Download citation
Download citation
link to html
The title compounds, both C23H21ClN2OS, are isomeric, with (I) and (II) being the N-3-methyl­phenyl and N-2-methyl­phenyl derivatives, respectively. The dihedral angle between the 4-chloro­phenyl group and the thio­phene ring in (II) [38.1 (1)°] is larger than that in (I) [7.1 (1)°], indicating steric repulsion between the chloro­phenyl and o-toluidine groups in (II). In both compounds, an intramolecular N-H...N hydrogen bond forms a pseudo-six-membered ring, thus locking the molecular conformation. In the crystal structures, mol­ecules are connected via N-H...O hydrogen bonds, forming chains along the b axis in (I) and along the c axis in (II). Intermolecular C-H...O/S and [pi]-[pi] interactions are also observed in (II), but not in (I).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104021092/ob1203sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104021092/ob1203Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104021092/ob1203IIsup3.hkl
Contains datablock II

CCDC references: 257008; 257009

Comment top

The design and synthesis of compounds which possess important pharmacological properties, such as antibacterial, anticancer, antiinflamatory and antitoxic properties, is an area of research with widespread potential applications in medicine (Pellis & West, 1968; Cohen et al., 1977; Csaszar & Morvay, 1983; Lakshmi et al., 1985), and in this regard we have selected thiophene derivatives (El-Maghraby et al., 1984; Dzhurayev et al., 1992; Gewald et al., 1966) which have been found to exhibit these activities. In this context, S-containing Schiff bases are most effective. We have already reported the crystal structures of biologically active thiophene-3-carboxamide derivatives (Vasu Nirmala Choudhury et al., 2003; Vasu Nirmala Chopra et al., 2003). In this paper, structure analyses are presented for the title two compounds, (I) and (II), which show antibacterial and antifungal activities (Mohan & Saravanan, 2002, 2003). The compounds are isomers of each other, differing only in the position of attachment of the methyl at the meta and ortho positions. \sch

Compounds (I) (Fig. 1) and (II) (Fig. 2) contain three different structural moieties and these will be discussed separately. The thiophene ring is essentially planar. The six-membered cyclohexene ring adopts a half-chair conformation, with atoms C6 and C7 deviating from the C5/C3/C4/C8 plane by −0.246 (7) and 0.218 (7) Å, respectively, in (I), and by −0.249 (5) and 0.320 (1) Å, respectively, in (II). The puckering parameters (Cremer & Pople, 1975) generated by PLATON (Spek, 1990) for the cyclohexene ring are q2 = 0.138 (4) Å, ϕ2 = −151.(2)° and τ = 25 (1)° in (I), and the corresponding values are 0.126 (3) Å, −131 (2)° and 26 (1)°, respectively, in (II).

The bond angles in the methyl-phenyl ring, C20—C21—C22 in (I) [118.6 (1)°] and C17—C22—C21 in (II) [117.6 (2)°], deviate significantly from the ideal value of 120°. This deviation is due to the electron-donating inductive effect of the methyl group (Vasu Nirmala Choudhury et al., 2003; Vasu Nirmala Chopra et al., 2003). Please check both references were intended here - original CIF did not give a unique citation. The angle between the mean planes of the m-toluidine and thiophene rings is 18.4 (1)° in (I), whereas that between the o-toluidine and thiophene rings is 12.9 (1)° in (II). The C16—N2—C17—C18 torsion angle is 11.4 (5)° in (I) and 27.4 (4)° in (II), indicating that the presence of a methyl group in the ortho position in (II) causes rotation about the N2—C17 bond to minimize steric repulsion with the amino H atom. An intramolecular N—H···N hydrogen bond (Tables 2 and 4) in each structure locks the molecule into a rigid pseudo-six-membered ring conformation and removes the conformational flexibility.

The amino H atom is also involved in an intermolecular N—H···O hydrogen bond, and molecular chains are formed. In (I), the chains are along the b axis related by a b-glide plane (1/2 − x, 1/2 + y, z) orthogonal to the a axis. In (II), the chains are along the b axis related by a c-glide plane (x, 1/2 − y, z + 1/2) orthogonal to the b axis. There is no intermolecular C—H···O/S nor ππ interaction in (I). On the other hand, in (II), the chlorophenyl rings are oriented in a manner that facilitates intermolecular ππ interactions, the centre-to-centre distance between the chlorophenyl rings being 3.863 Å. In (II), there are also intermolecular C—H···O/S interactions (Fig. 4 and Table 4).

Experimental top

The title compounds were synthesized using the Gewald reaction (Gewald et al., 1966). For compound (I), m-cyanotoluidine was refluxed with cyclohexanone in the presence of sulfur, dimethylamine and ethanol at 313–323 K for 1 h. The resulting product was then treated with 4-chlorobenzaldehyde in an equimolar ratio in the presence of ethanol, which yielded (I). This was then recrystallized from a solution of dichloromethane and ethylacetate (1:2) by slow evaporation. Yellow crystals of (I) were obtained after four weeks and used for single-crystal data collection. For compound (II), a similar procedure was followed using o-cyanotoluidine, and later 4-chlorobenzaldehyde was added. The compound was purified and crystallized using the same procedure as (I).

Refinement top

For both compounds, amino atom H2N and atom H9 (bonded to C9) were located from difference Fourier maps and refined isotropically. Other H atoms were constrained to ride on their parent atom, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). The methyl groups were allowed to rotate freely about the C—C bond. In both compounds, the C6—C7 bond length is shorter than the expected value. These C atoms of the cyclohexene moiety have a large vibrational degree of freedom and this is reflected in the large atomic displacement parameters, resulting in the short C—C bond length.

Computing details top

For both compounds, data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and most H atoms have been omitted for clarity. The broken lines show the N—H···N intramolecular hydrogen bond.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and most H atoms have been omitted for clarity. The broken lines show the N—H···N intramolecular hydrogen bond.
[Figure 3] Fig. 3. A packing diagram for (I). The dotted lines show the formation of N—H···O hydrogen-bonded chains.
[Figure 4] Fig. 4. A packing diagram for (II). The dotted lines show N—H···O hydrogen bonds, and C—H···O, C—H···S and ππ interactions.
(I) 2-[(1E)-(4-Chlorophenyl)methyleneamino]-N-(3-methylphenyl)-4,5,6,7- tetrahydro-1-benzothiophene-3-carboxamide top
Crystal data top
C23H21ClN2OSF(000) = 1712
Mr = 408.93Dx = 1.326 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 650 reflections
a = 13.785 (11) Åθ = 1.6–26.4°
b = 8.554 (7) ŵ = 0.31 mm1
c = 34.74 (3) ÅT = 293 K
V = 4096 (6) Å3Blocks, yellow
Z = 80.30 × 0.25 × 0.15 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4113 independent reflections
Radiation source: fine-focus sealed tube2436 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ϕ and ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1615
Tmin = 0.908, Tmax = 0.956k = 1010
29534 measured reflectionsl = 4242
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0454P)2 + 2.7373P]
where P = (Fo2 + 2Fc2)/3
4113 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C23H21ClN2OSV = 4096 (6) Å3
Mr = 408.93Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.785 (11) ŵ = 0.31 mm1
b = 8.554 (7) ÅT = 293 K
c = 34.74 (3) Å0.30 × 0.25 × 0.15 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4113 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2436 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.956Rint = 0.069
29534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.29 e Å3
4113 reflectionsΔρmin = 0.23 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.92208 (6)0.70576 (10)0.33068 (2)0.0602 (3)
Cl10.29069 (7)0.76530 (18)0.27328 (3)0.1112 (5)
N10.73401 (17)0.6108 (3)0.34342 (6)0.0457 (6)
N20.72118 (18)0.4374 (3)0.41452 (7)0.0458 (6)
O10.84827 (15)0.2705 (2)0.41780 (6)0.0574 (6)
C10.8307 (2)0.6006 (3)0.35358 (8)0.0434 (7)
C20.86855 (19)0.5004 (3)0.38087 (7)0.0394 (6)
C30.9725 (2)0.5082 (3)0.38288 (8)0.0459 (7)
C41.0096 (2)0.6141 (4)0.35767 (9)0.0545 (8)
C51.0371 (2)0.4144 (4)0.40892 (9)0.0585 (9)
C61.1396 (3)0.4738 (7)0.40844 (15)0.1224 (19)
C71.1754 (3)0.5376 (7)0.37429 (14)0.1170 (18)
C81.1155 (2)0.6520 (5)0.35284 (12)0.0817 (12)
C90.7036 (2)0.7164 (4)0.32054 (8)0.0470 (7)
C100.6025 (2)0.7268 (3)0.30893 (8)0.0461 (7)
C110.5326 (2)0.6282 (4)0.32424 (9)0.0573 (8)
C120.4377 (3)0.6386 (4)0.31303 (10)0.0672 (10)
C130.4111 (2)0.7507 (5)0.28681 (9)0.0651 (9)
C140.4779 (3)0.8502 (4)0.27108 (9)0.0663 (10)
C150.5740 (2)0.8385 (4)0.28237 (8)0.0564 (8)
C160.8125 (2)0.3922 (3)0.40592 (8)0.0395 (6)
C170.6523 (2)0.3637 (3)0.43844 (8)0.0411 (7)
C180.6736 (2)0.2406 (3)0.46303 (8)0.0522 (8)
C190.6005 (3)0.1797 (4)0.48564 (9)0.0672 (10)
C200.5078 (3)0.2399 (4)0.48442 (9)0.0668 (10)
C210.4860 (2)0.3629 (4)0.46018 (9)0.0544 (8)
C220.5585 (2)0.4233 (3)0.43739 (8)0.0486 (7)
C230.3849 (2)0.4315 (5)0.45889 (11)0.0762 (11)
HN20.702 (2)0.524 (4)0.4055 (9)0.061 (10)*
H5A1.03630.30590.40080.070*
H5B1.01210.41920.43500.070*
H6A1.14530.55280.42830.147*
H6B1.18170.38790.41570.147*
H7A1.18950.45150.35700.140*
H7B1.23680.58770.38020.140*
H8A1.13250.64910.32570.098*
H8B1.12820.75660.36240.098*
H90.748 (2)0.797 (3)0.3115 (7)0.052 (8)*
H110.55050.55390.34240.069*
H120.39170.57040.32310.081*
H140.45910.92460.25310.080*
H150.61980.90630.27200.068*
H180.73610.19990.46420.063*
H190.61410.09660.50200.081*
H200.45970.19740.50000.080*
H220.54440.50580.42090.058*
H23A0.37910.51180.47810.114*
H23B0.33820.35070.46390.114*
H23C0.37320.47540.43390.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0566 (5)0.0630 (5)0.0609 (5)0.0031 (4)0.0093 (4)0.0196 (4)
Cl10.0551 (6)0.1986 (14)0.0798 (7)0.0124 (7)0.0116 (5)0.0233 (8)
O10.0471 (12)0.0467 (12)0.0784 (15)0.0063 (10)0.0026 (11)0.0196 (11)
N10.0483 (15)0.0471 (14)0.0416 (13)0.0045 (12)0.0009 (11)0.0049 (12)
N20.0437 (16)0.0430 (15)0.0509 (15)0.0037 (12)0.0048 (12)0.0135 (12)
C10.0431 (18)0.0435 (16)0.0436 (16)0.0017 (14)0.0026 (13)0.0024 (13)
C20.0404 (17)0.0383 (15)0.0395 (16)0.0015 (13)0.0020 (12)0.0011 (13)
C30.0422 (18)0.0512 (17)0.0441 (17)0.0026 (14)0.0002 (14)0.0018 (14)
C40.0468 (19)0.060 (2)0.0564 (19)0.0050 (16)0.0057 (15)0.0036 (16)
C50.0418 (18)0.075 (2)0.059 (2)0.0019 (17)0.0052 (15)0.0051 (17)
C60.042 (2)0.191 (5)0.135 (4)0.009 (3)0.012 (3)0.070 (4)
C70.043 (2)0.178 (5)0.130 (4)0.006 (3)0.001 (3)0.050 (4)
C80.049 (2)0.103 (3)0.093 (3)0.016 (2)0.012 (2)0.015 (2)
C90.056 (2)0.0471 (17)0.0376 (16)0.0053 (16)0.0026 (14)0.0044 (14)
C100.0517 (19)0.0513 (17)0.0354 (15)0.0089 (15)0.0011 (13)0.0004 (14)
C110.060 (2)0.058 (2)0.0536 (19)0.0044 (17)0.0049 (17)0.0083 (16)
C120.062 (2)0.080 (2)0.060 (2)0.009 (2)0.0011 (17)0.0036 (19)
C130.053 (2)0.098 (3)0.0439 (18)0.012 (2)0.0037 (16)0.0001 (19)
C140.066 (2)0.087 (3)0.0459 (18)0.016 (2)0.0062 (17)0.0170 (18)
C150.056 (2)0.068 (2)0.0453 (17)0.0063 (17)0.0022 (15)0.0103 (16)
C160.0401 (17)0.0377 (15)0.0407 (15)0.0022 (14)0.0032 (13)0.0009 (13)
C170.0450 (18)0.0399 (15)0.0383 (15)0.0037 (13)0.0007 (13)0.0006 (12)
C180.058 (2)0.0531 (18)0.0451 (17)0.0001 (16)0.0048 (15)0.0093 (15)
C190.081 (3)0.061 (2)0.059 (2)0.0041 (19)0.0108 (19)0.0188 (17)
C200.067 (2)0.076 (2)0.057 (2)0.023 (2)0.0147 (18)0.0080 (18)
C210.047 (2)0.066 (2)0.0504 (18)0.0161 (16)0.0037 (15)0.0052 (17)
C220.050 (2)0.0479 (17)0.0480 (17)0.0068 (15)0.0013 (14)0.0051 (14)
C230.043 (2)0.104 (3)0.082 (3)0.012 (2)0.0069 (18)0.008 (2)
Geometric parameters (Å, º) top
S1—C41.717 (3)C21—C201.381 (4)
S1—C11.740 (3)C21—C231.512 (4)
Cl1—C131.729 (4)C5—C61.501 (5)
O1—C161.224 (3)C5—H5A0.9700
N2—C161.350 (4)C5—H5B0.9700
N2—C171.411 (4)C4—C81.506 (4)
N2—HN20.85 (3)C15—C141.385 (4)
N1—C91.274 (3)C15—H150.9300
N1—C11.382 (4)C13—C141.367 (5)
C2—C11.380 (4)C13—C121.373 (5)
C2—C31.436 (4)C14—H140.9300
C2—C161.487 (4)C20—C191.378 (5)
C3—C41.359 (4)C20—H200.9300
C3—C51.501 (4)C12—H120.9300
C18—C191.380 (4)C19—H190.9300
C18—C171.388 (4)C23—H23A0.9600
C18—H180.9300C23—H23B0.9600
C17—C221.390 (4)C23—H23C0.9600
C22—C211.376 (4)C6—C71.396 (6)
C22—H220.9300C6—H6A0.9700
C10—C151.385 (4)C6—H6B0.9700
C10—C111.387 (4)C7—C81.482 (5)
C10—C91.454 (4)C7—H7A0.9700
C9—H90.98 (3)C7—H7B0.9700
C11—C121.368 (4)C8—H8A0.9700
C11—H110.9300C8—H8B0.9700
C4—S1—C191.28 (15)C3—C4—S1113.1 (2)
C16—N2—C17129.1 (3)C8—C4—S1121.4 (2)
C16—N2—HN2117 (2)C14—C15—C10120.7 (3)
C17—N2—HN2114 (2)C14—C15—H15119.7
C9—N1—C1121.4 (3)C10—C15—H15119.7
C1—C2—C3112.4 (3)C14—C13—C12121.3 (3)
C1—C2—C16126.3 (3)C14—C13—Cl1119.5 (3)
C3—C2—C16121.3 (2)C12—C13—Cl1119.2 (3)
C4—C3—C2112.0 (3)C13—C14—C15119.1 (3)
C4—C3—C5121.4 (3)C13—C14—H14120.5
C2—C3—C5126.5 (3)C15—C14—H14120.5
C2—C1—N1125.4 (3)C19—C20—C21120.4 (3)
C2—C1—S1111.2 (2)C19—C20—H20119.8
N1—C1—S1123.3 (2)C21—C20—H20119.8
O1—C16—N2123.0 (3)C11—C12—C13119.3 (3)
O1—C16—C2121.1 (3)C11—C12—H12120.3
N2—C16—C2115.9 (2)C13—C12—H12120.3
C19—C18—C17118.8 (3)C20—C19—C18121.3 (3)
C19—C18—H18120.6C20—C19—H19119.4
C17—C18—H18120.6C18—C19—H19119.4
C18—C17—C22119.5 (3)C21—C23—H23A109.5
C18—C17—N2124.0 (3)C21—C23—H23B109.5
C22—C17—N2116.6 (2)H23A—C23—H23B109.5
C21—C22—C17121.5 (3)C21—C23—H23C109.5
C21—C22—H22119.2H23A—C23—H23C109.5
C17—C22—H22119.2H23B—C23—H23C109.5
C15—C10—C11118.5 (3)C7—C6—C5118.3 (4)
C15—C10—C9120.0 (3)C7—C6—H6A107.7
C11—C10—C9121.5 (3)C5—C6—H6A107.7
N1—C9—C10122.1 (3)C7—C6—H6B107.7
N1—C9—H9119.4 (17)C5—C6—H6B107.7
C10—C9—H9118.4 (17)H6A—C6—H6B107.1
C12—C11—C10121.1 (3)C6—C7—C8119.2 (4)
C12—C11—H11119.5C6—C7—H7A107.5
C10—C11—H11119.5C8—C7—H7A107.5
C22—C21—C20118.6 (3)C6—C7—H7B107.5
C22—C21—C23120.5 (3)C8—C7—H7B107.5
C20—C21—C23121.0 (3)H7A—C7—H7B107.0
C3—C5—C6111.7 (3)C7—C8—C4110.0 (3)
C3—C5—H5A109.3C7—C8—H8A109.7
C6—C5—H5A109.3C4—C8—H8A109.7
C3—C5—H5B109.3C7—C8—H8B109.7
C6—C5—H5B109.3C4—C8—H8B109.7
H5A—C5—H5B107.9H8A—C8—H8B108.2
C3—C4—C8125.5 (3)
C1—C2—C3—C40.7 (4)C9—C10—C11—C12179.8 (3)
C16—C2—C3—C4180.0 (2)C17—C22—C21—C200.3 (5)
C1—C2—C3—C5179.3 (3)C17—C22—C21—C23179.1 (3)
C16—C2—C3—C50.0 (4)C4—C3—C5—C610.6 (5)
C3—C2—C1—N1175.4 (3)C2—C3—C5—C6169.4 (3)
C16—C2—C1—N13.8 (4)C2—C3—C4—C8179.2 (3)
C3—C2—C1—S10.6 (3)C5—C3—C4—C80.8 (5)
C16—C2—C1—S1179.8 (2)C2—C3—C4—S10.5 (3)
C9—N1—C1—C2173.3 (3)C5—C3—C4—S1179.5 (2)
C9—N1—C1—S111.1 (4)C1—S1—C4—C30.2 (3)
C4—S1—C1—C20.3 (2)C1—S1—C4—C8179.6 (3)
C4—S1—C1—N1175.8 (3)C11—C10—C15—C140.7 (5)
C17—N2—C16—O12.4 (5)C9—C10—C15—C14179.8 (3)
C17—N2—C16—C2177.4 (3)C12—C13—C14—C151.0 (5)
C1—C2—C16—O1151.5 (3)Cl1—C13—C14—C15179.4 (3)
C3—C2—C16—O127.7 (4)C10—C15—C14—C130.6 (5)
C1—C2—C16—N228.7 (4)C22—C21—C20—C190.2 (5)
C3—C2—C16—N2152.1 (3)C23—C21—C20—C19179.2 (3)
C19—C18—C17—C220.5 (4)C10—C11—C12—C131.4 (5)
C19—C18—C17—N2178.8 (3)C14—C13—C12—C111.4 (5)
C16—N2—C17—C1811.4 (5)Cl1—C13—C12—C11179.0 (3)
C16—N2—C17—C22170.2 (3)C21—C20—C19—C180.3 (5)
C18—C17—C22—C210.0 (4)C17—C18—C19—C200.6 (5)
N2—C17—C22—C21178.5 (3)C3—C5—C6—C732.9 (6)
C1—N1—C9—C10178.7 (3)C5—C6—C7—C846.7 (8)
C15—C10—C9—N1176.5 (3)C6—C7—C8—C432.8 (6)
C11—C10—C9—N14.4 (4)C3—C4—C8—C710.3 (5)
C15—C10—C11—C121.1 (5)S1—C4—C8—C7170.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—HN2···N10.85 (3)2.32 (3)2.887 (4)125 (3)
N2—HN2···O1i0.85 (3)2.26 (3)3.009 (4)147 (3)
Symmetry code: (i) x+3/2, y+1/2, z.
(II) 2-[(1E)-(4-Chlorophenyl)methyleneamino]-N-(2-methylphenyl)-4,5,6,7- tetrahydro-1-benzothiophene-3-carboxamide top
Crystal data top
C23H21ClN2OSF(000) = 856
Mr = 408.94Dx = 1.354 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 725 reflections
a = 17.511 (4) Åθ = 1.7–25.4°
b = 12.519 (3) ŵ = 0.31 mm1
c = 9.232 (2) ÅT = 293 K
β = 97.406 (4)°Blocks, yellow
V = 2006.9 (8) Å30.30 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3994 independent reflections
Radiation source: fine-focus sealed tube3307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 26.4°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2121
Tmin = 0.921, Tmax = 0.970k = 1515
15187 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 0.91 w = 1/[σ2(Fo2) + (0.1224P)2 + 0.6875P]
where P = (Fo2 + 2Fc2)/3
3994 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C23H21ClN2OSV = 2006.9 (8) Å3
Mr = 408.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.511 (4) ŵ = 0.31 mm1
b = 12.519 (3) ÅT = 293 K
c = 9.232 (2) Å0.30 × 0.15 × 0.10 mm
β = 97.406 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3994 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3307 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.970Rint = 0.018
15187 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.43 e Å3
3994 reflectionsΔρmin = 0.42 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.66585 (3)0.40800 (4)0.65249 (6)0.04534 (19)
Cl10.50494 (4)0.25980 (5)0.61720 (8)0.0663 (2)
O10.83579 (9)0.34669 (12)0.28231 (16)0.0505 (4)
N10.69212 (9)0.20662 (13)0.55121 (17)0.0382 (4)
N20.84504 (11)0.20856 (14)0.4411 (2)0.0478 (5)
C10.71378 (11)0.31339 (15)0.55888 (19)0.0357 (4)
C20.76870 (10)0.36134 (15)0.48729 (19)0.0347 (4)
C30.77158 (11)0.47495 (15)0.5072 (2)0.0393 (4)
C40.71986 (12)0.51050 (16)0.5939 (2)0.0434 (5)
C50.82347 (14)0.55131 (18)0.4399 (3)0.0554 (6)
C60.8163 (2)0.6639 (2)0.4930 (5)0.1014 (13)
C70.7479 (3)0.6968 (2)0.5419 (6)0.1273 (19)
C80.70773 (16)0.62482 (19)0.6342 (3)0.0611 (6)
C90.65647 (11)0.16723 (17)0.6516 (2)0.0386 (4)
C100.62410 (11)0.05980 (16)0.6434 (2)0.0381 (4)
C110.61818 (13)0.00057 (18)0.5163 (2)0.0466 (5)
C120.58287 (13)0.09903 (18)0.5077 (2)0.0507 (5)
C130.55294 (11)0.13765 (17)0.6287 (2)0.0456 (5)
C140.55863 (13)0.08096 (18)0.7570 (2)0.0490 (5)
C150.59416 (12)0.01777 (18)0.7637 (2)0.0447 (5)
C160.81961 (10)0.30465 (15)0.3939 (2)0.0363 (4)
C170.89367 (12)0.13949 (17)0.3719 (2)0.0464 (5)
C180.94546 (16)0.1793 (2)0.2831 (4)0.0735 (8)
C190.99307 (19)0.1103 (3)0.2199 (4)0.0876 (11)
C200.99065 (17)0.0025 (2)0.2465 (4)0.0769 (9)
C210.94035 (15)0.0360 (2)0.3348 (3)0.0599 (6)
C220.89009 (12)0.03026 (17)0.3988 (2)0.0452 (5)
C230.83408 (16)0.01454 (19)0.4917 (3)0.0626 (7)
H2N0.8317 (16)0.190 (2)0.513 (3)0.059 (8)*
H5A0.87640.52800.46330.066*
H5B0.81070.54980.33450.066*
H6A0.85750.67540.57220.122*
H6B0.82580.71130.41420.122*
H7A0.71190.71420.45630.153*
H7B0.75880.76270.59590.153*
H8A0.65310.64090.62090.073*
H8B0.72730.63610.73620.073*
H90.6531 (13)0.206 (2)0.736 (3)0.049 (6)*
H110.63850.02600.43530.056*
H120.57920.13880.42200.061*
H140.53890.10860.83800.059*
H150.59810.05680.85000.054*
H180.94800.25240.26640.088*
H191.02690.13690.15890.105*
H201.02310.04390.20460.092*
H210.93950.10910.35310.072*
H23A0.84320.08970.50530.094*
H23B0.78260.00330.44460.094*
H23C0.84050.02060.58490.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0531 (3)0.0430 (3)0.0442 (3)0.0040 (2)0.0224 (2)0.0010 (2)
Cl10.0584 (4)0.0466 (4)0.0957 (5)0.0143 (3)0.0170 (3)0.0031 (3)
O10.0611 (9)0.0468 (9)0.0482 (8)0.0099 (7)0.0244 (7)0.0077 (7)
N10.0383 (8)0.0369 (9)0.0408 (8)0.0030 (7)0.0104 (7)0.0011 (7)
N20.0524 (10)0.0363 (9)0.0605 (12)0.0079 (8)0.0299 (9)0.0078 (8)
C10.0388 (10)0.0357 (10)0.0338 (9)0.0019 (8)0.0089 (7)0.0006 (7)
C20.0362 (9)0.0328 (9)0.0359 (9)0.0014 (7)0.0076 (7)0.0016 (7)
C30.0405 (10)0.0338 (10)0.0445 (10)0.0012 (8)0.0084 (8)0.0001 (8)
C40.0493 (11)0.0360 (10)0.0458 (11)0.0033 (9)0.0104 (9)0.0011 (8)
C50.0590 (14)0.0355 (11)0.0766 (15)0.0048 (10)0.0276 (12)0.0008 (11)
C60.118 (3)0.0380 (14)0.164 (4)0.0109 (16)0.080 (3)0.0101 (18)
C70.153 (4)0.0352 (15)0.219 (5)0.0004 (18)0.118 (4)0.007 (2)
C80.0742 (16)0.0409 (12)0.0720 (15)0.0100 (11)0.0242 (13)0.0080 (11)
C90.0399 (10)0.0416 (11)0.0353 (9)0.0004 (8)0.0081 (8)0.0017 (8)
C100.0340 (9)0.0419 (10)0.0390 (10)0.0010 (8)0.0068 (7)0.0052 (8)
C110.0496 (12)0.0523 (12)0.0409 (10)0.0086 (9)0.0173 (9)0.0020 (9)
C120.0546 (12)0.0509 (13)0.0487 (12)0.0074 (10)0.0145 (10)0.0074 (9)
C130.0371 (10)0.0404 (11)0.0598 (12)0.0025 (8)0.0082 (9)0.0083 (9)
C140.0528 (12)0.0497 (13)0.0472 (12)0.0020 (10)0.0169 (10)0.0139 (9)
C150.0504 (12)0.0474 (12)0.0377 (10)0.0018 (9)0.0108 (9)0.0043 (8)
C160.0324 (9)0.0341 (10)0.0438 (10)0.0024 (7)0.0101 (8)0.0001 (8)
C170.0436 (11)0.0397 (11)0.0591 (12)0.0074 (9)0.0188 (9)0.0005 (9)
C180.0686 (17)0.0502 (14)0.113 (2)0.0150 (12)0.0532 (16)0.0159 (14)
C190.0774 (19)0.078 (2)0.121 (3)0.0244 (16)0.065 (2)0.0163 (19)
C200.0733 (18)0.0677 (18)0.097 (2)0.0269 (14)0.0390 (16)0.0042 (15)
C210.0662 (15)0.0420 (12)0.0730 (16)0.0121 (11)0.0140 (12)0.0104 (11)
C220.0472 (11)0.0385 (11)0.0502 (11)0.0036 (9)0.0074 (9)0.0043 (9)
C230.0786 (18)0.0352 (11)0.0788 (17)0.0037 (11)0.0279 (14)0.0001 (11)
Geometric parameters (Å, º) top
S1—C41.722 (2)C10—C111.388 (3)
S1—C11.7438 (19)C10—C91.458 (3)
Cl1—C131.741 (2)C14—H140.9300
O1—C161.222 (2)C9—H90.92 (2)
N2—C161.336 (3)C11—H110.9300
N2—C171.421 (3)C5—C61.503 (4)
N2—H2N0.77 (3)C5—H5A0.9700
N1—C91.281 (2)C5—H5B0.9700
N1—C11.389 (3)C8—C71.479 (4)
C3—C41.359 (3)C8—H8A0.9700
C3—C21.434 (3)C8—H8B0.9700
C3—C51.507 (3)C21—C201.363 (4)
C4—C81.501 (3)C21—H210.9300
C22—C171.393 (3)C23—H23A0.9600
C22—C211.395 (3)C23—H23B0.9600
C22—C231.493 (3)C23—H23C0.9600
C16—C21.496 (2)C18—C191.382 (4)
C2—C11.373 (3)C18—H180.9300
C15—C141.382 (3)C20—C191.373 (4)
C15—C101.391 (3)C20—H200.9300
C15—H150.9300C6—C71.395 (5)
C12—C111.377 (3)C6—H6A0.9700
C12—C131.381 (3)C6—H6B0.9700
C12—H120.9300C19—H190.9300
C13—C141.373 (3)C7—H7A0.9700
C17—C181.391 (3)C7—H7B0.9700
C4—S1—C191.81 (10)C12—C11—H11119.3
C16—N2—C17126.53 (19)C10—C11—H11119.3
C16—N2—H2N115 (2)C6—C5—C3112.4 (2)
C17—N2—H2N118 (2)C6—C5—H5A109.1
C9—N1—C1119.27 (17)C3—C5—H5A109.1
C4—C3—C2112.66 (17)C6—C5—H5B109.1
C4—C3—C5121.21 (18)C3—C5—H5B109.1
C2—C3—C5126.12 (17)H5A—C5—H5B107.9
C3—C4—C8125.8 (2)C7—C8—C4110.2 (2)
C3—C4—S1112.08 (15)C7—C8—H8A109.6
C8—C4—S1122.13 (17)C4—C8—H8A109.6
C17—C22—C21117.6 (2)C7—C8—H8B109.6
C17—C22—C23121.29 (19)C4—C8—H8B109.6
C21—C22—C23121.1 (2)H8A—C8—H8B108.1
O1—C16—N2123.95 (18)C20—C21—C22122.3 (2)
O1—C16—C2120.09 (17)C20—C21—H21118.8
N2—C16—C2115.96 (17)C22—C21—H21118.8
C1—C2—C3112.77 (16)C22—C23—H23A109.5
C1—C2—C16125.17 (17)C22—C23—H23B109.5
C3—C2—C16122.03 (16)H23A—C23—H23B109.5
C14—C15—C10121.1 (2)C22—C23—H23C109.5
C14—C15—H15119.4H23A—C23—H23C109.5
C10—C15—H15119.4H23B—C23—H23C109.5
C2—C1—N1126.85 (17)C19—C18—C17120.0 (3)
C2—C1—S1110.68 (14)C19—C18—H18120.0
N1—C1—S1122.23 (14)C17—C18—H18120.0
C11—C12—C13118.8 (2)C21—C20—C19119.5 (2)
C11—C12—H12120.6C21—C20—H20120.3
C13—C12—H12120.6C19—C20—H20120.3
C14—C13—C12121.6 (2)C7—C6—C5119.6 (3)
C14—C13—Cl1119.17 (16)C7—C6—H6A107.4
C12—C13—Cl1119.24 (18)C5—C6—H6A107.4
C18—C17—C22120.3 (2)C7—C6—H6B107.4
C18—C17—N2121.4 (2)C5—C6—H6B107.4
C22—C17—N2118.28 (19)H6A—C6—H6B107.0
C11—C10—C15118.30 (19)C20—C19—C18120.3 (3)
C11—C10—C9122.18 (17)C20—C19—H19119.8
C15—C10—C9119.43 (18)C18—C19—H19119.8
C13—C14—C15118.87 (19)C6—C7—C8119.9 (3)
C13—C14—H14120.6C6—C7—H7A107.4
C15—C14—H14120.6C8—C7—H7A107.4
N1—C9—C10122.67 (19)C6—C7—H7B107.4
N1—C9—H9119.7 (15)C8—C7—H7B107.4
C10—C9—H9117.5 (15)H7A—C7—H7B106.9
C12—C11—C10121.31 (19)
C2—C3—C4—C8179.1 (2)C23—C22—C17—N23.0 (3)
C5—C3—C4—C80.4 (4)C16—N2—C17—C1827.4 (4)
C2—C3—C4—S10.5 (2)C16—N2—C17—C22154.6 (2)
C5—C3—C4—S1178.25 (17)C14—C15—C10—C110.7 (3)
C1—S1—C4—C30.20 (17)C14—C15—C10—C9175.86 (19)
C1—S1—C4—C8178.9 (2)C12—C13—C14—C151.0 (3)
C17—N2—C16—O10.4 (4)Cl1—C13—C14—C15177.53 (17)
C17—N2—C16—C2179.88 (19)C10—C15—C14—C130.2 (3)
C4—C3—C2—C10.7 (2)C1—N1—C9—C10172.85 (17)
C5—C3—C2—C1178.0 (2)C11—C10—C9—N111.1 (3)
C4—C3—C2—C16178.99 (18)C15—C10—C9—N1172.51 (19)
C5—C3—C2—C160.3 (3)C13—C12—C11—C100.0 (3)
O1—C16—C2—C1142.1 (2)C15—C10—C11—C120.8 (3)
N2—C16—C2—C138.2 (3)C9—C10—C11—C12175.7 (2)
O1—C16—C2—C336.0 (3)C4—C3—C5—C66.0 (4)
N2—C16—C2—C3143.71 (19)C2—C3—C5—C6175.4 (3)
C3—C2—C1—N1174.00 (18)C3—C4—C8—C712.1 (4)
C16—C2—C1—N14.3 (3)S1—C4—C8—C7166.4 (3)
C3—C2—C1—S10.5 (2)C17—C22—C21—C201.2 (4)
C16—C2—C1—S1178.76 (14)C23—C22—C21—C20178.2 (3)
C9—N1—C1—C2161.01 (19)C22—C17—C18—C190.7 (5)
C9—N1—C1—S125.1 (2)N2—C17—C18—C19178.7 (3)
C4—S1—C1—C20.18 (15)C22—C21—C20—C190.7 (5)
C4—S1—C1—N1174.62 (16)C3—C5—C6—C726.1 (5)
C11—C12—C13—C140.9 (3)C21—C20—C19—C180.6 (6)
C11—C12—C13—Cl1177.61 (17)C17—C18—C19—C201.3 (6)
C21—C22—C17—C180.5 (4)C5—C6—C7—C841.6 (7)
C23—C22—C17—C18179.0 (2)C4—C8—C7—C632.2 (6)
C21—C22—C17—N2177.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N10.77 (3)2.52 (3)2.985 (3)121 (2)
N2—H2N···O1i0.77 (3)2.52 (3)3.250 (3)159 (3)
C11—H11···S1ii0.932.843.747 (2)166
C23—H23C···O1i0.962.483.406 (3)163
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC23H21ClN2OSC23H21ClN2OS
Mr408.93408.94
Crystal system, space groupOrthorhombic, PbcaMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)13.785 (11), 8.554 (7), 34.74 (3)17.511 (4), 12.519 (3), 9.232 (2)
α, β, γ (°)90, 90, 9090, 97.406 (4), 90
V3)4096 (6)2006.9 (8)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.310.31
Crystal size (mm)0.30 × 0.25 × 0.150.30 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.908, 0.9560.921, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
29534, 4113, 2436 15187, 3994, 3307
Rint0.0690.018
(sin θ/λ)max1)0.6250.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.136, 1.02 0.048, 0.157, 0.91
No. of reflections41133994
No. of parameters262262
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.230.43, 0.42

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) for (I) top
N2—C161.350 (4)N1—C91.274 (3)
N2—C171.411 (4)N1—C11.382 (4)
C21—C22—C17121.5 (3)C22—C21—C20118.6 (3)
C9—N1—C1—S111.1 (4)C16—N2—C17—C1811.4 (5)
C1—C2—C16—N228.7 (4)C11—C10—C9—N14.4 (4)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—HN2···N10.85 (3)2.32 (3)2.887 (4)125 (3)
N2—HN2···O1i0.85 (3)2.26 (3)3.009 (4)147 (3)
Symmetry code: (i) x+3/2, y+1/2, z.
Selected geometric parameters (Å, º) for (II) top
N2—C161.336 (3)N1—C91.281 (2)
N2—C171.421 (3)N1—C11.389 (3)
C17—C22—C21117.6 (2)C20—C21—C22122.3 (2)
N2—C16—C2—C138.2 (3)C16—N2—C17—C1827.4 (4)
C9—N1—C1—S125.1 (2)C11—C10—C9—N111.1 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N10.77 (3)2.52 (3)2.985 (3)121 (2)
N2—H2N···O1i0.77 (3)2.52 (3)3.250 (3)159 (3)
C11—H11···S1ii0.932.843.747 (2)166
C23—H23C···O1i0.962.483.406 (3)163
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds