Download citation
Download citation
link to html
The title compound, 2-(1,3-di­thiol-2-yl­idene)-2,3-di­hydro-1,3-di­thia-4,7-di­aza­indene (pyrazinotetra­thia­fulvalene), C8H4N2S4, forms a head-to-tail type of π–π-stacking centrosymmetric dimer with an interplanar distance of 3.59 (1) Å. The dimers form a two-dimensional column along the [101] direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801003701/ob6031sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801003701/ob6031Isup2.hkl
Contains datablock I

CCDC reference: 162810

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.016 Å
  • R factor = 0.079
  • wR factor = 0.198
  • Data-to-parameter ratio = 16.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry




Comment top

It is known that S···N inte-rheteroatom contacts work to construct unique molecular networks (Yamashita & Tomura, 1998). In the title compound, (I), short S···N inter-heteroatom contacts [3.10 (1) Å for S2···N1(x, y + 1, z)] are observed between the two ππ dimers, as shown in Fig. 2. Two molecules in a dimer are related by an inversion center. A planar π-conjugated molecule prefers to overlap with a single molecule at both sides of the molecular plane to form a one-dimensional column. In the two-dimensional column of (I), however, one dimer bridges two other dimers through the overlap of the pyrazine and 1,3-dithiole rings (Fig. 3). The angle between the dimers is 111 (1)°. This type of a unique multi-dimensional structure is important for the construction of organic conducting materials (Barclay et al., 2000; Kato et al., 1988; Morimoto & Inabe, 1995; Tomura & Yamashita, 2000; Yamashita et al., 1997, 1998).

Experimental top

The title compound (I) was synthesized according to the literature method if Papavassiliou et al. (1988). Crystals of (I) were grown from a dichloromethane solution.

Refinement top

All H atoms were placed in geometrically calculated positions and refined by using a riding model with C—H distances set to 0.93 Å.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1992); cell refinement: CAD-4 EXPRESS; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I). Short S···N inter-heteroatom contacts are indicated by dotted lines.
[Figure 3] Fig. 3. Packing diagram of (I) viewed along the [101] direction. Three dimers (six molecules) are indicated.
2-(1,3-dithiol-2-ylidene)-2,3-dihydro-1,3-dithia-4,7-diazaindene top
Crystal data top
C8H4N2S4Dx = 1.706 Mg m3
Mr = 256.37Melting point: 182 K
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 8.481 (2) ÅCell parameters from 24 reflections
b = 9.1928 (9) Åθ = 9.7–42.8°
c = 12.8980 (14) ŵ = 8.39 mm1
β = 96.89 (2)°T = 296 K
V = 998.4 (3) Å3Needle, orange
Z = 40.40 × 0.05 × 0.05 mm
F(000) = 520
Data collection top
Enraf-Nonius CAD-4
diffractometer
663 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.084
Graphite monochromatorθmax = 74.2°, θmin = 5.9°
ω scansh = 1010
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.134, Tmax = 0.679l = 016
2060 measured reflections3 standard reflections every 120 min
2026 independent reflections intensity decay: 4.9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0473P)2]
where P = (Fo2 + 2Fc2)/3
2026 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C8H4N2S4V = 998.4 (3) Å3
Mr = 256.37Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.481 (2) ŵ = 8.39 mm1
b = 9.1928 (9) ÅT = 296 K
c = 12.8980 (14) Å0.40 × 0.05 × 0.05 mm
β = 96.89 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
663 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.084
Tmin = 0.134, Tmax = 0.6793 standard reflections every 120 min
2060 measured reflections intensity decay: 4.9%
2026 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.07Δρmax = 0.47 e Å3
2026 reflectionsΔρmin = 0.62 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

5.6601 (0.0091) x - 0.3727 (0.0120) y + 8.4888 (0.0135) z = 3.8673 (0.0096)

* -0.0118 (0.0047) S1 * 0.0204 (0.0050) S2 * -0.0759 (0.0042) S3 * -0.0631 (0.0044) S4 * 0.0266 (0.0079) N1 * -0.0190 (0.0076) N2 * 0.0090 (0.0092) C1 * 0.0240 (0.0101) C2 * 0.0392 (0.0102) C3 * -0.0118 (0.0096) C4 * -0.0114 (0.0098) C5 * -0.0231 (0.0100) C6 * 0.0619 (0.0094) C7 * 0.0351 (0.0093) C8

Rms deviation of fitted atoms = 0.0372

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.6493 (3)0.1589 (3)0.0282 (2)0.0674 (10)
S20.8472 (3)0.3437 (3)0.0918 (2)0.0654 (10)
S30.7875 (3)0.1295 (3)0.0841 (2)0.0624 (9)
S40.9782 (4)0.0714 (3)0.2010 (2)0.0691 (10)
N10.9250 (10)0.3509 (10)0.1734 (7)0.066 (3)
N21.1014 (9)0.1626 (10)0.2882 (6)0.057 (2)
C10.7889 (11)0.1682 (12)0.0620 (7)0.050 (3)
C20.6431 (15)0.3437 (12)0.0447 (9)0.079 (4)
H20.57810.38280.09080.095*
C30.7305 (15)0.4331 (13)0.0079 (10)0.082 (4)
H30.72930.53370.00050.098*
C40.8439 (11)0.0490 (13)0.1063 (7)0.053 (3)
C50.9170 (12)0.2081 (13)0.1663 (8)0.052 (3)
C61.0049 (12)0.1131 (11)0.2221 (8)0.056 (3)
C71.0256 (13)0.3999 (13)0.2385 (9)0.070 (4)
H71.03860.49960.24650.084*
C81.1105 (13)0.3038 (15)0.2941 (9)0.069 (4)
H81.17820.34300.33840.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.068 (2)0.084 (2)0.0552 (19)0.0057 (18)0.0270 (16)0.0009 (17)
S20.069 (2)0.061 (2)0.069 (2)0.0031 (17)0.0229 (18)0.0044 (18)
S30.067 (2)0.0610 (19)0.066 (2)0.0009 (16)0.0368 (16)0.0047 (16)
S40.072 (2)0.0667 (19)0.077 (2)0.0049 (17)0.0468 (18)0.0043 (18)
N10.054 (6)0.067 (7)0.076 (7)0.002 (6)0.004 (5)0.004 (6)
N20.049 (5)0.075 (7)0.049 (6)0.012 (5)0.018 (4)0.015 (5)
C10.037 (6)0.079 (8)0.033 (6)0.002 (6)0.005 (5)0.001 (6)
C20.102 (10)0.086 (9)0.052 (8)0.048 (8)0.020 (7)0.012 (7)
C30.098 (11)0.067 (8)0.082 (10)0.028 (8)0.021 (8)0.011 (8)
C40.040 (6)0.079 (8)0.040 (7)0.003 (6)0.004 (5)0.002 (6)
C50.051 (7)0.064 (8)0.043 (7)0.005 (6)0.014 (5)0.000 (6)
C60.047 (7)0.065 (7)0.059 (7)0.017 (6)0.015 (6)0.010 (6)
C70.063 (9)0.073 (8)0.079 (10)0.004 (7)0.025 (7)0.018 (7)
C80.051 (8)0.092 (10)0.060 (8)0.022 (7)0.010 (6)0.026 (8)
Geometric parameters (Å, º) top
S1—C21.714 (11)N2—C81.304 (12)
S1—C11.760 (9)N2—C61.330 (11)
S2—C31.756 (11)C1—C41.345 (13)
S2—C11.744 (10)C2—C31.343 (14)
S3—C51.769 (10)C2—H20.9300
S3—C41.743 (11)C3—H30.9300
S4—C61.737 (10)C5—C61.402 (13)
S4—C41.779 (9)C7—C81.391 (14)
N1—C71.345 (12)C7—H70.9300
N1—C51.318 (11)C8—H80.9300
C2—S1—C193.8 (6)C1—C4—S3125.6 (7)
C3—S2—C195.8 (5)C1—C4—S4118.7 (8)
C5—S3—C494.8 (5)S3—C4—S4115.7 (6)
C6—S4—C495.8 (5)N1—C5—C6123.3 (9)
C7—N1—C5114.8 (10)N1—C5—S3119.3 (8)
C8—N2—C6115.1 (10)C6—C5—S3117.4 (8)
C4—C1—S2122.6 (7)N2—C6—C5121.4 (9)
C4—C1—S1122.5 (8)N2—C6—S4122.4 (8)
S2—C1—S1115.0 (6)C5—C6—S4116.1 (8)
C3—C2—S1121.1 (9)N1—C7—C8121.0 (11)
C3—C2—H2119.4N1—C7—H7119.5
S1—C2—H2119.4C8—C7—H7119.5
C2—C3—S2114.3 (9)N2—C8—C7124.3 (11)
C2—C3—H3122.9N2—C8—H8117.8
S2—C3—H3122.9C7—C8—H8117.8

Experimental details

Crystal data
Chemical formulaC8H4N2S4
Mr256.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.481 (2), 9.1928 (9), 12.8980 (14)
β (°) 96.89 (2)
V3)998.4 (3)
Z4
Radiation typeCu Kα
µ (mm1)8.39
Crystal size (mm)0.40 × 0.05 × 0.05
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.134, 0.679
No. of measured, independent and
observed [I > 2σ(I)] reflections
2060, 2026, 663
Rint0.084
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.198, 1.07
No. of reflections2026
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.62

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1992), CAD-4 EXPRESS, HELENA (Spek, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds