Download citation
Download citation
link to html
The isolation of the title compound, C14H12N2O2, as a by-product from the reaction of ethyl 2-cyano-3,3-bis­(methyl­thio)­acryl­ate with aceto­phenone is reported. There are two independent mol­ecules, and the dihedral angles between the pyran ring and the attached phenyl group are 10.32 (8) and 26.34 (5)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536800021115/ob6013sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536800021115/ob6013Isup2.hkl
Contains datablock I

CCDC reference: 159719

Key indicators

  • Single-crystal X-ray study
  • T = 180 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.048
  • wR factor = 0.114
  • Data-to-parameter ratio = 13.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(103) - C(113) = 1.43 Ang. PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(203) - C(213) = 1.43 Ang. PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 33 C104-C103-C113-N11 -150.00 3.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 34 C102-C103-C113-N11 23.00 3.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 67 C204-C203-C213-N21 166.00 4.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 68 C202-C203-C213-N21 -11.00 4.00 1.555 1.555 1.555 1.555
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
6 Alert Level C = Please check

Comment top

The presence of carbonyl functionality and its position in conjugation with the double bond carrying bis(alkylthio) group at the β-position places ketene dithioacetal and its derivatives as versatile reagents for the preparation of different classes of heterocyclic compounds (Kumar et al., 1976; Chauhan & Junjappa, 1976). We have reported the synthesis of a number of heterocyclic compounds by the application of ketene dithioacetals (Parmar et al., 1997). Various 4-hydroxy-2H-pyran-2-ones and their derivatives have exhibited a variety of pharmacological properties (Israili & Smissman, 1976; Kretzschmar et al., 1969); some of these pyrones were found to be useful intermediates in the synthesis of naturally occurring bioactive compounds such as phenylcoumalin, paracotoin, methoxyparacotoin and yangonin derivatives (Tominaga et al., 1977, 1984). In an attempt to synthesize 3-cyano-4-methylthio-6-phenyl-2H-pyran-2-one, (II), by treating ethyl 2-cyano-3,3-bis(methylthio)acrylate and acetophenone in DMF and potassium hydroxide, we obtained the title compound, (I), as a minor side product along with (II). Pyrones of the type (I) having an amino group at the C-4 position are of particular interest in that they have exhibited antibacterial and antifungal activities. Although the title compound has been previously reported (Tominaga et al., 1984), its NMR and MS data have not been reported and the melting point (519 K) given earlier does not agree with that obtained for our sample (559–560 K). In order to characterize this compound unambiguously, we now report extensive spectral data and its X-ray crystallographic structure.

The asymmetric unit of the title compound, (I), contains two molecules, one of which is illustrated in Fig. 1. The bond lengths and angles are unexceptional and are essentially identical for both molecules. The conformations of these two molecules, however, do differ significantly. The angles between the least-squares planes through the pyran ring and the attached phenyl groups are 10.32 (8) and 26.34 (5)° for the two molecules; the comparative angles between the planes of the pyran rings and the C—N—C planes of the amino groups are 15.13 (15) and 7.00 (12)°, respectively. These differences are also illustrated by the torsion angles listed in Table 1.

The structure of the 3-cyano-2H-pyran-2-one fragment has been reported previously, but only in combination with a 4-methylthio substituent (five structures: Kumar et al., 1999, and references therein). In all of these structures, the methylthio substituent is approximately coplanar with the pyran ring. Similarly, in (I), the dimethylamino group in the 4-position is almost coplanar (see angles quoted above) and this may be attributed, as in the methylthio case, to some π-bonding; this is manifest in the Car—N linkage which is much shorter than the N—Me distances (Table 1).

Experimental top

A mixture of ethyl 2-cyano-3,3-bis(methylthio)acrylate (4.34 g, 0.02 mol), acetophenone (2.4 ml, 0.02 mol), powdered KOH (2.24 g, 0.04 mol) and DMF (30 ml) was stirred at 305 K for 7 h. The red–brown mixture was poured onto crushed ice (300 g) and stirred at room temperature for 2 h. The yellow solid that separated was filtered, washed with water, dried and treated with cold acetone (3 × 15 ml); the combined acetone solution was concentrated to yield (II) as yellow needles (1.94 g, 40% yield; m.p. 481 K) [cf. literature m.p. 474 K (Tominaga et al., 1984)]. The cold acetone insoluble solid crystallized from hot acetone to yield (I) as pale yellow needles (0.96 g, 20% yield), m.p. 559–560 K (literature m.p. 519 K, Tominaga et al., 1984).

Refinement top

H atoms were added at calculated positions and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2 (1.5 for methyl H atoms) times the equivalent isotropic displacement parameter of their parent atoms.

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Siemens, 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC; software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. View of one of the two independent molecules in (I). Displacement ellipsoids are drawn at the 50% probability level for non-H atoms.
3-Cyano-4-(N,N-dimethylamino)-6-phenyl-2H-pyran-2-one top
Crystal data top
C14H12N2O2F(000) = 1008
Mr = 240.26Dx = 1.364 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.6587 (9) ÅCell parameters from 4345 reflections
b = 7.2783 (6) Åθ = 1.5–26.0°
c = 27.9741 (16) ŵ = 0.09 mm1
β = 99.684 (3)°T = 180 K
V = 2339.9 (3) Å3Block, pale yellow
Z = 80.30 × 0.20 × 0.20 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
4561 independent reflections
Radiation source: normal-focus sealed tube2864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 8.192 pixels mm-1θmax = 26.0°, θmin = 1.5°
ω scansh = 1014
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 88
Tmin = 0.973, Tmax = 0.982l = 3434
12607 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0536P)2]
where P = (Fo2 + 2Fc2)/3
4561 reflections(Δ/σ)max < 0.001
329 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H12N2O2V = 2339.9 (3) Å3
Mr = 240.26Z = 8
Monoclinic, P21/nMo Kα radiation
a = 11.6587 (9) ŵ = 0.09 mm1
b = 7.2783 (6) ÅT = 180 K
c = 27.9741 (16) Å0.30 × 0.20 × 0.20 mm
β = 99.684 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4561 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2864 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.042
12607 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.01Δρmax = 0.21 e Å3
4561 reflectionsΔρmin = 0.19 e Å3
329 parameters
Special details top

Experimental. The temperature of the crystal was controlled using the Oxford Cryosystem open-flow Cryostat (Cosier & Glazer, 1986). Data were collected over a hemisphere of reciprocal space, by a combination of three sets of exposures. Each set had a different ϕ angle for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal to detector distance was 5.01 cm. Coverage of the unique set was over 99% complete to at least 26° in θ. Crystal decay was monitored by repeating the initial frames at the end of the data collection and analyzing the duplicate reflections.

IR (KBr) νmax: 3449 [N(CH3)2], 2205 (CN), 1688 (CO), 1641, 1558, 1465, 1060, 932 and 772 cm-1. 1H NMR (TFA, 300 MHz): δ 3.49 and 3.71 (2xs, 3H each, 2xN-CH3), 6.86 (1H, s, C-5H), 7.54–7.63 (3H, m, H-3', H-4' & H-5') and 7.85 (2H, d, J = 7.80 Hz, H-2' & H-6'). 13C NMR (TFA, 75.5 MHz): δ 43.89 & 44.24 (2xN-CH3), 96.92 (C-5), 111.01 (C-3), 118.52 (CN), 122.28 (C-4'), 128.15 (C-3' & C-5'), 131.14 (C-2' & C-6'), 135.16 (C-4), 162.67 (C-1'), 163.45 (C-6) and 171.32 (C-2). EIMS, m/z (rel.int): 240 [M]+(47), 212 [M-28]+(15), 169 [M-71]+(8), 163 [M—Ar]+(7), 135 [M-ArCO]+(4), 107 [M-ArCO-CO]+(13), 105 (ArCO)+(100) and 77 (C6H5)+(85).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.38666 (12)0.90305 (19)0.13770 (4)0.0359 (4)
O120.21862 (13)0.8966 (2)0.18735 (5)0.0448 (4)
O210.55726 (11)0.62673 (19)0.11667 (4)0.0339 (4)
O220.61066 (13)0.6818 (2)0.04609 (5)0.0446 (4)
N110.00612 (17)0.6985 (3)0.13740 (7)0.0497 (5)
N120.24002 (14)0.7142 (2)0.02171 (6)0.0337 (4)
N210.89957 (17)0.7618 (3)0.05510 (7)0.0583 (6)
N220.89459 (14)0.6833 (2)0.19192 (5)0.0323 (4)
C1020.26816 (18)0.8665 (3)0.14628 (7)0.0334 (5)
C1030.21813 (17)0.7968 (3)0.10696 (7)0.0310 (5)
C1040.28474 (17)0.7681 (3)0.06058 (7)0.0292 (5)
C1050.40773 (17)0.8021 (3)0.05629 (7)0.0301 (5)
H10A0.45710.77770.02630.036*
C1060.45402 (17)0.8675 (3)0.09361 (7)0.0293 (5)
C1070.57697 (17)0.9113 (3)0.09419 (7)0.0284 (5)
C1080.66415 (17)0.8621 (3)0.05595 (7)0.0341 (5)
H10B0.64430.80220.02830.041*
C1090.77946 (19)0.9001 (3)0.05801 (8)0.0410 (6)
H10C0.83840.86330.03210.049*
C1100.80962 (19)0.9910 (3)0.09740 (7)0.0408 (6)
H11A0.88891.01820.09840.049*
C1110.72436 (18)1.0421 (3)0.13532 (7)0.0369 (5)
H11B0.74481.10500.16240.044*
C1120.60939 (18)1.0022 (3)0.13396 (7)0.0326 (5)
H11C0.55121.03680.16040.039*
C1130.09965 (19)0.7430 (3)0.12205 (7)0.0344 (5)
C1140.11558 (18)0.7197 (4)0.01966 (8)0.0465 (6)
H11D0.08000.82490.03840.070*
H11E0.10450.73190.01410.070*
H11F0.07880.60590.03330.070*
C1150.31423 (19)0.6476 (3)0.02291 (7)0.0402 (6)
H11G0.38500.59210.01470.060*
H11H0.27160.55550.03860.060*
H11I0.33540.75080.04510.060*
C2020.64341 (18)0.6688 (3)0.08980 (7)0.0328 (5)
C2030.75960 (17)0.6920 (3)0.11502 (7)0.0294 (5)
C2040.78736 (17)0.6677 (3)0.16589 (7)0.0289 (5)
C2050.69134 (17)0.6246 (3)0.19023 (7)0.0300 (5)
H20A0.70550.60680.22440.036*
C2060.58270 (17)0.6089 (3)0.16598 (7)0.0292 (5)
C2070.47670 (17)0.5745 (3)0.18690 (7)0.0280 (5)
C2080.47144 (17)0.6248 (3)0.23472 (7)0.0321 (5)
H20B0.53730.67880.25430.039*
C2090.37070 (18)0.5960 (3)0.25355 (8)0.0369 (5)
H20C0.36710.63230.28590.044*
C2100.27541 (19)0.5148 (3)0.22569 (8)0.0418 (6)
H21A0.20660.49480.23890.050*
C2110.27987 (19)0.4625 (3)0.17842 (8)0.0410 (6)
H21B0.21450.40500.15940.049*
C2120.37942 (17)0.4938 (3)0.15891 (7)0.0345 (5)
H21C0.38160.46010.12630.041*
C2130.83938 (19)0.7319 (3)0.08294 (7)0.0395 (6)
C2140.99363 (17)0.7495 (3)0.17141 (7)0.0419 (6)
H21F0.97390.86730.15510.063*
H21G1.01310.65980.14790.063*
H21D1.06050.76590.19740.063*
C2150.91747 (19)0.6437 (4)0.24405 (7)0.0506 (7)
H21E0.88540.52300.25000.076*
H21I0.88070.73800.26140.076*
H21J1.00160.64370.25560.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0288 (8)0.0520 (10)0.0258 (7)0.0021 (7)0.0016 (6)0.0044 (7)
O120.0344 (9)0.0691 (12)0.0294 (8)0.0014 (8)0.0005 (7)0.0024 (7)
O210.0292 (8)0.0472 (10)0.0255 (7)0.0023 (7)0.0047 (6)0.0017 (6)
O220.0412 (9)0.0665 (11)0.0258 (8)0.0015 (8)0.0044 (7)0.0029 (7)
N110.0355 (12)0.0579 (14)0.0539 (12)0.0060 (10)0.0025 (10)0.0027 (10)
N120.0280 (10)0.0433 (11)0.0305 (9)0.0019 (8)0.0070 (8)0.0005 (8)
N210.0427 (13)0.0973 (18)0.0378 (11)0.0017 (12)0.0150 (10)0.0090 (12)
N220.0270 (10)0.0408 (11)0.0292 (9)0.0010 (8)0.0046 (8)0.0013 (8)
C1020.0294 (12)0.0371 (13)0.0321 (12)0.0016 (10)0.0007 (10)0.0040 (10)
C1030.0273 (12)0.0322 (13)0.0335 (11)0.0022 (10)0.0051 (9)0.0040 (9)
C1040.0308 (12)0.0286 (12)0.0291 (11)0.0007 (10)0.0078 (9)0.0042 (9)
C1050.0273 (12)0.0370 (13)0.0255 (10)0.0006 (10)0.0032 (9)0.0008 (9)
C1060.0308 (12)0.0292 (12)0.0268 (11)0.0031 (9)0.0018 (9)0.0017 (9)
C1070.0286 (12)0.0293 (12)0.0278 (11)0.0005 (9)0.0069 (9)0.0022 (9)
C1080.0315 (13)0.0396 (13)0.0318 (11)0.0008 (10)0.0065 (10)0.0052 (10)
C1090.0306 (13)0.0529 (16)0.0385 (12)0.0038 (11)0.0027 (10)0.0067 (11)
C1100.0300 (12)0.0496 (15)0.0448 (13)0.0030 (11)0.0125 (11)0.0001 (11)
C1110.0368 (13)0.0414 (14)0.0357 (11)0.0030 (11)0.0153 (10)0.0032 (10)
C1120.0358 (13)0.0340 (12)0.0281 (10)0.0006 (10)0.0051 (9)0.0004 (9)
C1130.0330 (13)0.0362 (13)0.0338 (12)0.0000 (11)0.0053 (10)0.0016 (10)
C1140.0360 (14)0.0643 (17)0.0416 (13)0.0066 (12)0.0138 (11)0.0047 (12)
C1150.0418 (14)0.0481 (15)0.0323 (12)0.0002 (11)0.0104 (10)0.0053 (10)
C2020.0352 (13)0.0349 (13)0.0288 (12)0.0026 (10)0.0071 (10)0.0003 (9)
C2030.0293 (12)0.0315 (12)0.0288 (11)0.0001 (9)0.0091 (9)0.0004 (9)
C2040.0291 (12)0.0282 (12)0.0293 (11)0.0039 (9)0.0047 (9)0.0015 (9)
C2050.0289 (12)0.0359 (13)0.0250 (10)0.0005 (10)0.0042 (9)0.0016 (9)
C2060.0347 (13)0.0288 (12)0.0241 (11)0.0004 (10)0.0050 (9)0.0011 (8)
C2070.0266 (11)0.0265 (12)0.0304 (11)0.0005 (9)0.0035 (9)0.0037 (9)
C2080.0285 (12)0.0363 (13)0.0309 (11)0.0005 (10)0.0033 (9)0.0021 (9)
C2090.0349 (13)0.0408 (14)0.0366 (12)0.0055 (11)0.0107 (10)0.0053 (10)
C2100.0315 (13)0.0450 (15)0.0511 (14)0.0020 (11)0.0131 (11)0.0101 (12)
C2110.0313 (13)0.0406 (14)0.0498 (14)0.0091 (11)0.0035 (11)0.0019 (11)
C2120.0323 (12)0.0353 (13)0.0348 (11)0.0009 (10)0.0023 (10)0.0012 (10)
C2130.0335 (13)0.0532 (15)0.0307 (12)0.0042 (11)0.0024 (10)0.0023 (11)
C2140.0315 (13)0.0551 (16)0.0393 (13)0.0076 (11)0.0061 (10)0.0019 (11)
C2150.0347 (14)0.0794 (19)0.0360 (13)0.0045 (13)0.0010 (11)0.0098 (12)
Geometric parameters (Å, º) top
O11—C1061.371 (2)C106—C1071.471 (3)
O11—C1021.388 (2)C107—C1081.393 (3)
O12—C1021.216 (2)C107—C1121.400 (3)
O21—C2061.368 (2)C108—C1091.383 (3)
O21—C2021.386 (2)C109—C1101.381 (3)
O22—C2021.222 (2)C110—C1111.377 (3)
N11—C1131.149 (2)C111—C1121.378 (3)
N12—C1041.341 (2)C202—C2031.428 (3)
N12—C1141.462 (3)C203—C2041.416 (3)
N12—C1151.476 (2)C203—C2131.427 (3)
N21—C2131.153 (3)C204—C2051.440 (3)
N22—C2041.342 (2)C205—C2061.337 (3)
N22—C2141.455 (2)C206—C2071.475 (3)
N22—C2151.466 (2)C207—C2121.395 (3)
C102—C1031.422 (3)C207—C2081.398 (3)
C103—C1041.411 (3)C208—C2091.382 (3)
C103—C1131.430 (3)C209—C2101.378 (3)
C104—C1051.440 (3)C210—C2111.386 (3)
C105—C1061.341 (3)C211—C2121.382 (3)
C106—O11—C102121.49 (16)C111—C110—C109119.8 (2)
C206—O21—C202120.93 (15)C110—C111—C112120.06 (19)
C104—N12—C114123.20 (17)C111—C112—C107121.04 (19)
C104—N12—C115121.96 (16)N11—C113—C103175.2 (2)
C114—N12—C115114.83 (16)O22—C202—O21115.27 (18)
C204—N22—C214122.87 (16)O22—C202—C203126.57 (19)
C204—N22—C215121.35 (17)O21—C202—C203118.16 (16)
C214—N22—C215115.69 (16)C204—C203—C213126.47 (18)
O12—C102—O11115.46 (19)C204—C203—C202121.26 (18)
O12—C102—C103127.1 (2)C213—C203—C202112.21 (16)
O11—C102—C103117.42 (17)N22—C204—C203124.71 (18)
C104—C103—C102122.00 (18)N22—C204—C205119.31 (17)
C104—C103—C113125.87 (18)C203—C204—C205115.98 (18)
C102—C103—C113111.78 (17)C206—C205—C204121.62 (17)
N12—C104—C103124.05 (18)C205—C206—O21121.99 (18)
N12—C104—C105120.01 (17)C205—C206—C207126.76 (17)
C103—C104—C105115.94 (18)O21—C206—C207111.24 (16)
C106—C105—C104121.45 (18)C212—C207—C208119.00 (18)
C105—C106—O11121.53 (18)C212—C207—C206120.34 (17)
C105—C106—C107127.31 (18)C208—C207—C206120.65 (18)
O11—C106—C107111.15 (17)C209—C208—C207120.14 (19)
C108—C107—C112118.16 (18)C210—C209—C208120.4 (2)
C108—C107—C106121.49 (18)C209—C210—C211120.1 (2)
C112—C107—C106120.34 (17)C212—C211—C210120.0 (2)
C109—C108—C107120.38 (19)C211—C212—C207120.37 (19)
C110—C109—C108120.6 (2)N21—C213—C203176.6 (2)
C106—O11—C102—O12177.02 (17)C206—O21—C202—O22179.81 (18)
C106—O11—C102—C1032.3 (3)C206—O21—C202—C2030.3 (3)
O12—C102—C103—C104179.8 (2)O22—C202—C203—C204178.0 (2)
O11—C102—C103—C1041.1 (3)O21—C202—C203—C2041.8 (3)
O12—C102—C103—C1136.7 (3)O22—C202—C203—C2130.8 (3)
O11—C102—C103—C113172.50 (17)O21—C202—C203—C213179.08 (18)
C114—N12—C104—C10314.6 (3)C214—N22—C204—C2037.7 (3)
C115—N12—C104—C103166.51 (19)C215—N22—C204—C203175.8 (2)
C114—N12—C104—C105164.68 (19)C214—N22—C204—C205171.82 (19)
C115—N12—C104—C10514.2 (3)C215—N22—C204—C2054.7 (3)
C102—C103—C104—N12175.42 (19)C213—C203—C204—N221.7 (3)
C113—C103—C104—N1212.0 (3)C202—C203—C204—N22178.52 (19)
C102—C103—C104—C1053.9 (3)C213—C203—C204—C205178.8 (2)
C113—C103—C104—C105168.70 (19)C202—C203—C204—C2051.9 (3)
N12—C104—C105—C106175.6 (2)N22—C204—C205—C206179.50 (19)
C103—C104—C105—C1063.8 (3)C203—C204—C205—C2060.1 (3)
C104—C105—C106—O110.7 (3)C204—C205—C206—O212.2 (3)
C104—C105—C106—C107178.94 (19)C204—C205—C206—C207176.73 (19)
C102—O11—C106—C1052.5 (3)C202—O21—C206—C2052.3 (3)
C102—O11—C106—C107177.84 (16)C202—O21—C206—C207176.76 (16)
C105—C106—C107—C1089.7 (3)C205—C206—C207—C212155.6 (2)
O11—C106—C107—C108170.67 (17)O21—C206—C207—C21225.3 (3)
C105—C106—C107—C112171.2 (2)C205—C206—C207—C20825.4 (3)
O11—C106—C107—C1128.5 (3)O21—C206—C207—C208153.68 (17)
C112—C107—C108—C1091.1 (3)C212—C207—C208—C2090.6 (3)
C106—C107—C108—C109178.1 (2)C206—C207—C208—C209178.43 (18)
C107—C108—C109—C1101.5 (3)C207—C208—C209—C2101.1 (3)
C108—C109—C110—C1110.9 (3)C208—C209—C210—C2110.4 (3)
C109—C110—C111—C1120.2 (3)C209—C210—C211—C2120.9 (3)
C110—C111—C112—C1070.6 (3)C210—C211—C212—C2071.4 (3)
C108—C107—C112—C1110.0 (3)C208—C207—C212—C2110.6 (3)
C106—C107—C112—C111179.18 (19)C206—C207—C212—C211179.66 (19)
C104—C103—C113—N11150 (3)C204—C203—C213—N21166 (4)
C102—C103—C113—N1123 (3)C202—C203—C213—N2111 (4)

Experimental details

Crystal data
Chemical formulaC14H12N2O2
Mr240.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)180
a, b, c (Å)11.6587 (9), 7.2783 (6), 27.9741 (16)
β (°) 99.684 (3)
V3)2339.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
12607, 4561, 2864
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.114, 1.01
No. of reflections4561
No. of parameters329
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1995), SAINT, SHELXTL/PC (Siemens, 1994), SHELXL97 (Sheldrick, 1997), SHELXTL/PC.

Selected geometric parameters (Å, º) top
N12—C1041.341 (2)N22—C2041.342 (2)
N12—C1141.462 (3)N22—C2141.455 (2)
N12—C1151.476 (2)N22—C2151.466 (2)
C114—N12—C104—C10314.6 (3)C214—N22—C204—C2037.7 (3)
O11—C106—C107—C108170.67 (17)O21—C206—C207—C208153.68 (17)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds