Download citation
Download citation
link to html
In the title compound, 2C3H7NO2.H+·NO3, both the alanine residues, related by a center of symmetry, are linked by a strong symmetric O—H...O hydrogen bond with an O...O distance of 2.467 (2) Å. The N atom and one of the O atoms of the nitrate anion lie on the twofold axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801015793/ob6076sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801015793/ob6076Isup2.hkl
Contains datablock I

CCDC reference: 175995

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.033
  • wR factor = 0.092
  • Data-to-parameter ratio = 8.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

In amino acid–inorganic acid complexes, when the number of H atoms liberated from the inorganic acid is less than the number of amino acids, the H atom is shared by two amino acids, resulting in short symmetric O—H···O hydrogen bonds, as evidenced in triglycine sulfate (Kay, 1977), leading to phase transitions. In order to look for similar compounds, a systematic study of the behaviour of hydrogen bonding in amino acid–inorganic acid complexes was undertaken. In this context, the crystal structure of L-phenylalanine L-phenylalaninium perchlorate (Srinivasan & Rajaram, 1997), hydrogen bis[L-lysinium (2+)] dichloride perchlorate (Srinivasan et al., 2001a), L-lysine L-lysinium dichloride nitrate (Srinivasan et al., 2001b), L-phenylalanine-nitric acid (2/1) (Srinivasan et al., 2001c) and bis(L-proline) hydrogen perchlorate (Pandiarajan et al., 2001) have been reported. A similar stucture, L-phenylalanine L-phenylalaninium formate, has been reported by Gorbitz & Etter (1992). As part of this programme, the crystal structure of β-alanine with nitric acid was undertaken to study the nature of the hydrogen bonding in the presence of an inorganic acid.

The asymmetric unit contains one β-alanine residue and a nitrate anion which lies on the twofold axis. The backbone conformation angles ψ1 and ψ2 are -5.2 (2) and 174.9 (1)°, respectively, for the alanine residue. The straight-chain conformation angle χ1 is in gauche I form [63.6 (2)°]. This tendency of twisting of the C—N bond is found in various amino acids (Lakshminarayanan et al., 1967).

The nitrate anion plays a vital role in forming hydrogen bonds with the alanine residue and stabilizing the structure. The H1B atom, which lies on a center of symmetry, links the two alanine residues through a strong symmetric O—H···O hydrogen bond [O1B···O1B(1/2 - x, 1/2 - y, 1 - z) 2.467 (2) Å]. The large Uiso value of H1B suggests that this atom may have positional or flip–flop disorder, leading to the switching of roles of the cation and zwitterion in a time-averaged equilibrium (Jeffrey & Saenger, 1991). A similar feature of short hydrogen bonding has been observed in L-phenylalanine L-phenylalaninium formate, L-phenylalanine L-phenylalaninium perchlorate, hydrogen bis[L-lysinium (2+)] dichloride perchlorate, L-lysine L-lysinium dichloride nitrate, L-phenylalanine-nitric acid (2/1) and bis(L-proline) hydrogen perchlorate. In these compounds, the hydrogen bond can be termed as a possible symmetric hydrogen bond. At low temperature, the crystal of (I) may go into non-centrosymmetric space group Cc, triggering a structural phase transition leading to interesting physical properties.

The O1 and O2 atoms of the nitrate anion, as acceptors, links the amino N atom in a three-centred hydrogen bond involving the alanine residue. This O2 atom of the nitrate anion, sitting on the twofold axis, links two symmetry-related β-alanine residues. A three-centred hydrogen bond is observed involving the alanine residue (amino N atom) and the carboxyl O1A (intramolecular hydrogen bond) and O1B (Z2 head-to-tail sequence) atoms. A glide-related head-to-tail sequence is observed, since N11—H2B···O1B(x, -y, z - 1/2) connects two glide-related amino acids (Vijayan, 1988).

Experimental top

Crystals of (I) were grown from an aqueous solution of a 2:1 stoichiometric ratio of β-alanine and nitric acid by slow evaporation.

Refinement top

All the H atoms were located and refined isotropically. The C—H and N—H bond lengths are 0.94 (2)–0.97 (2) and 0.87 (2)–0.89 (2) Å, respectively.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme and 50% probability displacement ellipsoids (Johnson, 1976).
[Figure 2] Fig. 2. Packing diagram of (I) viewed down the b axis.
β-Alanine β-alaninium nitrate top
Crystal data top
2C3H7NO2·H+·NO3F(000) = 512
Mr = 241.21Dx = 1.516 Mg m3
Dm = 1.502 Mg m3
Dm measured by flotation using a mixture of carbon tetrachloride and xylene
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.791 (1) ÅCell parameters from 25 reflections
b = 5.3220 (3) Åθ = 11.3–14.0°
c = 10.974 (1) ŵ = 0.14 mm1
β = 113.923 (6)°T = 293 K
V = 1056.57 (13) Å3Needle, colorless
Z = 40.6 × 0.4 × 0.2 mm
Data collection top
Enraf-Nonius sealed tube
diffractometer
798 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
ω–2θ scansh = 023
Absorption correction: ψ scan
(North et al., 1968)
k = 06
Tmin = 0.863, Tmax = 0.970l = 1311
941 measured reflections3 standard reflections every 60 min
914 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033All H-atom parameters refined
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.682P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
914 reflectionsΔρmax = 0.31 e Å3
104 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.103 (7)
Crystal data top
2C3H7NO2·H+·NO3V = 1056.57 (13) Å3
Mr = 241.21Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.791 (1) ŵ = 0.14 mm1
b = 5.3220 (3) ÅT = 293 K
c = 10.974 (1) Å0.6 × 0.4 × 0.2 mm
β = 113.923 (6)°
Data collection top
Enraf-Nonius sealed tube
diffractometer
798 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.014
Tmin = 0.863, Tmax = 0.9703 standard reflections every 60 min
941 measured reflections intensity decay: none
914 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.092All H-atom parameters refined
S = 1.09Δρmax = 0.31 e Å3
914 reflectionsΔρmin = 0.18 e Å3
104 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.19302 (7)0.4346 (2)0.27700 (10)0.0452 (4)
O1B0.21345 (6)0.1038 (2)0.41024 (9)0.0381 (4)
H1B0.25000.25000.50000.116 (14)*
C110.18276 (8)0.2140 (3)0.29461 (14)0.0321 (4)
C120.13324 (9)0.0474 (3)0.18276 (14)0.0369 (4)
H12A0.0973 (11)0.033 (4)0.2091 (19)0.050 (5)*
H12B0.1631 (11)0.083 (4)0.1728 (18)0.045 (5)*
C130.09337 (9)0.1853 (3)0.05321 (15)0.0377 (4)
H13A0.0660 (10)0.324 (4)0.0621 (17)0.042 (5)*
H13B0.0597 (11)0.077 (4)0.015 (2)0.050 (5)*
N110.14535 (8)0.2912 (3)0.00011 (14)0.0389 (4)
H1A0.1805 (12)0.375 (4)0.062 (2)0.052 (5)*
H2B0.1670 (11)0.179 (4)0.0288 (19)0.055 (6)*
H3C0.1196 (13)0.386 (4)0.071 (2)0.061 (6)*
N10.50000.0750 (4)0.75000.0379 (5)
O10.45215 (7)0.1894 (3)0.65579 (12)0.0553 (4)
O20.50000.1571 (4)0.75000.0753 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0592 (8)0.0348 (7)0.0367 (6)0.0082 (5)0.0143 (5)0.0005 (5)
O1B0.0423 (6)0.0377 (7)0.0277 (6)0.0011 (5)0.0074 (4)0.0007 (4)
C110.0317 (7)0.0343 (9)0.0303 (8)0.0006 (6)0.0126 (6)0.0012 (6)
C120.0394 (8)0.0352 (8)0.0318 (8)0.0027 (7)0.0100 (7)0.0014 (6)
C130.0314 (8)0.0471 (10)0.0316 (8)0.0014 (7)0.0097 (6)0.0003 (7)
N110.0390 (8)0.0441 (9)0.0320 (8)0.0008 (7)0.0127 (6)0.0002 (6)
N10.0377 (10)0.0440 (11)0.0341 (9)0.0000.0168 (8)0.000
O10.0497 (7)0.0541 (8)0.0507 (8)0.0099 (6)0.0086 (6)0.0069 (6)
O20.0956 (16)0.0438 (11)0.0539 (12)0.0000.0034 (11)0.000
Geometric parameters (Å, º) top
O1A—C111.2204 (19)C13—H13A0.94 (2)
O1B—C111.3030 (17)C13—H13B0.96 (2)
O1B—H1B1.2333 (10)N11—H1A0.87 (2)
C11—C121.509 (2)N11—H2B0.87 (2)
C12—C131.507 (2)N11—H3C0.89 (2)
C12—H12A0.97 (2)N1—O21.235 (3)
C12—H12B0.94 (2)N1—O1i1.2419 (15)
C13—N111.486 (2)N1—O11.2419 (15)
C11—O1B—H1B112.62 (10)N11—C13—H13B107.2 (12)
O1A—C11—O1B123.06 (13)C12—C13—H13B111.9 (12)
O1A—C11—C12122.09 (13)H13A—C13—H13B107.4 (15)
O1B—C11—C12114.84 (13)C13—N11—H1A110.2 (13)
C13—C12—C11113.58 (13)C13—N11—H2B113.9 (14)
C13—C12—H12A109.3 (11)H1A—N11—H2B106.2 (19)
C11—C12—H12A109.3 (12)C13—N11—H3C108.4 (14)
C13—C12—H12B111.1 (11)H1A—N11—H3C113 (2)
C11—C12—H12B107.1 (11)H2B—N11—H3C105.5 (19)
H12A—C12—H12B106.2 (16)O2—N1—O1i119.35 (10)
N11—C13—C12112.02 (13)O2—N1—O1119.35 (10)
N11—C13—H13A105.2 (11)O1i—N1—O1121.3 (2)
C12—C13—H13A112.7 (11)
O1A—C11—C12—C135.2 (2)C11—C12—C13—N1163.60 (19)
O1B—C11—C12—C13174.93 (13)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O1Bii1.23 (1)1.23 (1)2.467 (2)180
N11—H1A···O1A0.87 (2)2.29 (2)2.8971 (18)126.5 (17)
N11—H1A···O1Biii0.87 (2)2.34 (2)3.0517 (18)139.1 (17)
N11—H2B···O1Biv0.87 (2)2.01 (3)2.877 (2)175 (2)
N11—H3C···O1iii0.89 (2)2.10 (3)2.908 (2)150 (2)
N11—H3C···O2v0.89 (2)2.40 (2)3.0779 (15)133.2 (18)
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y, z1/2; (v) x1/2, y+1/2, z1.

Experimental details

Crystal data
Chemical formula2C3H7NO2·H+·NO3
Mr241.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)19.791 (1), 5.3220 (3), 10.974 (1)
β (°) 113.923 (6)
V3)1056.57 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.6 × 0.4 × 0.2
Data collection
DiffractometerEnraf-Nonius sealed tube
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.863, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
941, 914, 798
Rint0.014
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.09
No. of reflections914
No. of parameters104
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.31, 0.18

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
O1A—C111.2204 (19)N1—O21.235 (3)
O1B—C111.3030 (17)N1—O11.2419 (15)
O1A—C11—C12—C135.2 (2)C11—C12—C13—N1163.60 (19)
O1B—C11—C12—C13174.93 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O1Bi1.2333 (10)1.2333 (10)2.467 (2)180.0
N11—H1A···O1A0.87 (2)2.29 (2)2.8971 (18)126.5 (17)
N11—H1A···O1Bii0.87 (2)2.34 (2)3.0517 (18)139.1 (17)
N11—H2B···O1Biii0.87 (2)2.01 (3)2.877 (2)175 (2)
N11—H3C···O1ii0.89 (2)2.10 (3)2.908 (2)150 (2)
N11—H3C···O2iv0.89 (2)2.40 (2)3.0779 (15)133.2 (18)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z1/2; (iv) x1/2, y+1/2, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds