Download citation
Download citation
link to html
In the title compound, [Mn2(C7H6NO2)2(C2H3O2)2(C10H8N2)2], the two MnII atoms are each coordinated by one 2,2'-bi­pyridyl mol­ecule, one 4-amino­benzoate ion and two acetate ions. The two Mn atoms exhibit different coordination environments: one is coordinated by two N and four O atoms, while the other is coordinated by two N and three O atoms. The two Mn atoms are bridged by two acetate ions in a syn-anti mode, with an Mn...Mn distance of 4.081 (1) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104032615/ob1213sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104032615/ob1213Isup2.hkl
Contains datablock I

CCDC reference: 264783

Comment top

As a bifunctional organic ligand, 4-aminobenzoic acid (4-abzH) has been extensively reported in coordination chemistry because of the richness of its coordination modes.

(i) 4-abzH can act as a carboxylic acid synthon and also as a good monodentate ligand through the amine group (Fur et al., 1996; Chen et al., 2002).

(ii) Deprotonated 4-aminobenzoic acid can act as a monodentate ligand through a carboxylate O atom (Sundberg et al., 1998; Chandrasekhar et al., 1988; Amiraslanov et al., 1979), and as a chelating and/or bridging ligand through its amine and/or carboxylate groups (Zheng et al., 2001; Rzaezynska et al., 1994; Hauptmann et al., 2000).

(iii) 4-abzH may be protonated to form organic cation templating agents (Wang et al., 2002).

Although some complexes containing mixed 4-aminobenzoate and other nitrogen-donor ligands have been synthesized and characterized, complexes containing mixed 4-aminobenzoate and 2,2'-bipyridine (2,2'-bipy) ligands have rarely been reported. To the best of our knowledge, there are only three reports of structures with 4-aminobenzoate/2,2'-bipyridine ligands, viz. [Cu(2,2'-bipy)(4-abz)2]·0.5H2O (Naldini et al., 1984), [Cu(2,2'-bipy)(4-abzH)(4-abz)]2(NO3)2·1.5H2O and {[Cu(2,2'-bipy)(4,4'-bipy)0.5(4-abz)](ClO4)·0.5H2O}n (Hu et al., 2003). We report here the synthesis and characterization of the title complex, (I), in which the amine group of the 4-aminobenzoate moiety is uncoordinated.

Compound (I) consists of dimeric unit, [Mn2(MeCOO)2(2,2'-bipy)2(4-abz)2] (Fig. 1). The coordination geometry around atom Mn1 is distorted octahedral, the six coordination sites being occupied by two N atoms from a 2,2'-bipy molecule and four O atoms from a 4-aminobenzoate and two acetate ligands. The Mn—N distances are 2.242 (3) and 2.296 (3) Å, and the Mn—O distances range from 2.087 (3) Å to 2.454 (3) Å (Table 1). In the Mn1 coordination environment, the 4-aminobenzoate molecule exhibits a bidentate chelating coordination mode, while in the Mn2 coordination environment, the 4-aminobenzoate molecule exhibits a monodentate coordination mode, the Mn2···O8 distance being 2.655 (3) Å. Atom Mn2 is coordinated by two N atoms from a 2,2'-bipy ligand and three O atoms from a 4-aminobenzoate and two acetate ions, forming a highly distorted square pyramid. The apical position of the pyramid is occupied by atom O2, with an Mn—O distance of 2.146 (2) Å, while the equatorial plane is defined by atoms N5, N6, O4 and O7, with Mn—N distances of 2.253 (3) and 2.298 (3) Å, and Mn—O distances of 2.069 (2)–2.155 (2) Å.

Atoms N3 and N4 of the 4-aminobenzoate ligands are uncoordinated but link the molecules via hydrogen bonds (Table 2). A C—H···π interaction is also present (Table 2; Cg is the centroid of the C23–C28 ring of the 4-aminobenzoate ligand). Thus, the binuclear complexes are bound together through N—H···O hydrogen bonds and C—H···π interactions into a three-dimensional network (Fig. 2). There are no ππ stacking interactions.

In (I), atoms Mn1 and Mn2 are bridged by the two acetate groups in a syn–anti fashion, and the Mn—Osyn bond distances are longer than the Mn—Oanti distances (Table 3). This configuration is in contrast to the reverse relationship observed in another two syn–anti diacetate-bridged complexes, [Mn2(µ-MeCOO)2(tpa)2](TCNQ)2·2CH3CN, (II) [tpa is tris(2-pyridylmethyl)amine and TCNQ is tetracyanoquinodimethane; Oshio et al., 1993], and [Mn2(µ-MeCOO)2(bpia)2](ClO4)2, (III) [bpia is bis(picolyl)(N-methylimidazol-2-yl)amine; Triller et al., 2002]. This difference may be attributed to the different coordination geometry around the Mn atoms and the influence of the coexisting ligands. The Mn1···Mn2 distance of 4.081 (1) Å in (I) is comparable to those in (II) and (III), but is considerably shorter than those in the other syn–anti dicarboxylate-bridged complexes [Mn2(µ-EtCOO)2(2,2'-bipy)4](ClO4)2, (IV) [4.653 (3) Å; Zhang et al., 2001], and [Mn2(µ-PhCOO)2(2,2'-bipy)4](ClO4)2, (V) [4.509 (1) Å; Albela et al., 1998]. The longer Mn···Mn distances in (IV) and (V) may be attributed to the fact that the Mn—O—C angles of the EtCOO and PhCOO bridges are larger than those of the MeCOO bridge.

Experimental top

An ethanol solution (8 ml) of 2,2'-bipyridine (1.2 mmol) and 4-aminobenzoic acid (1.6 mmol) was added slowly to an aqueous solution (10 ml) of Mn(CH3CO2)2·4H2O (1 mmol) with continuous stirring. After half an hour, the reaction mixture was allowed to stand at room temperature undisturbed for two weeks, resulting in yellow crystals (yield 61%). Analysis calculated for C38H34Mn2N6O8: C 56.17, H 4.22, N 10.34%; found: C 56.01, H4.31, N 10.37%. IR (KBr, cm−1): 3421 (s), 3325 (s), 3221 (s), 1639 (s), 1574 (s), 1443 (s), 1383 (s), 1306 (m), 1173 (m), 1016 (m), 854 (m), 791 (s), 773 (s), 627 (m).

Refinement top

All H atoms were positioned geometrically and treated as riding, with N—H distance of 0.86 Å and C—H distances of 0.93–0.96 Å, and with Uiso(H) values of 1.2Ueq(parent atom) or 1.5Ueq(Cmethyl). The maximum residual density is located 1.76 Å from atom H1A, and the minimum density is 0.72 Å from atom Mn1.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing atomic displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. The crystal structure of (I). Broken lines indicate hydrogen bonds.
Di-µ-acetato-bis[bis(4-aminobenzoato)(2,2'-bipyridyl)manganese(II)] top
Crystal data top
[Mn2(C7H6NO2)2(C2H3O2)2(C10H8N2)2]Dx = 1.513 Mg m3
Mr = 812.59Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 7843 reflections
a = 20.8346 (7) Åθ = 3.0–27.5°
b = 8.0289 (3) ŵ = 0.77 mm1
c = 21.3189 (8) ÅT = 293 K
V = 3566.2 (2) Å3Prism, yellow
Z = 40.44 × 0.40 × 0.16 mm
F(000) = 1672
Data collection top
Siemens SMART CCD
diffractometer
7506 independent reflections
Radiation source: fine-focus sealed tube7084 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2626
Tmin = 0.759, Tmax = 0.884k = 1010
26202 measured reflectionsl = 2227
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0547P)2 + 1.202P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
7506 reflectionsΔρmax = 0.97 e Å3
487 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 3306 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.446 (15)
Crystal data top
[Mn2(C7H6NO2)2(C2H3O2)2(C10H8N2)2]V = 3566.2 (2) Å3
Mr = 812.59Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 20.8346 (7) ŵ = 0.77 mm1
b = 8.0289 (3) ÅT = 293 K
c = 21.3189 (8) Å0.44 × 0.40 × 0.16 mm
Data collection top
Siemens SMART CCD
diffractometer
7506 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
7084 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.884Rint = 0.027
26202 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.101Δρmax = 0.97 e Å3
S = 1.07Δρmin = 0.26 e Å3
7506 reflectionsAbsolute structure: Flack (1983), 3306 Friedel pairs
487 parametersAbsolute structure parameter: 0.446 (15)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.441724 (18)0.37865 (5)0.07105 (2)0.02938 (10)
Mn20.300631 (18)0.11253 (5)0.15812 (2)0.02957 (10)
N10.50561 (11)0.4663 (3)0.15237 (14)0.0332 (5)
N20.53860 (12)0.4458 (3)0.03283 (13)0.0348 (5)
N30.17865 (14)0.5497 (4)0.21161 (15)0.0479 (7)
H3A0.16080.64540.21650.057*
H3B0.16510.46520.23250.057*
N40.57318 (14)0.0422 (4)0.44227 (15)0.0474 (7)
H4A0.58380.13390.46030.057*
H4B0.59450.04740.44980.057*
N50.20844 (12)0.0075 (3)0.19664 (13)0.0331 (5)
N60.23470 (11)0.0440 (3)0.07567 (13)0.0339 (5)
O10.36361 (12)0.4306 (4)0.12909 (15)0.0641 (8)
O20.26433 (10)0.3608 (3)0.14697 (14)0.0491 (6)
O30.47251 (10)0.1318 (3)0.08998 (13)0.0435 (6)
O40.37405 (10)0.0337 (3)0.09992 (13)0.0474 (6)
O50.39973 (11)0.5880 (3)0.00207 (13)0.0464 (6)
O60.39416 (10)0.3173 (3)0.01756 (12)0.0425 (5)
O70.34967 (10)0.1759 (3)0.24387 (11)0.0425 (5)
O80.35159 (12)0.0980 (3)0.24023 (14)0.0519 (6)
C10.28627 (19)0.6418 (4)0.1201 (2)0.0570 (11)
H1A0.32330.70710.10960.085*
H1B0.26640.68690.15700.085*
H1C0.25630.64440.08590.085*
C20.30614 (13)0.4660 (4)0.13237 (16)0.0325 (6)
C30.46103 (19)0.1535 (4)0.1141 (2)0.0584 (11)
H3C0.50710.14850.11380.088*
H3D0.44670.22940.08220.088*
H3E0.44650.19130.15430.088*
C40.43427 (14)0.0164 (4)0.10126 (16)0.0322 (6)
C50.37720 (13)0.4654 (4)0.03159 (15)0.0337 (6)
C60.32768 (13)0.4897 (3)0.08101 (14)0.0290 (6)
C70.30458 (14)0.3556 (4)0.11594 (16)0.0355 (7)
H7A0.32200.25020.10970.043*
C80.25663 (16)0.3767 (4)0.15939 (16)0.0388 (7)
H8A0.24220.28510.18210.047*
C90.22902 (14)0.5320 (4)0.17022 (15)0.0352 (6)
C100.25242 (17)0.6657 (4)0.13549 (17)0.0440 (8)
H10A0.23510.77110.14190.053*
C110.30038 (15)0.6453 (4)0.09208 (19)0.0420 (8)
H11A0.31490.73710.06960.050*
C120.48738 (16)0.4642 (4)0.21246 (17)0.0417 (7)
H12A0.44570.43080.22190.050*
C130.52729 (18)0.5089 (5)0.26095 (19)0.0512 (9)
H13A0.51300.50550.30230.061*
C140.5893 (2)0.5594 (6)0.2469 (2)0.0622 (11)
H14A0.61720.59190.27860.075*
C150.60875 (17)0.5608 (5)0.1857 (2)0.0498 (8)
H15A0.65020.59410.17540.060*
C160.56636 (14)0.5121 (4)0.13905 (16)0.0327 (7)
C170.58388 (12)0.5050 (3)0.07151 (18)0.0304 (6)
C180.64387 (14)0.5527 (4)0.04914 (18)0.0438 (8)
H18A0.67430.59770.07620.053*
C190.65761 (16)0.5321 (5)0.01388 (19)0.0501 (9)
H19A0.69760.56220.02950.060*
C200.61187 (17)0.4671 (5)0.05312 (18)0.0474 (8)
H20A0.62040.45020.09550.057*
C210.55273 (15)0.4276 (4)0.02783 (17)0.0424 (7)
H21A0.52120.38620.05440.051*
C220.37103 (13)0.0364 (4)0.26274 (16)0.0351 (6)
C230.42170 (14)0.0371 (4)0.31252 (15)0.0330 (6)
C240.43810 (14)0.1818 (4)0.34470 (16)0.0368 (7)
H24A0.41570.27960.33660.044*
C250.48702 (15)0.1827 (4)0.38843 (15)0.0396 (7)
H25A0.49670.28080.40960.048*
C260.52225 (14)0.0388 (4)0.40140 (15)0.0349 (6)
C270.50637 (15)0.1062 (4)0.36861 (17)0.0396 (7)
H27A0.52970.20320.37570.048*
C280.45646 (16)0.1073 (4)0.32580 (17)0.0377 (7)
H28A0.44590.20610.30550.045*
C290.19764 (15)0.0110 (4)0.25801 (17)0.0427 (8)
H29A0.23120.00990.28560.051*
C300.13974 (18)0.0592 (5)0.28246 (19)0.0504 (9)
H30A0.13430.06930.32560.060*
C310.09020 (16)0.0920 (5)0.2424 (2)0.0505 (8)
H31A0.05020.12300.25800.061*
C320.10006 (15)0.0786 (4)0.17816 (17)0.0414 (7)
H32A0.06720.10340.15010.050*
C330.16010 (12)0.0271 (3)0.15636 (18)0.0313 (6)
C340.17493 (14)0.0076 (3)0.08928 (16)0.0327 (7)
C350.13030 (16)0.0389 (5)0.04195 (18)0.0441 (8)
H35A0.08900.07370.05200.053*
C360.14785 (18)0.0178 (5)0.01975 (19)0.0512 (9)
H36A0.11880.03930.05190.061*
C370.20893 (19)0.0354 (5)0.03303 (18)0.0492 (8)
H37A0.22180.05070.07440.059*
C380.25104 (17)0.0661 (4)0.01542 (18)0.0441 (7)
H38A0.29220.10350.00600.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02035 (18)0.0344 (2)0.0334 (2)0.00014 (14)0.00134 (17)0.00223 (19)
Mn20.02219 (19)0.0337 (2)0.0328 (2)0.00080 (15)0.00199 (17)0.00045 (19)
N10.0270 (11)0.0361 (11)0.0365 (15)0.0002 (9)0.0000 (11)0.0031 (11)
N20.0271 (12)0.0420 (13)0.0351 (16)0.0030 (10)0.0015 (10)0.0006 (11)
N30.0457 (16)0.0572 (16)0.0408 (18)0.0069 (14)0.0155 (14)0.0023 (14)
N40.0420 (15)0.0550 (16)0.0451 (19)0.0020 (13)0.0156 (14)0.0024 (14)
N50.0272 (12)0.0415 (12)0.0306 (14)0.0045 (10)0.0013 (10)0.0017 (10)
N60.0265 (11)0.0434 (12)0.0318 (14)0.0005 (9)0.0021 (11)0.0009 (11)
O10.0316 (12)0.0405 (11)0.0552 (18)0.0258 (13)0.0090 (11)0.0185 (16)
O20.0328 (11)0.0384 (11)0.076 (2)0.0032 (8)0.0144 (11)0.0152 (11)
O30.0300 (10)0.0361 (11)0.0646 (18)0.0015 (8)0.0086 (10)0.0054 (10)
O40.0258 (10)0.0709 (16)0.0455 (15)0.0049 (10)0.0028 (10)0.0050 (12)
O50.0412 (12)0.0493 (12)0.0486 (15)0.0031 (10)0.0134 (11)0.0051 (11)
O60.0374 (11)0.0445 (11)0.0457 (14)0.0054 (9)0.0104 (10)0.0037 (10)
O70.0415 (12)0.0510 (12)0.0351 (12)0.0069 (10)0.0111 (10)0.0010 (10)
O80.0432 (13)0.0574 (14)0.0550 (17)0.0075 (10)0.0126 (12)0.0104 (12)
C10.056 (2)0.0335 (16)0.082 (3)0.0041 (15)0.004 (2)0.0041 (17)
C20.0299 (14)0.0380 (14)0.0296 (16)0.0061 (11)0.0015 (11)0.0014 (12)
C30.051 (2)0.0346 (16)0.089 (3)0.0033 (15)0.013 (2)0.0058 (18)
C40.0275 (13)0.0348 (14)0.0342 (17)0.0006 (11)0.0024 (12)0.0052 (12)
C50.0249 (13)0.0449 (15)0.0313 (16)0.0013 (12)0.0002 (12)0.0018 (13)
C60.0241 (13)0.0371 (13)0.0259 (16)0.0007 (10)0.0015 (11)0.0030 (11)
C70.0329 (15)0.0372 (14)0.0364 (18)0.0042 (11)0.0007 (12)0.0005 (12)
C80.0380 (16)0.0415 (15)0.0370 (17)0.0005 (12)0.0045 (13)0.0096 (12)
C90.0284 (13)0.0521 (17)0.0252 (16)0.0012 (12)0.0015 (11)0.0043 (13)
C100.0469 (18)0.0332 (14)0.052 (2)0.0032 (13)0.0109 (15)0.0084 (14)
C110.0425 (17)0.0325 (13)0.051 (2)0.0038 (12)0.0137 (14)0.0005 (14)
C120.0389 (17)0.0495 (17)0.0369 (18)0.0010 (14)0.0053 (14)0.0012 (14)
C130.061 (2)0.059 (2)0.034 (2)0.0002 (17)0.0008 (17)0.0101 (16)
C140.056 (2)0.084 (3)0.047 (2)0.019 (2)0.0123 (19)0.013 (2)
C150.0365 (17)0.065 (2)0.048 (2)0.0128 (16)0.0056 (15)0.0096 (18)
C160.0285 (13)0.0331 (13)0.0363 (19)0.0013 (11)0.0012 (12)0.0021 (11)
C170.0234 (11)0.0298 (11)0.0381 (17)0.0010 (9)0.0000 (13)0.0001 (12)
C180.0258 (14)0.0532 (19)0.052 (2)0.0096 (13)0.0032 (13)0.0014 (15)
C190.0340 (17)0.064 (2)0.052 (2)0.0066 (15)0.0154 (15)0.0006 (17)
C200.0425 (18)0.063 (2)0.036 (2)0.0023 (16)0.0098 (14)0.0068 (16)
C210.0333 (16)0.0560 (18)0.0377 (19)0.0021 (13)0.0001 (13)0.0001 (15)
C220.0230 (13)0.0501 (16)0.0321 (17)0.0001 (12)0.0027 (12)0.0010 (13)
C230.0270 (14)0.0395 (14)0.0325 (17)0.0013 (11)0.0012 (12)0.0038 (12)
C240.0386 (16)0.0372 (15)0.0347 (17)0.0045 (12)0.0044 (12)0.0001 (13)
C250.0429 (17)0.0386 (15)0.0375 (18)0.0012 (13)0.0086 (13)0.0042 (13)
C260.0311 (14)0.0465 (16)0.0270 (16)0.0028 (12)0.0016 (12)0.0054 (12)
C270.0339 (15)0.0385 (15)0.0466 (19)0.0033 (12)0.0046 (14)0.0077 (13)
C280.0373 (15)0.0342 (15)0.0418 (19)0.0018 (11)0.0025 (14)0.0006 (12)
C290.0387 (17)0.0563 (19)0.0332 (18)0.0081 (14)0.0032 (13)0.0034 (14)
C300.047 (2)0.067 (2)0.037 (2)0.0045 (17)0.0097 (15)0.0060 (17)
C310.0304 (16)0.063 (2)0.058 (2)0.0088 (14)0.0102 (16)0.0027 (18)
C320.0282 (14)0.0486 (16)0.047 (2)0.0038 (12)0.0010 (13)0.0000 (14)
C330.0246 (12)0.0303 (12)0.0391 (17)0.0011 (10)0.0030 (13)0.0011 (13)
C340.0264 (13)0.0318 (13)0.0398 (19)0.0012 (10)0.0030 (12)0.0004 (11)
C350.0310 (16)0.056 (2)0.045 (2)0.0071 (14)0.0071 (14)0.0033 (15)
C360.053 (2)0.064 (2)0.037 (2)0.0072 (17)0.0170 (16)0.0034 (16)
C370.059 (2)0.060 (2)0.0292 (19)0.0049 (17)0.0030 (16)0.0002 (15)
C380.0367 (16)0.0560 (18)0.0397 (19)0.0014 (14)0.0034 (14)0.0002 (15)
Geometric parameters (Å, º) top
Mn1—O12.087 (3)C9—C101.392 (5)
Mn1—O32.122 (2)C10—C111.372 (5)
Mn1—O62.189 (2)C10—H10A0.9300
Mn1—N22.242 (3)C11—H11A0.9300
Mn1—N12.296 (3)C12—C131.375 (5)
Mn1—O52.454 (3)C12—H12A0.9300
Mn2—O42.069 (2)C13—C141.387 (6)
Mn2—O22.146 (2)C13—H13A0.9300
Mn2—O72.155 (2)C14—C151.365 (6)
Mn2—N52.253 (3)C14—H14A0.9300
Mn2—N62.298 (3)C15—C161.386 (5)
N1—C121.336 (4)C15—H15A0.9300
N1—C161.348 (4)C16—C171.486 (5)
N2—C171.340 (4)C17—C181.391 (4)
N2—C211.334 (4)C18—C191.384 (5)
N3—C91.379 (4)C18—H18A0.9300
N3—O8i3.074 (4)C19—C201.371 (5)
N3—H3A0.8600C19—H19A0.9300
N3—H3B0.8600C20—C211.382 (5)
N4—C261.373 (4)C20—H20A0.9300
N4—O6ii3.087 (4)C21—H21A0.9300
N4—H4A0.8600C22—C231.497 (4)
N4—H4B0.8600C23—C241.391 (4)
N5—C291.336 (5)C23—C281.396 (4)
N5—C331.352 (4)C24—C251.381 (4)
N6—C381.341 (4)C24—H24A0.9300
N6—C341.344 (4)C25—C261.397 (4)
O1—C21.232 (4)C25—H25A0.9300
O2—C21.252 (4)C26—C271.397 (5)
O3—C41.245 (4)C27—C281.384 (5)
O4—C41.263 (4)C27—H27A0.9300
O5—C51.259 (4)C28—H28A0.9300
O6—C51.276 (4)C29—C301.370 (5)
O7—C221.271 (4)C29—H29A0.9300
O8—C221.248 (4)C30—C311.365 (6)
C1—C21.494 (4)C30—H30A0.9300
C1—H1A0.9600C31—C321.389 (5)
C1—H1B0.9600C31—H31A0.9300
C1—H1C0.9600C32—C331.397 (4)
C3—C41.498 (4)C32—H32A0.9300
C3—H3C0.9600C33—C341.471 (5)
C3—H3D0.9600C34—C351.395 (5)
C3—H3E0.9600C35—C361.376 (5)
C5—C61.487 (4)C35—H35A0.9300
C6—C71.395 (4)C36—C371.372 (5)
C6—C111.393 (4)C36—H36A0.9300
C7—C81.373 (5)C37—C381.378 (5)
C7—H7A0.9300C37—H37A0.9300
C8—C91.393 (4)C38—H38A0.9300
C8—H8A0.9300
O1—Mn1—O3108.04 (11)C11—C10—C9121.5 (3)
O1—Mn1—O6101.75 (11)C11—C10—H10A119.3
O3—Mn1—O695.20 (9)C9—C10—H10A119.3
O1—Mn1—N2150.39 (12)C10—C11—C6121.2 (3)
O3—Mn1—N291.24 (9)C10—C11—H11A119.4
O6—Mn1—N298.51 (9)C6—C11—H11A119.4
O1—Mn1—N186.74 (11)N1—C12—C13123.1 (3)
O3—Mn1—N188.14 (9)N1—C12—H12A118.5
O6—Mn1—N1169.36 (9)C13—C12—H12A118.5
N2—Mn1—N171.27 (10)C12—C13—C14118.5 (4)
O1—Mn1—O587.80 (10)C12—C13—H13A120.8
O3—Mn1—O5150.28 (9)C14—C13—H13A120.8
O6—Mn1—O556.26 (8)C15—C14—C13119.1 (4)
N2—Mn1—O585.72 (9)C15—C14—H14A120.5
N1—Mn1—O5118.45 (8)C13—C14—H14A120.5
O4—Mn2—O2118.58 (11)C14—C15—C16119.6 (3)
O4—Mn2—O7103.32 (9)C14—C15—H15A120.2
O2—Mn2—O792.39 (9)C16—C15—H15A120.2
O4—Mn2—N5137.28 (10)N1—C16—C15121.6 (3)
O2—Mn2—N595.02 (9)N1—C16—C17115.1 (3)
O7—Mn2—N5100.56 (10)C15—C16—C17123.3 (3)
O4—Mn2—N684.84 (9)N2—C17—C18121.3 (3)
O2—Mn2—N685.81 (9)N2—C17—C16115.9 (2)
O7—Mn2—N6171.44 (9)C18—C17—C16122.8 (3)
N5—Mn2—N671.31 (10)C19—C18—C17119.1 (3)
C12—N1—C16118.2 (3)C19—C18—H18A120.5
C12—N1—Mn1123.7 (2)C17—C18—H18A120.5
C16—N1—Mn1117.9 (2)C18—C19—C20119.6 (3)
C17—N2—C21118.7 (3)C18—C19—H19A120.2
C17—N2—Mn1119.7 (2)C20—C19—H19A120.2
C21—N2—Mn1121.6 (2)C21—C20—C19118.0 (4)
C9—N3—O8i117.7 (2)C21—C20—H20A121.0
C9—N3—H3A120.0C19—C20—H20A121.0
C9—N3—H3B120.0N2—C21—C20123.3 (3)
O8i—N3—H3B119.1N2—C21—H21A118.3
H3A—N3—H3B120.0C20—C21—H21A118.3
C26—N4—O6ii109.1 (2)O8—C22—O7121.8 (3)
C26—N4—H4A120.0O8—C22—C23120.3 (3)
O6ii—N4—H4A128.3O7—C22—C23117.9 (3)
C26—N4—H4B120.0C24—C23—C28117.8 (3)
H4A—N4—H4B120.0C24—C23—C22121.7 (3)
C29—N5—C33118.3 (3)C28—C23—C22120.4 (3)
C29—N5—Mn2122.8 (2)C25—C24—C23121.2 (3)
C33—N5—Mn2118.7 (2)C25—C24—H24A119.4
C38—N6—C34118.9 (3)C23—C24—H24A119.4
C38—N6—Mn2123.3 (2)C24—C25—C26121.1 (3)
C34—N6—Mn2117.6 (2)C24—C25—H25A119.4
C2—O1—Mn1146.9 (3)C26—C25—H25A119.4
C2—O2—Mn2114.13 (19)N4—C26—C25121.0 (3)
C4—O3—Mn1122.56 (19)N4—C26—C27121.1 (3)
C4—O4—Mn2139.0 (2)C25—C26—C27117.8 (3)
C5—O5—Mn185.12 (19)C28—C27—C26120.9 (3)
C5—O6—Mn196.77 (19)C28—C27—H27A119.6
C22—O7—Mn2103.1 (2)C26—C27—H27A119.6
C2—C1—H1A109.5C27—C28—C23121.2 (3)
C2—C1—H1B109.5C27—C28—H28A119.4
H1A—C1—H1B109.5C23—C28—H28A119.4
C2—C1—H1C109.5N5—C29—C30123.5 (3)
H1A—C1—H1C109.5N5—C29—H29A118.2
H1B—C1—H1C109.5C30—C29—H29A118.2
O1—C2—O2122.3 (3)C29—C30—C31118.8 (4)
O1—C2—C1118.5 (3)C29—C30—H30A120.6
O2—C2—C1119.2 (3)C31—C30—H30A120.6
C4—C3—H3C109.5C32—C31—C30119.3 (3)
C4—C3—H3D109.5C32—C31—H31A120.3
H3C—C3—H3D109.5C30—C31—H31A120.3
C4—C3—H3E109.5C31—C32—C33118.9 (3)
H3C—C3—H3E109.5C31—C32—H32A120.5
H3D—C3—H3E109.5C33—C32—H32A120.5
O3—C4—O4123.3 (3)N5—C33—C32121.1 (3)
O3—C4—C3118.3 (3)N5—C33—C34116.0 (2)
O4—C4—C3118.3 (3)C32—C33—C34122.9 (3)
O5—C5—O6120.5 (3)N6—C34—C35121.1 (3)
O5—C5—C6120.7 (3)N6—C34—C33115.9 (3)
O6—C5—C6118.7 (3)C35—C34—C33123.0 (3)
C7—C6—C11117.5 (3)C36—C35—C34119.5 (3)
C7—C6—C5121.1 (3)C36—C35—H35A120.2
C11—C6—C5121.4 (3)C34—C35—H35A120.2
C8—C7—C6121.1 (3)C37—C36—C35118.8 (3)
C8—C7—H7A119.5C37—C36—H36A120.6
C6—C7—H7A119.5C35—C36—H36A120.6
C7—C8—C9121.5 (3)C36—C37—C38119.5 (4)
C7—C8—H8A119.2C36—C37—H37A120.3
C9—C8—H8A119.2C38—C37—H37A120.3
N3—C9—C10121.8 (3)N6—C38—C37122.2 (3)
N3—C9—C8120.9 (3)N6—C38—H38A118.9
C10—C9—C8117.2 (3)C37—C38—H38A118.9
O1—Mn1—N1—C1224.5 (2)C5—C6—C7—C8176.8 (3)
O3—Mn1—N1—C1283.7 (2)C6—C7—C8—C90.2 (5)
O6—Mn1—N1—C12167.7 (4)O8i—N3—C9—C1020.4 (4)
N2—Mn1—N1—C12175.7 (2)O8i—N3—C9—C8162.7 (2)
O5—Mn1—N1—C12110.2 (2)C7—C8—C9—N3176.6 (3)
O1—Mn1—N1—C16160.1 (2)C7—C8—C9—C100.5 (5)
O3—Mn1—N1—C1691.7 (2)N3—C9—C10—C11176.6 (3)
O6—Mn1—N1—C1616.9 (6)C8—C9—C10—C110.4 (5)
N2—Mn1—N1—C160.3 (2)C9—C10—C11—C60.0 (6)
O5—Mn1—N1—C1674.4 (2)C7—C6—C11—C100.3 (5)
O1—Mn1—N2—C1742.3 (3)C5—C6—C11—C10176.7 (3)
O3—Mn1—N2—C1789.4 (2)C16—N1—C12—C131.1 (5)
O6—Mn1—N2—C17175.2 (2)Mn1—N1—C12—C13176.5 (3)
N1—Mn1—N2—C171.8 (2)N1—C12—C13—C140.3 (6)
O5—Mn1—N2—C17120.2 (2)C12—C13—C14—C150.9 (6)
O1—Mn1—N2—C21138.0 (3)C13—C14—C15—C160.1 (6)
O3—Mn1—N2—C2190.3 (3)C12—N1—C16—C151.9 (4)
O6—Mn1—N2—C215.2 (3)Mn1—N1—C16—C15177.6 (3)
N1—Mn1—N2—C21177.9 (3)C12—N1—C16—C17177.7 (3)
O5—Mn1—N2—C2160.1 (3)Mn1—N1—C16—C172.0 (3)
O4—Mn2—N5—C29119.4 (3)C14—C15—C16—N11.4 (6)
O2—Mn2—N5—C2997.2 (3)C14—C15—C16—C17178.2 (3)
O7—Mn2—N5—C293.8 (3)C21—N2—C17—C182.3 (4)
N6—Mn2—N5—C29178.9 (3)Mn1—N2—C17—C18178.1 (2)
O4—Mn2—N5—C3365.6 (3)C21—N2—C17—C16176.3 (3)
O2—Mn2—N5—C3377.9 (2)Mn1—N2—C17—C163.4 (3)
O7—Mn2—N5—C33171.2 (2)N1—C16—C17—N23.5 (4)
N6—Mn2—N5—C335.99 (19)C15—C16—C17—N2176.1 (3)
O4—Mn2—N6—C3836.1 (2)N1—C16—C17—C18178.0 (3)
O2—Mn2—N6—C3883.1 (2)C15—C16—C17—C182.4 (5)
N5—Mn2—N6—C38179.9 (3)N2—C17—C18—C192.5 (5)
O4—Mn2—N6—C34149.6 (2)C16—C17—C18—C19175.9 (3)
O2—Mn2—N6—C3491.2 (2)C17—C18—C19—C200.7 (5)
N5—Mn2—N6—C345.6 (2)C18—C19—C20—C211.3 (5)
O3—Mn1—O1—C2117.3 (5)C17—N2—C21—C200.2 (5)
O6—Mn1—O1—C217.8 (5)Mn1—N2—C21—C20179.8 (3)
N2—Mn1—O1—C2114.4 (5)C19—C20—C21—N21.7 (5)
N1—Mn1—O1—C2155.7 (5)Mn2—O7—C22—O814.1 (4)
O5—Mn1—O1—C237.0 (5)Mn2—O7—C22—C23164.8 (2)
O4—Mn2—O2—C235.5 (3)O8—C22—C23—C24170.9 (3)
O7—Mn2—O2—C271.1 (3)O7—C22—C23—C2410.2 (4)
N5—Mn2—O2—C2171.9 (3)O8—C22—C23—C2812.4 (5)
N6—Mn2—O2—C2117.3 (3)O7—C22—C23—C28166.5 (3)
O1—Mn1—O3—C438.0 (3)C28—C23—C24—C250.1 (5)
O6—Mn1—O3—C466.2 (3)C22—C23—C24—C25176.9 (3)
N2—Mn1—O3—C4164.8 (3)C23—C24—C25—C260.7 (5)
N1—Mn1—O3—C4124.0 (3)O6ii—N4—C26—C25163.3 (2)
O5—Mn1—O3—C481.3 (3)O6ii—N4—C26—C2720.6 (4)
O2—Mn2—O4—C499.4 (4)C24—C25—C26—N4176.3 (3)
O7—Mn2—O4—C40.9 (4)C24—C25—C26—C270.0 (5)
N5—Mn2—O4—C4123.1 (3)N4—C26—C27—C28177.6 (3)
N6—Mn2—O4—C4178.2 (4)C25—C26—C27—C281.4 (5)
O1—Mn1—O5—C599.2 (2)C26—C27—C28—C232.0 (5)
O3—Mn1—O5—C524.7 (3)C24—C23—C28—C271.2 (5)
O6—Mn1—O5—C56.53 (17)C22—C23—C28—C27175.6 (3)
N2—Mn1—O5—C5109.7 (2)C33—N5—C29—C301.7 (5)
N1—Mn1—O5—C5175.74 (18)Mn2—N5—C29—C30173.4 (3)
O1—Mn1—O6—C572.8 (2)N5—C29—C30—C310.7 (6)
O3—Mn1—O6—C5177.52 (18)C29—C30—C31—C321.1 (6)
N2—Mn1—O6—C585.47 (18)C30—C31—C32—C331.8 (5)
N1—Mn1—O6—C569.5 (5)C29—N5—C33—C320.9 (4)
O5—Mn1—O6—C56.47 (17)Mn2—N5—C33—C32174.4 (2)
O4—Mn2—O7—C2265.6 (2)C29—N5—C33—C34178.9 (3)
O2—Mn2—O7—C22174.23 (19)Mn2—N5—C33—C345.8 (3)
N5—Mn2—O7—C2278.67 (19)C31—C32—C33—N50.8 (5)
Mn1—O1—C2—O2103.5 (5)C31—C32—C33—C34179.4 (3)
Mn1—O1—C2—C178.2 (6)C38—N6—C34—C350.3 (4)
Mn2—O2—C2—O14.7 (5)Mn2—N6—C34—C35174.9 (2)
Mn2—O2—C2—C1177.0 (3)C38—N6—C34—C33179.2 (3)
Mn1—O3—C4—O43.0 (5)Mn2—N6—C34—C334.7 (3)
Mn1—O3—C4—C3180.0 (3)N5—C33—C34—N60.6 (4)
Mn2—O4—C4—O384.4 (5)C32—C33—C34—N6179.5 (3)
Mn2—O4—C4—C398.6 (4)N5—C33—C34—C35179.8 (3)
Mn1—O5—C5—O610.9 (3)C32—C33—C34—C350.0 (5)
Mn1—O5—C5—C6165.7 (3)N6—C34—C35—C360.5 (5)
Mn1—O6—C5—O512.2 (3)C33—C34—C35—C36180.0 (3)
Mn1—O6—C5—C6164.4 (2)C34—C35—C36—C370.7 (6)
O5—C5—C6—C7177.0 (3)C35—C36—C37—C380.1 (6)
O6—C5—C6—C76.3 (4)C34—N6—C38—C370.9 (5)
O5—C5—C6—C116.1 (5)Mn2—N6—C38—C37175.2 (3)
O6—C5—C6—C11170.5 (3)C36—C37—C38—N60.7 (6)
C11—C6—C7—C80.2 (5)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O8i0.862.273.074 (4)155
N4—H4B···O6ii0.862.293.087 (4)155
C36—H36A···Cgiii0.932.793.655156
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1, y, z+1/2; (iii) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formula[Mn2(C7H6NO2)2(C2H3O2)2(C10H8N2)2]
Mr812.59
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)20.8346 (7), 8.0289 (3), 21.3189 (8)
V3)3566.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.44 × 0.40 × 0.16
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.759, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
26202, 7506, 7084
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.07
No. of reflections7506
No. of parameters487
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.26
Absolute structureFlack (1983), 3306 Friedel pairs
Absolute structure parameter0.446 (15)

Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1994), SHELXL97.

Selected geometric parameters (Å, º) top
Mn1—O12.087 (3)Mn2—O42.069 (2)
Mn1—O32.122 (2)Mn2—O22.146 (2)
Mn1—O62.189 (2)Mn2—O72.155 (2)
Mn1—N22.242 (3)Mn2—N52.253 (3)
Mn1—N12.296 (3)Mn2—N62.298 (3)
Mn1—O52.454 (3)
O1—Mn1—O3108.04 (11)N2—Mn1—O585.72 (9)
O1—Mn1—O6101.75 (11)N1—Mn1—O5118.45 (8)
O3—Mn1—O695.20 (9)O4—Mn2—O2118.58 (11)
O1—Mn1—N2150.39 (12)O4—Mn2—O7103.32 (9)
O3—Mn1—N291.24 (9)O2—Mn2—O792.39 (9)
O6—Mn1—N298.51 (9)O4—Mn2—N5137.28 (10)
O1—Mn1—N186.74 (11)O2—Mn2—N595.02 (9)
O3—Mn1—N188.14 (9)O7—Mn2—N5100.56 (10)
O6—Mn1—N1169.36 (9)O4—Mn2—N684.84 (9)
N2—Mn1—N171.27 (10)O2—Mn2—N685.81 (9)
O1—Mn1—O587.80 (10)O7—Mn2—N6171.44 (9)
O3—Mn1—O5150.28 (9)N5—Mn2—N671.31 (10)
O6—Mn1—O556.26 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O8i0.862.273.074 (4)155
N4—H4B···O6ii0.862.293.087 (4)155
C36—H36A···Cgiii0.932.793.655156
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1, y, z+1/2; (iii) x+1/2, y, z1/2.
Comparison of the bond lengths (Å) and angles (°) in syn-anti dicarboxylate (RCOO) bridged dimanganese moiety of (I) with the corresponding values in the related compounds (II-V). top
RMn···MnMn-O(syn)Mn-O(anti)Mn-O-C(syn)Mn-O-C(anti)
(I)Me4.081 (1)2.146 (2)2.087 (3)114.1 (2)146.9 (3)
2.122 (2)2.069 (2)122.6 (2)139.0 (2)
(II)Me4.145 (1)2.060 (3)2.160 (3)133.5 (2)127.8 (3)
(III)Me4.128 (1)2.087 (2)2.128 (2)128.5 (2)131.3 (2)
(IV)Et4.653 (3)2.119 (3)2.107 (4)127.5 (3)150.6 (2)
(V)Ph4.509 (1)2.117 (4)2.139 (4)126.4 (3)151.9 (4)
For (I), the first and second lines are of the O1-C2-O2 and O3-C4-O4 bridges, respectively.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds