320.050*
H1w20.98231.02210.81430.050*
H2w10.92931.26600.99530.050*
H2w21.09861.27720.94580.050*
H3w10.59770.92030.89900.050*
H3w20.58560.97400.99100.050*0.50
H3w30.62770.85000.97510.050*0.50
H4w10.75291.43251.07770.050*
H4w20.62641.33420.99830.050*
H5w11.07420.13050.55520.050*
H5w21.16080.11490.65500.050*
H6w10.31820.80540.75960.050*
H6w20.51520.80270.73610.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02445 (14)0.03280 (14)0.02907 (14)0.01239 (9)0.00459 (9)0.00228 (9)
Mg10.0404 (7)0.0338 (7)0.0317 (7)0.0143 (6)0.0099 (6)0.0015 (5)
O10.0386 (11)0.0567 (13)0.0356 (10)0.0256 (10)0.0126 (9)0.0068 (9)
O20.0668 (16)0.0832 (18)0.0387 (12)0.0357 (14)0.0263 (11)0.0157 (12)
O30.0335 (11)0.0317 (10)0.0495 (12)0.0123 (8)0.0003 (9)0.0011 (9)
O40.0359 (12)0.0375 (12)0.0700 (16)0.0099 (10)0.0053 (11)0.0170 (11)
O50.0577 (15)0.0472 (13)0.0512 (13)0.0303 (12)0.0022 (11)0.0151 (10)
O60.0641 (15)0.0459 (12)0.0340 (11)0.0319 (11)0.0018 (10)0.0041 (9)
O70.0437 (17)0.0493 (17)0.0348 (15)0.0235 (14)0.0143 (13)0.0091 (12)
O80.0406 (12)0.0507 (13)0.0446 (12)0.0264 (10)0.0068 (9)0.0067 (10)
O90.0345 (11)0.0416 (12)0.0498 (13)0.0059 (9)0.0005 (9)0.0014 (9)
O1w0.0659 (15)0.0377 (11)0.0303 (10)0.0251 (10)0.0101 (10)0.0037 (8)
O2w0.0855 (19)0.0405 (13)0.0723 (17)0.0271 (13)0.0462 (15)0.0181 (11)
O3w0.0448 (14)0.0840 (19)0.0569 (15)0.0208 (13)0.0071 (11)0.0164 (13)
O4w0.117 (3)0.121 (3)0.098 (3)0.084 (3)0.000 (2)0.026 (2)
O5w0.0687 (16)0.0527 (14)0.0516 (14)0.0321 (13)0.0158 (12)0.0029 (11)
O6w0.0652 (19)0.094 (2)0.090 (2)0.0301 (17)0.0020 (16)0.0411 (18)
N10.0254 (11)0.0267 (11)0.0287 (11)0.0093 (9)0.0053 (9)0.0009 (8)
C10.0310 (14)0.0463 (17)0.0369 (15)0.0095 (13)0.0122 (12)0.0043 (12)
C20.059 (2)0.0463 (17)0.0443 (17)0.0270 (16)0.0252 (15)0.0159 (14)
C30.0285 (14)0.0309 (14)0.0353 (14)0.0077 (11)0.0067 (11)0.0025 (11)
C40.0268 (14)0.0333 (15)0.070 (2)0.0113 (12)0.0012 (14)0.0035 (14)
C50.0436 (16)0.0276 (13)0.0386 (16)0.0137 (12)0.0127 (13)0.0027 (11)
C60.0421 (16)0.0355 (14)0.0308 (13)0.0181 (13)0.0038 (12)0.0008 (11)
Geometric parameters (Å, º) top
Mo1—O12.076 (2)O2w—H2w10.843 (2)
Mo1—O32.172 (2)O2w—H2w20.849 (2)
Mo1—O71.880 (1)O3w—H3w10.827 (2)
Mo1—O81.695 (2)O3w—H3w20.830 (2)
Mo1—O91.694 (2)O3w—H3w30.861 (3)
Mo1—N12.418 (2)O4w—H4w10.841 (3)
Mg1—O1w2.045 (2)O4w—H4w20.847 (4)
Mg1—O1wi2.045 (2)O5w—H5w10.842 (2)
Mg1—O2w2.053 (2)O5w—H5w20.845 (2)
Mg1—O2wi2.053 (2)O6w—H6w10.848 (3)
Mg1—O3w2.089 (3)O6w—H6w20.845 (3)
Mg1—O3wi2.089 (3)N1—C41.469 (4)
Mg1—H3w32.3677 (1)N1—C21.477 (4)
O1—C11.281 (4)N1—C61.478 (3)
O2—C11.229 (4)C1—C21.511 (4)
O3—C31.270 (3)C2—H2A0.9700
O4—C31.231 (3)C2—H2b0.9700
O5—C51.314 (3)C3—C41.507 (4)
O5—H50.842 (10)C4—H4a0.9700
O6—C51.210 (4)C4—H4b0.9700
O7—Mo1ii1.8796 (2)C5—C61.510 (4)
O1w—H1w10.847 (2)C6—H6a0.9700
O1w—H1w20.855 (2)C6—H6b0.9700
O1—Mo1—O376.6 (1)Mg1—O2w—H2w2124.1 (2)
O1—Mo1—O7155.9 (1)H2w1—O2w—H2w2110.5 (3)
O1—Mo1—O891.1 (1)Mg1—O3w—H3w1119.7 (2)
O1—Mo1—O992.5 (1)Mg1—O3w—H3w2119.8 (2)
O1—Mo1—N173.1 (1)H3w1—O3w—H3w2114.9 (3)
O3—Mo1—O783.9 (1)Mg1—O3w—H3w398.00 (19)
O3—Mo1—O892.1 (1)H3w1—O3w—H3w397.5 (3)
O3—Mo1—O9159.5 (1)H3w2—O3w—H3w398.2 (3)
O3—Mo1—N173.4 (1)H4w1—O4w—H4w2110.2 (4)
O7—Mo1—O8103.8 (1)H5w1—O5w—H5w2110.7 (3)
O7—Mo1—O9101.4 (1)H6w1—O6w—H6w2109.8 (3)
O7—Mo1—N188.0 (1)C4—N1—C2112.2 (3)
O8—Mo1—O9105.6 (1)C4—N1—C6110.6 (2)
O8—Mo1—N1160.5 (1)C2—N1—C6111.2 (2)
O9—Mo1—N186.9 (1)C4—N1—Mo1107.37 (16)
O1w—Mg1—O1wi180.000 (1)C2—N1—Mo1105.22 (16)
O1w—Mg1—O2w89.1 (1)C6—N1—Mo1110.05 (15)
O1wi—Mg1—O2w90.89 (9)O2—C1—O1122.7 (3)
O1w—Mg1—O2wi90.89 (9)O2—C1—C2120.7 (3)
O1wi—Mg1—O2wi89.11 (9)O1—C1—C2116.5 (2)
O2w—Mg1—O2wi180.000 (1)N1—C2—C1111.4 (2)
O1w—Mg1—O3wi88.28 (10)N1—C2—H2a109.3
O1wi—Mg1—O3wi91.72 (10)C1—C2—H2a109.3
O2w—Mg1—O3wi90.73 (12)N1—C2—H2b109.3
O2wi—Mg1—O3wi89.27 (12)C1—C2—H2b109.3
O1w—Mg1—O3w91.7 (1)H2a—C2—H2b108.0
O1wi—Mg1—O3w88.28 (10)O4—C3—O3123.9 (3)
O2w—Mg1—O3w89.3 (1)O4—C3—C4118.4 (3)
O2wi—Mg1—O3w90.73 (12)O3—C3—C4117.5 (2)
O3wi—Mg1—O3w180.000 (1)N1—C4—C3114.8 (2)
O1w—Mg1—H3w396.02 (7)N1—C4—H4a108.6
O1wi—Mg1—H3w383.98 (7)C3—C4—H4a108.6
O2w—Mg1—H3w3109.95 (8)N1—C4—H4b108.6
O2wi—Mg1—H3w370.05 (8)C3—C4—H4b108.6
O3wi—Mg1—H3w3158.89 (8)H4a—C4—H4b107.6
O3w—Mg1—H3w321.11 (8)O6—C5—O5124.8 (3)
C1—O1—Mo1124.28 (18)O6—C5—C6124.2 (2)
C3—O3—Mo1122.70 (17)O5—C5—C6111.0 (2)
C5—O5—H5106 (2)N1—C6—C5115.1 (2)
Mo1—O7—Mo1ii180.0N1—C6—H6a108.5
Mg1—O1w—H1w1122.08 (17)C5—C6—H6a108.5
Mg1—O1w—H1w2121.22 (17)N1—C6—H6b108.5
H1w1—O1w—H1w2108.4 (2)C5—C6—H6b108.5
Mg1—O2w—H2w1125.0 (2)H6a—C6—H6b107.5
O9—Mo1—O1—C172.2 (2)O7—Mo1—N1—C651.03 (17)
O8—Mo1—O1—C1177.8 (2)O1—Mo1—N1—C6144.10 (19)
O7—Mo1—O1—C153.4 (3)O3—Mo1—N1—C6135.28 (19)
O3—Mo1—O1—C190.2 (2)Mo1—O1—C1—O2178.6 (2)
N1—Mo1—O1—C113.8 (2)Mo1—O1—C1—C20.8 (4)
O9—Mo1—O3—C322.5 (4)C4—N1—C2—C184.4 (3)
O8—Mo1—O3—C3172.6 (2)C6—N1—C2—C1151.1 (3)
O7—Mo1—O3—C383.8 (2)Mo1—N1—C2—C132.0 (3)
O1—Mo1—O3—C381.9 (2)O2—C1—C2—N1157.0 (3)
N1—Mo1—O3—C35.9 (2)O1—C1—C2—N125.2 (4)
O9—Mo1—N1—C4170.9 (2)Mo1—O3—C3—O4178.7 (2)
O8—Mo1—N1—C458.4 (3)Mo1—O3—C3—C45.0 (4)
O7—Mo1—N1—C469.39 (18)C2—N1—C4—C392.9 (3)
O1—Mo1—N1—C495.48 (19)C6—N1—C4—C3142.3 (3)
O3—Mo1—N1—C414.86 (19)Mo1—N1—C4—C322.3 (3)
O9—Mo1—N1—C269.4 (2)O4—C3—C4—N1163.6 (3)
O8—Mo1—N1—C261.3 (3)O3—C3—C4—N119.9 (4)
O7—Mo1—N1—C2170.90 (18)C4—N1—C6—C557.9 (3)
O1—Mo1—N1—C224.23 (19)C2—N1—C6—C567.5 (3)
O3—Mo1—N1—C2104.85 (19)Mo1—N1—C6—C5176.34 (19)
O9—Mo1—N1—C650.49 (19)O6—C5—C6—N10.3 (4)
O8—Mo1—N1—C6178.8 (3)O5—C5—C6—N1178.8 (3)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O5w0.84 (1)1.80 (2)2.607 (3)162 (4)
O1w—H1w1···O40.851.872.718 (3)176
O1w—H1w2···O6iii0.861.892.737 (3)174
O2w—H2w1···O4w0.841.862.699 (4)174
O2w—H2w2···O2iv0.852.002.802 (4)160
O3w—H3w1···O6w0.831.882.701 (4)174
O3w—H3w2···O3wv0.832.182.989 (5)165
O4w—H4w2···O2iii0.852.132.945 (4)160
O4w—H4w1···O2v0.842.283.039 (4)151
O5w—H5w1···O5vi0.842.483.104 (4)131
O5w—H5w1···O9vii0.842.323.011 (3)140
O5w—H5w2···O6wviii0.852.343.178 (4)170
O6w—H6w2···O30.852.122.937 (3)164
O6w—H6w1···O4ix0.852.142.972 (4)167
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x+1, y+2, z+2; (vi) x+2, y, z+1; (vii) x+1, y, z+1; (viii) x+1, y1, z; (ix) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mg(H2O)6][Mo2O5(C6H7NO6)2]·6H2O
Mr890.63
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.4787 (3), 9.2555 (6), 13.9995 (6)
α, β, γ (°)91.014 (4), 101.315 (3), 106.592 (4)
V3)786.44 (7)
Z1
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.58 × 0.58 × 0.36
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ scans (North et al., 1968)
Tmin, Tmax0.618, 0.716
No. of measured, independent and
observed [I > 2σ(I)] reflections
3339, 3079, 2877
Rint0.010
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.076, 1.11
No. of reflections3079
No. of parameters215
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.52

Computer programs: CAD-4 VAX/PC Fortran System (Enraf-Nonius, 1988), CAD-4 VAX/PC Fortran System, XCAD4 (Harms, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Mo1—O12.076 (2)Mo1—N12.418 (2)
Mo1—O32.172 (2)Mg1—O1w2.045 (2)
Mo1—O71.880 (1)Mg1—O2w2.053 (2)
Mo1—O81.695 (2)Mg1—O3w2.089 (3)
Mo1—O91.694 (2)
O1w—Mg1—O2w89.1 (1)O2w—Mg1—O3w89.3 (1)
O1w—Mg1—O3w91.7 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O5w0.84 (1)1.80 (2)2.607 (3)162 (4)
O1w—H1w1···O40.851.872.718 (3)176
O1w—H1w2···O6i0.861.892.737 (3)174
O2w—H2w1···O4w0.841.862.699 (4)174
O2w—H2w2···O2ii0.852.002.802 (4)160
O3w—H3w1···O6w0.831.882.701 (4)174
O3w—H3w2···O3wiii0.832.182.989 (5)165
O4w—H4w2···O2i0.852.132.945 (4)160
O4w—H4w1···O2iii0.842.283.039 (4)151
O5w—H5w1···O5iv0.842.483.104 (4)131
O5w—H5w1···O9v0.842.323.011 (3)140
O5w—H5w2···O6wvi0.852.343.178 (4)170
O6w—H6w2···O30.852.122.937 (3)164
O6w—H6w1···O4vii0.852.142.972 (4)167
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+2, z+2; (iv) x+2, y, z+1; (v) x+1, y, z+1; (vi) x+1, y1, z; (vii) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds