Download citation
Download citation
link to html
In the crystal structures of the title compounds, C6H10N3O2+·C7H5O3-·H2O, (I), C6H10N3O2+·C7H4NO4-·H2O, (II), and C6H10N3O2+·C4H5O6-·C6H9N3O2, (III), the 2-amino-4,6-di­meth­oxy­pyrimidinium cation [abbreviated as (MeO)2-Hampy+] inter­acts with the carboxyl­ate group of the corresponding anion through a pair of nearly parallel N-H...O hydrogen bonds to form R22(8) ring motifs. In (I), the (MeO)2-Hampy+ cation is centrosymmetrically paired through a pair of N-H...N hydrogen bonds involving the 2-amino group and a ring N atom forming an R22(8) motif. In (II), inversion-related R22(8) motifs (amino-pyrimidine-carboxyl­ate motifs) are further bridged by N-H...O hydrogen bonds on either side forming a DDAA array of quadruple hydrogen bonds. This array is extended further on either side by Owater-H...Ometh­oxy hydrogen bonds, resulting in an array of six hydrogen bonds (ADDAAD). The water mol­ecule plays a pivotal role, and five hydrogen-bonded fused rings are formed around the water mol­ecule. In (III), the carb­oxy group of the tartrate anion inter­acts with the ring N atom and 2-amino group of the neutral (MeO)2-ampy mol­ecule through N-H...O and O-H...N hydrogen bonds. There is also an intra­molecular O-H...O hydrogen bond in the tartrate anion. In all three crystal structures, C-H...O hydrogen bonds are observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107005677/ob3031sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107005677/ob3031Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107005677/ob3031IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107005677/ob3031IIIsup4.hkl
Contains datablock III

CCDC references: 605380; 605381; 606029

Comment top

Pyrimidine and aminopyrimidine derivatives are biologically very important compounds as they occur in nature as components of nucleic acids. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker & Santi, 1965). Hydrogen bonding plays a key role in molecular recognition and crystal engineering research (Desiraju, 1989). 2-Aminopyrimidine forms 1:1 adducts with different mono- and dicarboxylic acids (Etter & Adsmond, 1990) rather than individual self-assembly compounds (Scheinbeim & Schempp, 1976). The adducts of carboxylic acids with 2-aminoheterocylic ring systems form a graph-set motif of R22(8) (Lynch & Jones, 2004). This motif is very robust in aminopyrimidine carboxylic acid/carboxylate systems. The crystal structures of aminopyrimidine derivatives (Schwalbe & Williams, 1982), aminopyrimidine carboxylates (Muthiah, Francis et al., 2006) and cocrystals (Chinnakali et al., 1999) have been reported. The crystal structure of 2-amino-4,6-dimethoxy pyrimidine [abbreviated as (MeO)2-ampy] has also been reported (Low et al., 2002). The crystal structures of (MeO)2-ampy–4-aminobenzoic acid (1/1) (Thanigaimani et al., 2006), Me2-Hampy bromide Me2-ampy monohydrate [Me2-Hampy = 2-amino-4,6-dimethylpyrimidinium; Panneerselvam et al., 2004], Me2-Hampy hydrogen sulfate (Hemamalini et al., 2005), Me2-ampy–cinnamic acid (1/2) (Balasubramani et al., 2005), Me2-Hampy picrate (Subashini et al., 2006) and Me2-Hampy salicylate (Muthiah, Balasubramani et al., 2006) have been recently reported from our laboratorAy. We are interested in the network of hydrogen-bonding patterns in the carboxylate–aminopyrimidine interactions under a variety of molecular environments. In the present study, 4-hydroxybenzoic acid, dipicolinic acid (pyridine-2,6-dicarboxylic acid) and tartaric acid are selected to form adducts with (MeO)2-ampy. The crystal structures of 4-hydroxybenzoic acid monohydrate (Colapietro et al., 1979; Fukuyama et al., 1973), Me2-ampy–4-hydroxybenzoic acid (1/1) (Balasubramani et al., 2006), dipicolinic acid (Carranza Téllez et al., 2002) and (+)-tartaric acid (Stern & Beevers, 1950) are also known.

ORTEP (Johnson, 1976) views of the title compounds, (I)–(III), are shown in Figs. 1–3. In (I), the asymmetric unit contains an (MeO)2-Hampy+ cation, a 4-hydroxybenzoate anion and a water molecule. In (II), the asymmetric unit contains an (MeO)2-Hampy+ cation, a hydrogen dipicolinate anion and a water molecule. In (III), one (MeO)2-Hampy+ cation, a hydrogen L-tartrate anion and a neutral (MeO)2-ampy molecule constitute the asymmetric unit. In all the compounds, the pyrimidine rings are protonated at the atom N1. Protonation of the pyrimidine base on the N1 site is reflected by the increase in bond angle at N1 [C2—N1—C6 = 120.01 (14)° in (I), 119.25 (15)° in (II) and 119.9 (2)° in cation A of (III)] when compared with that of the unprotonated atom N3 [C2—N3—C4 = 116.22 (14)° in (I), 115.98 (16)° in (II) and 116.8 (2)° in (III)]. In all the crystal structures (I)–(III), the carboxylate group of the respective anions (4-hydroxybenzoate, hydrogen dipicolinate and hydrogen L-tartrate) interacts with the aminopyrimidinium cation through a pair of N—H···O hydrogen bonds to form an eight-membered R22(8) ring motif (Etter, 1990; Bernstein et al., 1995).

In (I), the (MeO)2-Hampy+ cations are centrosymmetrically paired through a pair of N2—H2A···N3(-x + 1, -y + 1, -z + 1) hydrogen bonds (Table 2) to form an R22(8) ring motif (Fig. 4). Two inversion-related 4-hydroxybenzoate anions are connected by water molecules via O—H···O and C—H···O1W hydrogen bonds, forming an R44(16) ring motif. A similar type of C—H···Owater hydrogen bonds have been investigated on the basis of the structural data determined by neutron diffraction (Steiner & Saenger, 1993). The carboxylate groups are bridged by the intervening water molecules via O—H···O hydrogen bonds, resulting in a supramolecular chain along the b axis. The water molecules act as hydrogen-bond donors to the carboxylate group of the 4-hydroxybenzoate and also act as hydrogen-bond acceptors to the hydroxy group of the 4-hydroxybenzoate ion to form an O—H···O hydrogen-bonded sheet parallel to the (011) plane.

In (II), inversion-related R22(8) motifs (amino pyrimidine–carboxylate motifs) are further bridged by N—H···O hydrogen bonds (Table 4) on either side forming the DDAA array of quadruple hydrogen bonds (Fig. 5). This array is extended further on either side by OwaterH···Omethoxy hydrogen bonds, resulting in an array of six hydrogen bonds (ADDAAD). The water molecule plays a pivotal role, and five hydrogen-bonded fused rings are formed around the water molecule. Two inversion-related water molecules are bridged by two inversion-related carboxyl OH groups, generating an R44(8) ring motif. Each H atom of the water molecule acts as a bifurcated donor and the O atom acts as a single acceptor. The water molecule–dipicolinate interaction via O—H···O and O—H···N hydrogen bonds leads to two hydrogen-bonded rings R12(5) and R22(7). Furthermore, these arrays are connected via a pair of C—H···O hydrogen bonds involving one of the O atoms of the carboxylate group and the methoxy group (C7 and C8) of the pyrimidinium cation, resulting in the formation of a 20-membered ring R42(20).

In (III), the carboxyl group of the tartrate anion interacts with atom N1B and the 2-amino group of the neutral (MeO)2-ampy molecule (B) through N—H···O and O—H···N hydrogen bonds (Table 6) to form an eight-membered ring [R22(8)] (Fig. 6). The 2-amino group of the (MeO)2-Hampy+ cation (A) interacts with hydroxy group O5 through an N—H···O hydrogen bond, and the 2-amino group of molecule B interacts with one of the carboxylate anions, O3, through an N—H···O hydrogen bond, forming a cyclic R43(12) hydrogen-bonded motif. These types of interactions are extended along the c axis to form a hydrogen-bonded supramolecular ribbon. In addition, both the carboxylate groups interact with adjacent hydroxy groups via intramolecular O—H···O hydrogen bonds, leading to a five-membered ring [S(5)]. Furthermore, these arrays are connected via C—H···O hydrogen bonds, resulting in a two-dimensional network.

In all the crystal structures (I)–(III), ππ stacking interactions between aromatic rings are observed. In (I), the pyrimidine ring of the (MeO)2-Hampy+ cation stacks with the benzene ring of the 4-hydroxybenzoate anion, with interplanar and centroid-to-centroid distances of 3.317 and 3.554 Å, respectively, and a slip angle (angle between the centroid vector and the normal to the plane) of 18.9°. In (II), a ππ interaction is observed between two (MeO)2-Hampy+ cations related by an inversion centre. The centroid-to-centroid distance and interplanar distance are 3.310 and 3.253 Å, respectively, the slip angle being 10.7°. In (III), the pyrimidine rings of the (MeO)2-Hampy+ cation A form stacking interactions with the (MeO)2-ampy molecule B; the centroid-to-centroid distance and interplanar distances are 3.625 and 3.335 Å, respectively, the slip angle being 21.2°. These are typical aromatic stacking values (Hunter, 1994).

Related literature top

For related literature, see: Baker & Santi (1965); Balasubramani et al. (2005, 2006); Bernstein et al. (1995); Bijvoet et al. (1951); Carranza Téllez, Sánchez Gaytán, Bernès & González Vergara (2002); Chinnakali et al. (1999); Colapietro (1979); Desiraju (1989); Etter (1990); Etter & Adsmond (1990); Fukuyama et al. (1973); Hemamalini et al. (2005); Hope & de la Camp (1972); Hunt et al. (1980); Hunter (1994); Johnson (1976); Low et al. (2002); Lynch & Jones (2004); Muthiah, Balasubramani, Rychlewska & Plutecka (2006); Muthiah, Francis, Rychlewska & Warzajtis (2006); Panneerselvam et al. (2004); Scheinbeim & Schempp (1976); Schwalbe & Williams (1982); Steiner & Saenger (1993); Stern & Beevers (1950); Subashini et al. (2006); Thanigaimani et al. (2006).

Experimental top

Compounds (I) and (II) were prepared by mixing a hot methanol solution (20 ml) of 2-amino-4,6-dimethoxypyrimidine (38 mg, Aldrich) with a hot aqueous solution of the corresponding acid [4-hydroxybenzoic acid (34 mg, Loba Chemie) or dipicolinic acid (41 mg, Loba Chemie)] in a 1:1 molar ratio, and warmed for half an hour over a water bath. Each solution was cooled slowly and kept at room temperature. After a few days, colourless plate-like crystals were obtained [yield 69 and 64% for (I) and (II), respectively]. Compound (III) was prepared by mixing a hot methanol solution (20 ml) of 2-amino-4,6-dimethoxypyrimidine (76 mg) and L-(+)-tartaric acid (37 mg, Loba Chemie) in a 2:1 molar ratio, and crystallized as described above (yield 58%). Compound (III) was obtained even if the starting materials were in a 1:1 molar ratio.

Refinement top

The H atoms of the water molecules were located in difference Fourier maps and refined as riding in their as-found relative positions. The other H atoms were positioned geometrically, and treated as riding with N—H, O—H and C—H bond lengths of 0.86, 0.82 and 0.93–0.98 Å, respectively, and with Uiso(H) values of 1.5Ueq(C,O) for OH groups in (I) and (II) and for all methyl groups, or 1.2Ueq(C,N,O). For (III), Friedel pairs were averaged in the absence of significant anomalous scattering effects, and the absolute structure was assigned based on the known absolute configuration of L-(+)-tartaric acid (Bijvoet et al., 1951; Hope & de la Camp, 1972).

Computing details top

For all compounds, data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The asymmetric unit of (II), showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 3] Fig. 3. The asymmetric unit of (III), showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 4] Fig. 4. The crystal structure of (I). Dashed lines indicate hydrogen bonds [symmetry codes: (i) -x, y - 1/2, -z + 1/2; (ii) -x + 1, -y + 1, -z + 1; (iii) x, -y + 1/2, z - 1/2].
[Figure 5] Fig. 5. The crystal structure of (II). Dashed lines indicate hydrogen bonds [symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 1, -y, -z + 1]. The graph set notations for all the motifs are indicated.
[Figure 6] Fig. 6. The crystal structure of (III). Dashed lines indicate hydrogen bonds [symmetry codes: (ii) -x + 1, y - 1/2, -z; (iii) x, y, z + 1; (iv) -x + 1, y + 1/2, -z; (v) -x + 1, y + 1/2, -z + 1].
(I) 2-amino-4,6-dimethoxypyrimidinium 4-hydroxybenzoate monohydrate top
Crystal data top
C6H10N3O2+·C7H5O3·H2OF(000) = 656
Mr = 311.30Dx = 1.484 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3172 reflections
a = 6.9710 (2) Åθ = 3.5–27.5°
b = 10.9014 (3) ŵ = 0.12 mm1
c = 18.3749 (6) ÅT = 120 K
β = 93.631 (2)°Plate-like, colourless
V = 1393.57 (7) Å30.48 × 0.30 × 0.14 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2415 reflections with I > 2σ(I)
Radiation source: Bruker–Nonius FR591 rotating anodeRint = 0.036
Graphite monochromatorθmax = 27.6°, θmin = 3.5°
ϕ and ω scansh = 89
12896 measured reflectionsk = 149
3172 independent reflectionsl = 2322
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0837P)2 + 0.1403P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3172 reflectionsΔρmax = 0.58 e Å3
203 parametersΔρmin = 0.65 e Å3
3 restraintsExtinction correction: SHELXL97, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.053 (5)
Crystal data top
C6H10N3O2+·C7H5O3·H2OV = 1393.57 (7) Å3
Mr = 311.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.9710 (2) ŵ = 0.12 mm1
b = 10.9014 (3) ÅT = 120 K
c = 18.3749 (6) Å0.48 × 0.30 × 0.14 mm
β = 93.631 (2)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2415 reflections with I > 2σ(I)
12896 measured reflectionsRint = 0.036
3172 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0553 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.09Δρmax = 0.58 e Å3
3172 reflectionsΔρmin = 0.65 e Å3
203 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40962 (16)0.85957 (10)0.51255 (6)0.0207 (3)
O20.26432 (16)0.80476 (10)0.26006 (6)0.0206 (3)
N10.34431 (18)0.65078 (12)0.33471 (7)0.0172 (4)
N20.42097 (19)0.48035 (13)0.40256 (7)0.0215 (4)
N30.42694 (18)0.66807 (12)0.46101 (7)0.0166 (4)
C20.3974 (2)0.60079 (15)0.40033 (8)0.0156 (4)
C40.3935 (2)0.78774 (15)0.45418 (9)0.0166 (5)
C50.3390 (2)0.84720 (14)0.38839 (9)0.0183 (5)
C60.3155 (2)0.77336 (14)0.32874 (9)0.0168 (4)
C70.4645 (3)0.80425 (16)0.58223 (9)0.0228 (5)
C80.2401 (2)0.93355 (15)0.24485 (10)0.0231 (5)
O30.26439 (17)0.34335 (10)0.27838 (6)0.0225 (4)
O40.26345 (16)0.52068 (10)0.21800 (6)0.0203 (3)
O50.01317 (18)0.16590 (10)0.04400 (6)0.0235 (4)
C90.1800 (2)0.34106 (14)0.15073 (8)0.0148 (4)
C100.1605 (2)0.40701 (15)0.08591 (9)0.0166 (4)
C110.1067 (2)0.35042 (14)0.02052 (9)0.0170 (5)
C120.0690 (2)0.22490 (14)0.01898 (8)0.0164 (4)
C130.0887 (2)0.15670 (15)0.08311 (9)0.0184 (5)
C140.1441 (2)0.21491 (14)0.14802 (9)0.0175 (5)
C150.2394 (2)0.40424 (15)0.22074 (9)0.0166 (4)
O1W0.04316 (17)0.17595 (11)0.34496 (6)0.0244 (4)
H10.328800.604700.296800.0210*
H2A0.455400.444900.443100.0260*
H2B0.401800.437600.363500.0260*
H50.320000.931600.385700.0220*
H7A0.379300.737400.591000.0340*
H7B0.456900.864400.620100.0340*
H7C0.593900.774100.581900.0340*
H8A0.145100.966800.274900.0350*
H8B0.198800.944500.194400.0350*
H8C0.360100.975200.255000.0350*
H5A0.016300.213800.078300.0350*
H100.184200.491000.086600.0200*
H110.095600.396000.022300.0200*
H130.064800.072800.082300.0220*
H140.157800.169100.190700.0210*
H1W0.065700.141600.320000.0290*
H2W0.112600.221300.313100.0290*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0249 (6)0.0185 (6)0.0183 (6)0.0032 (5)0.0020 (5)0.0043 (5)
O20.0257 (6)0.0174 (6)0.0184 (6)0.0013 (5)0.0017 (5)0.0020 (5)
N10.0190 (7)0.0171 (7)0.0153 (7)0.0004 (5)0.0007 (5)0.0016 (5)
N20.0335 (9)0.0164 (7)0.0139 (7)0.0017 (6)0.0038 (6)0.0009 (6)
N30.0149 (7)0.0178 (7)0.0171 (7)0.0003 (5)0.0001 (5)0.0026 (6)
C20.0128 (7)0.0185 (8)0.0155 (8)0.0009 (6)0.0001 (6)0.0006 (6)
C40.0115 (7)0.0198 (8)0.0186 (9)0.0012 (6)0.0013 (6)0.0038 (7)
C50.0175 (8)0.0151 (7)0.0224 (9)0.0009 (6)0.0022 (6)0.0009 (7)
C60.0118 (7)0.0194 (8)0.0193 (8)0.0001 (6)0.0009 (6)0.0037 (7)
C70.0266 (9)0.0235 (9)0.0180 (9)0.0041 (7)0.0021 (7)0.0045 (7)
C80.0255 (9)0.0183 (8)0.0252 (9)0.0027 (7)0.0001 (7)0.0058 (7)
O30.0308 (7)0.0202 (6)0.0158 (6)0.0036 (5)0.0032 (5)0.0033 (5)
O40.0279 (6)0.0158 (6)0.0167 (6)0.0008 (5)0.0014 (5)0.0010 (5)
O50.0334 (7)0.0217 (6)0.0149 (6)0.0020 (5)0.0018 (5)0.0025 (5)
C90.0107 (7)0.0173 (8)0.0163 (8)0.0003 (6)0.0010 (6)0.0016 (6)
C100.0171 (8)0.0144 (7)0.0186 (8)0.0012 (6)0.0024 (6)0.0005 (6)
C110.0173 (8)0.0194 (8)0.0143 (8)0.0016 (6)0.0012 (6)0.0029 (6)
C120.0142 (7)0.0200 (8)0.0151 (8)0.0020 (6)0.0010 (6)0.0042 (6)
C130.0188 (8)0.0156 (8)0.0210 (9)0.0010 (6)0.0019 (7)0.0002 (7)
C140.0196 (8)0.0179 (8)0.0149 (8)0.0011 (6)0.0011 (6)0.0012 (6)
C150.0134 (7)0.0185 (8)0.0181 (8)0.0003 (6)0.0017 (6)0.0002 (7)
O1W0.0287 (7)0.0286 (7)0.0154 (6)0.0069 (5)0.0016 (5)0.0024 (5)
Geometric parameters (Å, º) top
O1—C41.327 (2)C5—C61.361 (2)
O1—C71.445 (2)C5—H50.9304
O2—C61.334 (2)C7—H7C0.9604
O2—C81.439 (2)C7—H7A0.9602
O3—C151.253 (2)C7—H7B0.9600
O4—C151.282 (2)C8—H8B0.9606
O5—C121.3592 (18)C8—H8C0.9597
O5—H5A0.8198C8—H8A0.9598
O1W—H1W0.9393C9—C141.398 (2)
O1W—H2W0.9259C9—C101.390 (2)
N1—C21.353 (2)C9—C151.494 (2)
N1—C61.355 (2)C10—C111.381 (2)
N2—C21.324 (2)C11—C121.393 (2)
N3—C41.330 (2)C12—C131.393 (2)
N3—C21.340 (2)C13—C141.384 (2)
N1—H10.8601C10—H100.9303
N2—H2A0.8598C11—H110.9296
N2—H2B0.8591C13—H130.9296
C4—C51.403 (2)C14—H140.9295
C4—O1—C7118.30 (13)H7A—C7—H7C109.42
C6—O2—C8117.06 (12)O2—C8—H8C109.49
C12—O5—H5A109.45O2—C8—H8A109.48
H1W—O1W—H2W110.04O2—C8—H8B109.45
C2—N1—C6120.01 (14)H8B—C8—H8C109.45
C2—N3—C4116.22 (14)H8A—C8—H8B109.43
C2—N1—H1119.98H8A—C8—H8C109.53
C6—N1—H1120.01C10—C9—C15120.38 (14)
C2—N2—H2A120.00C14—C9—C15121.55 (14)
H2A—N2—H2B120.01C10—C9—C14118.07 (14)
C2—N2—H2B119.99C9—C10—C11121.37 (15)
N2—C2—N3120.34 (14)C10—C11—C12119.79 (15)
N1—C2—N3122.69 (14)O5—C12—C11121.70 (14)
N1—C2—N2116.97 (14)C11—C12—C13119.91 (14)
O1—C4—C5115.36 (14)O5—C12—C13118.38 (14)
N3—C4—C5124.82 (15)C12—C13—C14119.44 (15)
O1—C4—N3119.82 (14)C9—C14—C13121.41 (15)
C4—C5—C6115.65 (14)O3—C15—C9119.98 (14)
O2—C6—C5128.40 (14)O3—C15—O4123.12 (15)
N1—C6—C5120.56 (15)O4—C15—C9116.90 (14)
O2—C6—N1111.04 (13)C9—C10—H10119.31
C6—C5—H5122.17C11—C10—H10119.32
C4—C5—H5122.18C12—C11—H11120.15
O1—C7—H7C109.47C10—C11—H11120.06
O1—C7—H7A109.49C12—C13—H13120.24
O1—C7—H7B109.49C14—C13—H13120.32
H7B—C7—H7C109.47C9—C14—H14119.33
H7A—C7—H7B109.49C13—C14—H14119.26
C7—O1—C4—N30.3 (2)C4—C5—C6—O2179.81 (14)
C7—O1—C4—C5179.74 (14)C14—C9—C10—C110.2 (2)
C8—O2—C6—C53.8 (2)C15—C9—C14—C13179.86 (13)
C8—O2—C6—N1176.39 (12)C10—C9—C15—O3177.03 (14)
C2—N1—C6—O2179.96 (13)C10—C9—C15—O42.6 (2)
C2—N1—C6—C50.2 (2)C14—C9—C15—O32.4 (2)
C6—N1—C2—N2179.22 (13)C14—C9—C15—O4177.99 (13)
C6—N1—C2—N31.2 (2)C15—C9—C10—C11179.67 (13)
C4—N3—C2—N2177.77 (13)C10—C9—C14—C130.7 (2)
C2—N3—C4—C53.0 (2)C9—C10—C11—C120.6 (2)
C4—N3—C2—N12.7 (2)C10—C11—C12—O5179.10 (13)
C2—N3—C4—O1176.44 (13)C10—C11—C12—C131.0 (2)
O1—C4—C5—C6177.74 (13)C11—C12—C13—C140.6 (2)
N3—C4—C5—C61.7 (2)O5—C12—C13—C14179.55 (13)
C4—C5—C6—N10.0 (2)C12—C13—C14—C90.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.752.6029 (17)172
O1W—H1W···O4i0.942.002.9084 (16)162
N2—H2A···N3ii0.862.263.1128 (19)171
N2—H2B···O30.862.062.8832 (17)161
O1W—H2W···O30.931.842.7284 (16)160
O5—H5A···O1Wiii0.821.872.6894 (16)176
C11—H11···O1Wiii0.932.573.241 (2)130
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2.
(II) 2-amino-4,6-dimethoxypyrimidinium 6-carboxypyridine-2-carboxylate monohydrate top
Crystal data top
C6H10N3O2+·C7H4NO4·H2OZ = 2
Mr = 340.30F(000) = 356
Triclinic, P1Dx = 1.514 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8247 (6) ÅCell parameters from 3384 reflections
b = 7.9273 (5) Åθ = 3.2–27.6°
c = 14.4038 (10) ŵ = 0.13 mm1
α = 82.558 (5)°T = 120 K
β = 88.133 (4)°Plate-like, colourless
γ = 75.075 (5)°0.40 × 0.25 × 0.10 mm
V = 746.63 (10) Å3
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2397 reflections with I > 2σ(I)
Radiation source: Bruker–Nonius FR591 rotating anodeRint = 0.062
Graphite monochromatorθmax = 27.6°, θmin = 3.2°
ϕ and ω scansh = 88
14555 measured reflectionsk = 1010
3384 independent reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.108P)2 + 0.0561P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3384 reflectionsΔρmax = 0.53 e Å3
221 parametersΔρmin = 0.62 e Å3
3 restraintsExtinction correction: SHELXL97, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.090 (13)
Crystal data top
C6H10N3O2+·C7H4NO4·H2Oγ = 75.075 (5)°
Mr = 340.30V = 746.63 (10) Å3
Triclinic, P1Z = 2
a = 6.8247 (6) ÅMo Kα radiation
b = 7.9273 (5) ŵ = 0.13 mm1
c = 14.4038 (10) ÅT = 120 K
α = 82.558 (5)°0.40 × 0.25 × 0.10 mm
β = 88.133 (4)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2397 reflections with I > 2σ(I)
14555 measured reflectionsRint = 0.062
3384 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0643 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.07Δρmax = 0.53 e Å3
3384 reflectionsΔρmin = 0.62 e Å3
221 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9563 (2)0.25025 (17)1.16681 (9)0.0274 (4)
O20.7551 (2)0.17070 (16)0.84995 (9)0.0267 (4)
N10.6917 (2)0.04888 (19)0.93715 (11)0.0228 (5)
N20.6231 (2)0.2887 (2)1.01707 (11)0.0275 (5)
N30.7901 (2)0.0229 (2)1.09597 (11)0.0248 (5)
C20.7029 (3)0.1180 (2)1.01778 (13)0.0231 (6)
C40.8653 (3)0.1477 (2)1.09173 (13)0.0236 (6)
C50.8596 (3)0.2310 (2)1.01190 (13)0.0248 (6)
C60.7729 (3)0.1246 (2)0.93434 (13)0.0236 (6)
C70.9634 (3)0.1690 (3)1.25092 (14)0.0302 (6)
C80.8446 (3)0.3522 (3)0.83754 (14)0.0292 (6)
O30.4188 (2)0.47450 (17)0.85149 (9)0.0319 (4)
O40.5196 (2)0.22687 (17)0.78647 (9)0.0298 (4)
O50.2275 (2)0.43641 (19)0.38006 (9)0.0346 (5)
O60.3302 (2)0.19762 (18)0.48598 (10)0.0342 (5)
N40.3479 (2)0.3902 (2)0.62073 (11)0.0234 (5)
C90.3479 (3)0.4868 (2)0.69062 (13)0.0235 (6)
C100.2774 (3)0.6692 (2)0.68014 (14)0.0277 (6)
C110.2059 (3)0.7554 (3)0.59367 (15)0.0324 (6)
C120.2036 (3)0.6579 (3)0.52110 (14)0.0291 (6)
C130.2739 (3)0.4766 (3)0.53802 (13)0.0255 (6)
C140.4354 (3)0.3896 (2)0.78357 (13)0.0238 (5)
C150.2737 (3)0.3692 (3)0.45903 (14)0.0271 (6)
O1W0.6166 (3)0.0172 (2)0.63786 (12)0.0554 (6)
H10.633600.115000.888500.0270*
H2A0.627600.337601.066600.0330*
H2B0.566600.351100.967000.0330*
H50.911900.351501.012000.0300*
H7A1.028100.074501.237200.0450*
H7B1.038900.255101.298500.0450*
H7C0.828000.123801.272700.0450*
H8A0.987200.381300.850900.0440*
H8B0.825000.369400.774100.0440*
H8C0.781300.426800.879400.0440*
H60.342100.144800.439900.0510*
H100.278500.731800.730400.0330*
H110.159900.877500.584400.0390*
H120.155900.712800.462200.0350*
H1W0.618000.008000.704700.0670*
H2W0.535500.126200.619400.0670*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0364 (8)0.0249 (7)0.0195 (7)0.0033 (6)0.0066 (6)0.0052 (5)
O20.0388 (8)0.0217 (7)0.0187 (7)0.0023 (6)0.0025 (6)0.0093 (5)
N10.0296 (8)0.0192 (8)0.0183 (8)0.0020 (6)0.0041 (6)0.0048 (6)
N20.0381 (10)0.0223 (8)0.0204 (9)0.0020 (7)0.0053 (7)0.0072 (6)
N30.0297 (9)0.0233 (8)0.0215 (8)0.0046 (7)0.0023 (7)0.0068 (6)
C20.0268 (10)0.0237 (10)0.0201 (10)0.0069 (8)0.0007 (8)0.0069 (7)
C40.0281 (10)0.0226 (9)0.0204 (10)0.0064 (8)0.0003 (8)0.0039 (8)
C50.0311 (10)0.0210 (9)0.0221 (10)0.0042 (8)0.0008 (8)0.0065 (7)
C60.0256 (10)0.0252 (10)0.0210 (10)0.0056 (8)0.0012 (7)0.0091 (7)
C70.0395 (11)0.0319 (11)0.0190 (10)0.0066 (9)0.0052 (8)0.0068 (8)
C80.0400 (11)0.0244 (10)0.0221 (10)0.0022 (8)0.0009 (8)0.0112 (8)
O30.0487 (9)0.0248 (7)0.0211 (7)0.0032 (6)0.0068 (6)0.0097 (6)
O40.0418 (8)0.0226 (7)0.0219 (7)0.0003 (6)0.0058 (6)0.0074 (5)
O50.0457 (9)0.0387 (8)0.0183 (8)0.0071 (7)0.0053 (6)0.0062 (6)
O60.0507 (9)0.0312 (8)0.0207 (7)0.0069 (7)0.0047 (7)0.0097 (6)
N40.0281 (9)0.0242 (8)0.0183 (8)0.0058 (7)0.0004 (6)0.0059 (6)
C90.0271 (10)0.0243 (10)0.0192 (10)0.0054 (8)0.0007 (7)0.0054 (7)
C100.0366 (11)0.0243 (10)0.0223 (10)0.0046 (8)0.0004 (8)0.0096 (8)
C110.0412 (12)0.0226 (10)0.0298 (11)0.0014 (9)0.0020 (9)0.0031 (8)
C120.0338 (11)0.0301 (11)0.0211 (10)0.0045 (8)0.0028 (8)0.0019 (8)
C130.0270 (10)0.0297 (10)0.0206 (10)0.0070 (8)0.0001 (8)0.0063 (8)
C140.0301 (10)0.0222 (9)0.0200 (9)0.0062 (8)0.0023 (8)0.0066 (7)
C150.0276 (10)0.0324 (11)0.0215 (10)0.0069 (8)0.0009 (8)0.0059 (8)
O1W0.0894 (14)0.0365 (9)0.0303 (9)0.0106 (9)0.0165 (9)0.0173 (7)
Geometric parameters (Å, º) top
O1—C41.331 (2)N4—C91.341 (2)
O1—C71.452 (2)C4—C51.404 (3)
O2—C61.332 (2)C5—C61.361 (3)
O2—C81.443 (3)C5—H50.9295
O3—C141.244 (2)C7—H7A0.9600
O4—C141.266 (2)C7—H7B0.9601
O5—C151.207 (2)C7—H7C0.9594
O6—C151.324 (3)C8—H8C0.9603
O6—H60.8206C8—H8B0.9597
O1W—H1W0.9562C8—H8A0.9604
O1W—H2W0.9096C9—C141.513 (3)
N1—C61.349 (2)C9—C101.391 (2)
N1—C21.359 (2)C10—C111.380 (3)
N2—C21.321 (2)C11—C121.381 (3)
N3—C21.335 (2)C12—C131.385 (3)
N3—C41.326 (2)C13—C151.507 (3)
N1—H10.8596C10—H100.9305
N2—H2B0.8608C11—H110.9306
N2—H2A0.8599C12—H120.9298
N4—C131.339 (2)
C4—O1—C7117.71 (15)H7B—C7—H7C109.47
C6—O2—C8116.85 (14)O2—C8—H8C109.48
C15—O6—H6109.45O2—C8—H8B109.49
H1W—O1W—H2W104.58H8B—C8—H8C109.48
C2—N1—C6119.25 (15)H8A—C8—H8B109.43
C2—N3—C4115.98 (16)H8A—C8—H8C109.44
C6—N1—H1120.41O2—C8—H8A109.50
C2—N1—H1120.35C10—C9—C14119.72 (16)
C2—N2—H2A120.05N4—C9—C14117.18 (14)
H2A—N2—H2B119.94N4—C9—C10123.07 (17)
C2—N2—H2B120.02C9—C10—C11118.64 (18)
C9—N4—C13117.15 (17)C10—C11—C12119.1 (2)
N2—C2—N3119.34 (16)C11—C12—C13118.51 (19)
N1—C2—N3123.48 (15)N4—C13—C12123.55 (19)
N1—C2—N2117.17 (16)C12—C13—C15118.89 (18)
O1—C4—C5116.16 (14)N4—C13—C15117.53 (19)
N3—C4—C5124.59 (17)O4—C14—C9117.30 (15)
O1—C4—N3119.24 (16)O3—C14—O4124.73 (17)
C4—C5—C6115.95 (15)O3—C14—C9117.96 (14)
N1—C6—C5120.71 (16)O6—C15—C13112.86 (17)
O2—C6—C5127.33 (15)O5—C15—O6125.0 (2)
O2—C6—N1111.96 (15)O5—C15—C13122.2 (2)
C4—C5—H5122.06C11—C10—H10120.68
C6—C5—H5121.99C9—C10—H10120.68
O1—C7—H7A109.51C10—C11—H11120.46
O1—C7—H7B109.45C12—C11—H11120.49
O1—C7—H7C109.45C11—C12—H12120.73
H7A—C7—H7B109.45C13—C12—H12120.76
H7A—C7—H7C109.50
C7—O1—C4—N31.6 (3)O1—C4—C5—C6177.74 (18)
C7—O1—C4—C5179.43 (17)C4—C5—C6—O2177.75 (19)
C8—O2—C6—N1177.39 (16)C4—C5—C6—N12.4 (3)
C8—O2—C6—C52.8 (3)N4—C9—C14—O3173.15 (18)
C6—N1—C2—N2179.37 (17)N4—C9—C14—O46.5 (3)
C6—N1—C2—N30.3 (3)C14—C9—C10—C11177.41 (19)
C2—N1—C6—O2178.08 (16)C10—C9—C14—O4171.69 (19)
C2—N1—C6—C52.1 (3)C10—C9—C14—O38.7 (3)
C4—N3—C2—N10.9 (3)N4—C9—C10—C110.7 (3)
C2—N3—C4—O1179.31 (17)C9—C10—C11—C121.1 (3)
C2—N3—C4—C50.4 (3)C10—C11—C12—C130.1 (3)
C4—N3—C2—N2179.43 (18)C11—C12—C13—C15179.47 (19)
C9—N4—C13—C121.7 (3)C11—C12—C13—N41.3 (3)
C9—N4—C13—C15179.87 (18)N4—C13—C15—O5173.08 (19)
C13—N4—C9—C100.7 (3)C12—C13—C15—O6175.29 (19)
C13—N4—C9—C14178.80 (18)N4—C13—C15—O66.4 (3)
N3—C4—C5—C61.2 (3)C12—C13—C15—O55.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.712.569 (2)174
N2—H2A···O3i0.861.972.793 (2)159
N2—H2B···O30.861.982.837 (2)173
O1W—H1W···O20.962.443.275 (2)146
O1W—H1W···O40.962.172.836 (2)125
O1W—H2W···O60.912.342.946 (2)124
O1W—H2W···N40.912.163.035 (2)162
O6—H6···O1Wii0.821.772.577 (2)165
C7—H7B···O5iii0.962.603.507 (3)158
C8—H8B···O5ii0.962.413.365 (2)175
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1; (iii) x+1, y1, z+1.
(III) 2-amino-4,6-dimethoxypyrimidinium hydrogen L-tartrate 2-amino-4,6-dimethoxypyrimidine top
Crystal data top
C6H10N3O2+·C4H5O6·C6H9N3O2F(000) = 484
Mr = 460.41Dx = 1.531 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2378 reflections
a = 7.3245 (2) Åθ = 3.2–27.5°
b = 15.8349 (6) ŵ = 0.13 mm1
c = 8.9264 (3) ÅT = 120 K
β = 105.251 (2)°Plate-like, colourless
V = 998.85 (6) Å30.42 × 0.28 × 0.18 mm
Z = 2
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2122 reflections with I > 2σ(I)
Radiation source: Bruker–Nonius FR591 rotating anodeRint = 0.035
Graphite monochromatorθmax = 27.6°, θmin = 3.2°
ϕ and ω scansh = 99
13297 measured reflectionsk = 2019
2378 independent reflectionsl = 1111
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0752P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.15Δρmax = 0.69 e Å3
2378 reflectionsΔρmin = 0.70 e Å3
297 parametersExtinction correction: SHELXL97, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
1 restraintExtinction coefficient: 0.134 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: see text
Secondary atom site location: difference Fourier map
Crystal data top
C6H10N3O2+·C4H5O6·C6H9N3O2V = 998.85 (6) Å3
Mr = 460.41Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.3245 (2) ŵ = 0.13 mm1
b = 15.8349 (6) ÅT = 120 K
c = 8.9264 (3) Å0.42 × 0.28 × 0.18 mm
β = 105.251 (2)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2122 reflections with I > 2σ(I)
13297 measured reflectionsRint = 0.035
2378 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.110H-atom parameters constrained
S = 1.15Δρmax = 0.69 e Å3
2378 reflectionsΔρmin = 0.70 e Å3
297 parametersAbsolute structure: see text
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.8255 (3)0.30102 (12)0.8077 (2)0.0233 (6)
O2A0.9013 (3)0.28021 (12)0.3002 (2)0.0216 (5)
N1A0.8302 (3)0.16913 (14)0.4276 (2)0.0176 (6)
N2A0.7712 (3)0.04769 (15)0.5515 (2)0.0214 (7)
N3A0.7951 (3)0.17312 (15)0.6842 (2)0.0183 (6)
C2A0.7990 (4)0.13015 (17)0.5558 (3)0.0165 (7)
C4A0.8300 (3)0.25513 (17)0.6841 (3)0.0174 (7)
C5A0.8723 (4)0.29968 (17)0.5611 (3)0.0204 (7)
C6A0.8686 (4)0.25293 (16)0.4314 (3)0.0170 (7)
C7A0.7670 (4)0.25969 (19)0.9324 (3)0.0257 (8)
C8A0.9477 (4)0.36861 (18)0.2948 (3)0.0226 (8)
O1B0.7584 (3)0.41862 (12)0.8001 (2)0.0233 (6)
O2B0.6580 (3)0.41577 (11)0.2988 (2)0.0202 (5)
N1B0.6495 (3)0.29710 (14)0.4353 (2)0.0175 (6)
N2B0.6246 (3)0.17413 (14)0.5729 (3)0.0220 (7)
N3B0.6941 (3)0.29419 (15)0.6915 (2)0.0180 (6)
C2B0.6575 (3)0.25731 (17)0.5666 (3)0.0177 (7)
C4B0.7212 (4)0.37671 (18)0.6810 (3)0.0184 (7)
C5B0.7116 (4)0.42544 (17)0.5533 (3)0.0193 (8)
C6B0.6748 (4)0.38140 (16)0.4309 (3)0.0167 (7)
C7B0.7603 (4)0.3709 (2)0.9380 (3)0.0254 (8)
C8B0.6900 (4)0.50529 (17)0.2811 (3)0.0231 (8)
O30.7964 (3)0.04317 (12)0.2868 (2)0.0225 (5)
O40.8116 (3)0.07902 (12)0.1635 (2)0.0251 (6)
O50.7913 (3)0.00720 (13)0.1059 (2)0.0277 (6)
O60.4496 (3)0.05678 (13)0.0305 (2)0.0228 (6)
O70.5031 (3)0.11616 (13)0.3020 (2)0.0241 (5)
O80.6988 (3)0.21546 (13)0.1709 (2)0.0226 (6)
C90.7984 (3)0.00022 (18)0.1696 (3)0.0193 (8)
C100.7918 (4)0.04866 (17)0.0184 (3)0.0195 (7)
C110.6141 (4)0.10387 (17)0.0251 (3)0.0180 (7)
C120.5988 (3)0.14634 (17)0.1812 (3)0.0178 (7)
H1A0.825500.140400.344900.0210*
H5A0.900800.357000.567500.0240*
H21A0.750700.022200.630600.0260*
H22A0.773400.019500.469700.0260*
H71A0.656400.226200.889700.0310*
H72A0.738700.301601.000800.0310*
H73A0.867300.224000.989400.0310*
H81A0.841000.402200.301300.0270*
H82A0.978900.380500.199000.0270*
H83A1.053900.381800.380500.0270*
H5B0.728800.483700.550700.0230*
H21B0.599800.148800.495300.0260*
H22B0.628200.146000.654500.0260*
H71B0.632700.359400.996300.0300*
H72B0.823300.403001.000800.0300*
H73B0.826200.318600.908500.0300*
H81B0.601900.534500.363500.0280*
H82B0.672600.523100.183000.0280*
H83B0.816800.518000.285000.0280*
H50.793600.056100.075400.0330*
H60.424400.027000.108400.0270*
H80.671500.239900.254800.0270*
H100.903500.085100.035900.0230*
H110.626000.147900.054000.0220*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0349 (11)0.0202 (10)0.0160 (9)0.0000 (8)0.0086 (8)0.0046 (7)
O2A0.0312 (10)0.0190 (10)0.0166 (8)0.0008 (8)0.0100 (8)0.0000 (8)
N1A0.0235 (10)0.0169 (11)0.0128 (9)0.0016 (9)0.0056 (8)0.0029 (8)
N2A0.0318 (12)0.0187 (12)0.0152 (10)0.0012 (10)0.0090 (9)0.0017 (9)
N3A0.0208 (10)0.0182 (12)0.0157 (10)0.0008 (9)0.0044 (8)0.0022 (8)
C2A0.0170 (12)0.0168 (13)0.0150 (11)0.0017 (10)0.0032 (10)0.0007 (9)
C4A0.0201 (12)0.0160 (13)0.0152 (12)0.0032 (10)0.0030 (10)0.0032 (9)
C5A0.0261 (13)0.0162 (13)0.0186 (12)0.0006 (11)0.0054 (10)0.0022 (10)
C6A0.0184 (11)0.0155 (13)0.0173 (12)0.0025 (10)0.0049 (10)0.0002 (10)
C7A0.0338 (15)0.0272 (16)0.0174 (12)0.0014 (12)0.0089 (11)0.0028 (11)
C8A0.0276 (13)0.0202 (14)0.0203 (12)0.0029 (12)0.0068 (11)0.0008 (11)
O1B0.0370 (11)0.0211 (11)0.0145 (9)0.0006 (9)0.0118 (8)0.0024 (7)
O2B0.0330 (10)0.0149 (10)0.0153 (8)0.0012 (8)0.0107 (8)0.0005 (7)
N1B0.0228 (10)0.0154 (11)0.0147 (9)0.0025 (9)0.0057 (8)0.0023 (9)
N2B0.0341 (13)0.0158 (11)0.0186 (10)0.0036 (10)0.0113 (10)0.0018 (9)
N3B0.0204 (10)0.0186 (12)0.0150 (9)0.0018 (9)0.0049 (8)0.0020 (8)
C2B0.0158 (11)0.0197 (13)0.0164 (12)0.0011 (10)0.0020 (10)0.0007 (10)
C4B0.0181 (12)0.0207 (14)0.0161 (12)0.0013 (10)0.0039 (10)0.0036 (10)
C5B0.0270 (14)0.0150 (13)0.0171 (12)0.0002 (11)0.0080 (11)0.0019 (9)
C6B0.0178 (12)0.0167 (14)0.0150 (11)0.0020 (10)0.0031 (10)0.0013 (10)
C7B0.0342 (15)0.0286 (16)0.0148 (12)0.0031 (12)0.0090 (11)0.0013 (11)
C8B0.0356 (15)0.0153 (13)0.0207 (12)0.0016 (11)0.0114 (12)0.0007 (10)
O30.0322 (10)0.0197 (10)0.0163 (8)0.0020 (8)0.0076 (8)0.0020 (7)
O40.0404 (12)0.0174 (11)0.0192 (9)0.0040 (9)0.0106 (9)0.0029 (7)
O50.0469 (12)0.0207 (11)0.0182 (9)0.0093 (10)0.0135 (9)0.0019 (8)
O60.0272 (10)0.0238 (10)0.0191 (9)0.0042 (8)0.0093 (8)0.0002 (8)
O70.0308 (10)0.0244 (10)0.0156 (8)0.0048 (9)0.0033 (7)0.0015 (8)
O80.0357 (11)0.0171 (10)0.0145 (8)0.0049 (8)0.0057 (8)0.0017 (7)
C90.0210 (13)0.0202 (15)0.0168 (12)0.0023 (11)0.0053 (10)0.0032 (10)
C100.0282 (13)0.0171 (13)0.0156 (11)0.0003 (10)0.0099 (11)0.0022 (10)
C110.0249 (12)0.0162 (13)0.0143 (11)0.0026 (10)0.0078 (10)0.0008 (10)
C120.0206 (12)0.0158 (13)0.0179 (12)0.0031 (10)0.0065 (10)0.0026 (10)
Geometric parameters (Å, º) top
O1A—C4A1.329 (3)N3B—C4B1.321 (4)
O1A—C7A1.450 (3)N3B—C2B1.347 (3)
O2A—C6A1.328 (3)N2B—H22B0.8601
O2A—C8A1.444 (3)N2B—H21B0.8602
O1B—C7B1.448 (3)C4A—C5A1.406 (4)
O1B—C4B1.341 (3)C5A—C6A1.368 (4)
O2B—C6B1.333 (3)C5A—H5A0.9297
O2B—C8B1.439 (3)C7A—H73A0.9599
O3—C91.255 (3)C7A—H71A0.9593
O4—C91.254 (3)C7A—H72A0.9606
O5—C101.418 (3)C8A—H81A0.9596
O6—C111.407 (4)C8A—H82A0.9601
O7—C121.219 (3)C8A—H83A0.9596
O8—C121.307 (3)C4B—C5B1.394 (4)
O5—H50.8195C5B—C6B1.381 (4)
O6—H60.8200C5B—H5B0.9306
O8—H80.8197C7B—H73B0.9599
N1A—C6A1.355 (3)C7B—H71B0.9600
N1A—C2A1.371 (3)C7B—H72B0.9600
N2A—C2A1.321 (4)C8B—H83B0.9598
N3A—C2A1.340 (3)C8B—H82B0.9598
N3A—C4A1.324 (4)C8B—H81B0.9600
N1A—H1A0.8601C9—C101.546 (4)
N2A—H22A0.8596C10—C111.531 (4)
N2A—H21A0.8601C11—C121.525 (4)
N1B—C2B1.345 (3)C10—H100.9795
N1B—C6B1.347 (3)C11—H110.9797
N2B—C2B1.338 (3)
C4A—O1A—C7A117.9 (2)N1B—C2B—N2B116.7 (2)
C6A—O2A—C8A116.3 (2)N1B—C2B—N3B125.6 (2)
C4B—O1B—C7B117.7 (2)N2B—C2B—N3B117.7 (2)
C6B—O2B—C8B116.7 (2)O1B—C4B—N3B119.4 (2)
C10—O5—H5109.50N3B—C4B—C5B124.5 (2)
C11—O6—H6109.48O1B—C4B—C5B116.0 (2)
C12—O8—H8109.49C4B—C5B—C6B115.5 (2)
C2A—N1A—C6A119.9 (2)O2B—C6B—N1B112.7 (2)
C2A—N3A—C4A116.8 (2)O2B—C6B—C5B125.2 (2)
C6A—N1A—H1A120.04N1B—C6B—C5B122.1 (2)
C2A—N1A—H1A120.02C4B—C5B—H5B122.26
H21A—N2A—H22A120.00C6B—C5B—H5B122.29
C2A—N2A—H21A119.94O1B—C7B—H71B109.53
C2A—N2A—H22A120.07O1B—C7B—H72B109.50
C2B—N1B—C6B116.9 (2)H72B—C7B—H73B109.44
C2B—N3B—C4B115.4 (2)O1B—C7B—H73B109.50
H21B—N2B—H22B120.03H71B—C7B—H72B109.44
C2B—N2B—H21B119.95H71B—C7B—H73B109.43
C2B—N2B—H22B120.02O2B—C8B—H81B109.47
N1A—C2A—N3A122.1 (2)O2B—C8B—H82B109.44
N1A—C2A—N2A118.6 (2)O2B—C8B—H83B109.50
N2A—C2A—N3A119.3 (2)H82B—C8B—H83B109.48
N3A—C4A—C5A125.1 (2)H81B—C8B—H82B109.49
O1A—C4A—C5A115.6 (2)H81B—C8B—H83B109.45
O1A—C4A—N3A119.3 (2)O3—C9—C10116.7 (2)
C4A—C5A—C6A115.4 (2)O3—C9—O4126.8 (2)
N1A—C6A—C5A120.6 (2)O4—C9—C10116.5 (2)
O2A—C6A—C5A127.0 (2)O5—C10—C9111.3 (2)
O2A—C6A—N1A112.4 (2)O5—C10—C11109.3 (2)
C6A—C5A—H5A122.29C9—C10—C11109.7 (2)
C4A—C5A—H5A122.26C10—C11—C12109.7 (2)
O1A—C7A—H72A109.45O6—C11—C10111.7 (2)
O1A—C7A—H71A109.49O6—C11—C12110.2 (2)
O1A—C7A—H73A109.46O7—C12—O8124.9 (2)
H71A—C7A—H72A109.49O7—C12—C11121.5 (2)
H71A—C7A—H73A109.49O8—C12—C11113.6 (2)
H72A—C7A—H73A109.44O5—C10—H10108.80
H82A—C8A—H83A109.54C9—C10—H10108.83
H81A—C8A—H82A109.49C11—C10—H10108.83
O2A—C8A—H83A109.44O6—C11—H11108.35
O2A—C8A—H82A109.45C10—C11—H11108.37
O2A—C8A—H81A109.43C12—C11—H11108.42
H81A—C8A—H83A109.48
C7A—O1A—C4A—N3A4.9 (3)C4B—N3B—C2B—N2B178.5 (2)
C7A—O1A—C4A—C5A174.9 (2)C2B—N3B—C4B—O1B180.0 (2)
C8A—O2A—C6A—N1A178.7 (2)O1A—C4A—C5A—C6A177.2 (2)
C8A—O2A—C6A—C5A0.7 (4)N3A—C4A—C5A—C6A2.6 (4)
C7B—O1B—C4B—N3B2.2 (4)C4A—C5A—C6A—N1A1.4 (4)
C7B—O1B—C4B—C5B177.0 (3)C4A—C5A—C6A—O2A179.3 (3)
C8B—O2B—C6B—N1B177.7 (2)O1B—C4B—C5B—C6B179.5 (3)
C8B—O2B—C6B—C5B3.1 (4)N3B—C4B—C5B—C6B1.4 (4)
C2A—N1A—C6A—O2A177.9 (2)C4B—C5B—C6B—O2B179.3 (3)
C2A—N1A—C6A—C5A1.5 (4)C4B—C5B—C6B—N1B0.2 (4)
C6A—N1A—C2A—N3A3.6 (4)O3—C9—C10—O5178.9 (2)
C6A—N1A—C2A—N2A176.7 (3)O3—C9—C10—C1157.8 (3)
C2A—N3A—C4A—C5A0.7 (4)O4—C9—C10—O53.4 (3)
C4A—N3A—C2A—N2A177.8 (2)O4—C9—C10—C11124.5 (2)
C2A—N3A—C4A—O1A179.1 (2)O5—C10—C11—C1252.9 (3)
C4A—N3A—C2A—N1A2.5 (4)C9—C10—C11—O652.7 (3)
C2B—N1B—C6B—O2B177.8 (2)C9—C10—C11—C12175.2 (2)
C6B—N1B—C2B—N3B2.1 (4)O5—C10—C11—O669.6 (3)
C2B—N1B—C6B—C5B1.4 (4)O6—C11—C12—O727.9 (3)
C6B—N1B—C2B—N2B177.3 (2)C10—C11—C12—O795.5 (3)
C2B—N3B—C4B—C5B0.9 (4)C10—C11—C12—O883.5 (3)
C4B—N3B—C2B—N1B1.0 (4)O6—C11—C12—O8153.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O40.861.872.728 (3)179
O5—H5···O40.822.132.629 (3)119
O6—H6···O70.822.422.722 (3)103
O6—H6···O1Bi0.822.202.860 (3)138
O8—H8···N1B0.821.822.631 (3)171
N2A—H21A···O5ii0.862.303.090 (3)152
N2B—H21B···O70.862.092.935 (3)165
N2A—H22A···O30.861.962.814 (3)176
N2B—H22B···O3iii0.862.192.878 (3)137
C8A—H81A···O7iv0.962.543.328 (4)140
C8B—H82B···O6v0.962.373.308 (3)166
Symmetry codes: (i) x+1, y+1/2, z1; (ii) x, y, z+1; (iii) x, y, z1; (iv) x+1, y+1/2, z; (v) x+1, y1/2, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC6H10N3O2+·C7H5O3·H2OC6H10N3O2+·C7H4NO4·H2OC6H10N3O2+·C4H5O6·C6H9N3O2
Mr311.30340.30460.41
Crystal system, space groupMonoclinic, P21/cTriclinic, P1Monoclinic, P21
Temperature (K)120120120
a, b, c (Å)6.9710 (2), 10.9014 (3), 18.3749 (6)6.8247 (6), 7.9273 (5), 14.4038 (10)7.3245 (2), 15.8349 (6), 8.9264 (3)
α, β, γ (°)90, 93.631 (2), 9082.558 (5), 88.133 (4), 75.075 (5)90, 105.251 (2), 90
V3)1393.57 (7)746.63 (10)998.85 (6)
Z422
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.120.130.13
Crystal size (mm)0.48 × 0.30 × 0.140.40 × 0.25 × 0.100.42 × 0.28 × 0.18
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
diffractometer
Bruker–Nonius KappaCCD area-detector
diffractometer
Bruker–Nonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12896, 3172, 2415 14555, 3384, 2397 13297, 2378, 2122
Rint0.0360.0620.035
(sin θ/λ)max1)0.6510.6510.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.140, 1.09 0.064, 0.175, 1.07 0.049, 0.110, 1.15
No. of reflections317233842378
No. of parameters203221297
No. of restraints331
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.650.53, 0.620.69, 0.70
Absolute structure??See text

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON.

Selected geometric parameters (Å, º) for (I) top
O3—C151.253 (2)N1—C61.355 (2)
O4—C151.282 (2)N2—C21.324 (2)
O5—C121.3592 (18)N3—C41.330 (2)
N1—C21.353 (2)N3—C21.340 (2)
C2—N1—C6120.01 (14)C2—N3—C4116.22 (14)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.752.6029 (17)172
O1W—H1W···O4i0.942.002.9084 (16)162
N2—H2A···N3ii0.862.263.1128 (19)171
N2—H2B···O30.862.062.8832 (17)161
O1W—H2W···O30.931.842.7284 (16)160
O5—H5A···O1Wiii0.821.872.6894 (16)176
C11—H11···O1Wiii0.932.573.241 (2)130
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (II) top
O3—C141.244 (2)N2—C21.321 (2)
O4—C141.266 (2)N3—C21.335 (2)
O5—C151.207 (2)N3—C41.326 (2)
O6—C151.324 (3)N4—C131.339 (2)
N1—C61.349 (2)N4—C91.341 (2)
N1—C21.359 (2)
C2—N1—C6119.25 (15)C9—N4—C13117.15 (17)
C2—N3—C4115.98 (16)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.712.569 (2)174
N2—H2A···O3i0.861.972.793 (2)159
N2—H2B···O30.861.982.837 (2)173
O1W—H1W···O20.962.443.275 (2)146
O1W—H1W···O40.962.172.836 (2)125
O1W—H2W···O60.912.342.946 (2)124
O1W—H2W···N40.912.163.035 (2)162
O6—H6···O1Wii0.821.772.577 (2)165
C7—H7B···O5iii0.962.603.507 (3)158
C8—H8B···O5ii0.962.413.365 (2)175
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1; (iii) x+1, y1, z+1.
Selected geometric parameters (Å, º) for (III) top
O3—C91.255 (3)N2A—C2A1.321 (4)
O4—C91.254 (3)N3A—C2A1.340 (3)
O5—C101.418 (3)N3A—C4A1.324 (4)
O6—C111.407 (4)N1B—C2B1.345 (3)
O7—C121.219 (3)N1B—C6B1.347 (3)
O8—C121.307 (3)N2B—C2B1.338 (3)
N1A—C6A1.355 (3)N3B—C4B1.321 (4)
N1A—C2A1.371 (3)N3B—C2B1.347 (3)
C2A—N1A—C6A119.9 (2)C2B—N1B—C6B116.9 (2)
C2A—N3A—C4A116.8 (2)C2B—N3B—C4B115.4 (2)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O40.86001.87002.728 (3)179.00
O5—H5···O40.82002.13002.629 (3)119.00
O6—H6···O70.82002.42002.722 (3)103.00
O6—H6···O1Bi0.82002.20002.860 (3)138.00
O8—H8···N1B0.82001.82002.631 (3)171.00
N2A—H21A···O5ii0.86002.30003.090 (3)152.00
N2B—H21B···O70.86002.09002.935 (3)165.00
N2A—H22A···O30.86001.96002.814 (3)176.00
N2B—H22B···O3iii0.86002.19002.878 (3)137.00
C8A—H81A···O7iv0.96002.54003.328 (4)140.00
C8B—H82B···O6v0.96002.37003.308 (3)166.00
Symmetry codes: (i) x+1, y+1/2, z1; (ii) x, y, z+1; (iii) x, y, z1; (iv) x+1, y+1/2, z; (v) x+1, y1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds