Download citation
Download citation
link to html
The title compound {systematic name: 2,2'-[1,3-propanediyldioxydi-o-phenylenebis(nitrilomethylidyne)]diphenol}, C29H26N2O4, exists as the phenol-imine form in the crystal, and there are strong intramolecular O-H...N hydrogen bonds, with O...N distances of 2.545 (2) and 2.579 (2) Å. The C=N imine bond distances are in the range 1.276 (2)-1.279 (2) Å and the C=N-C bond angles are in the range 123.05 (16)-124.64 (17)°. The configurations about the C=N bonds are anti (1E).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104022565/ob1202sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104022565/ob1202Isup2.hkl
Contains datablock I

CCDC reference: 257016

Comment top

Tautomerism and intramolecular hydrogen bonds in 2-hydroxy Schiff bases in solution and the solid state have been investigated using IR and UV spectroscopies (Hayvalı et al., 2003), 1H, 13C and 15N NMR spectroscopies (Salman et al., 1991; Pizzala et al., 2000; Gilli et al., 2000), and X-ray crystallography techniques (Kaitner & Pavlovic, 1996). A good review of hydrogen bonds has been published by Steiner (2002). Tautomerism in Schiff bases plays an important role in distinguishing their photochromic (Hadjoudis, 1981; Dürr, 1989) and thermochromic (Moustakali-Mavridis et al., 1980) characteristics.

In solution, the existence of tautomeric equilibria [phenol-imine (O—H···N) and keto-amine (O···H—N) forms] in polar and non-polar solvents, depending on the formation of intermolecular hydrogen bonding, is observed (Costamagna et al., 1992). This tautomerism strongly depends on the solvent polarity and the ability of the solvents to form hydrogen bonds, as reported by Hayvalı et al. (2003). It is claimed that the phenol-imine form is dominant in salicylaldimine, with the keto-amine form dominant in naphthaldimine derivatives, depending on the solvent polarities (Salman et al., 1993). However, in the solid state, it is generally specified by X-ray analysis that the keto-amine form is observed in naphthaldimine, while the phenol-imine form is observed in salicylaldimine Schiff bases (Gavranic et al., 1996; Kaitner & Pavlovic, 1996), although it is claimed that both keto-amine and phenol-imine forms are present in the crystalline state, based on NMR study (Pizzala et al., 2000).

The structures of naphthaldimine and salicylaldimine Schiff base derivatives with different substituents have been the subject of much interest in our laboratory. Examples include compounds (II) (Hökelek Kılıç et al., 2000), (III) (Hökelek Işıklan & Kılıç, 2000), (IV) (Hökelek Kılıç Işıklan Dal & Nazır, 2002), (V) (Hökelek Kılıç Işıklan & Hayvalı, 2002), (VI) (Hökelek, Akduran et al., 2000), (VII) (Hökelek et al., 2001) and (VIII) (Yıldız et al., 1998). Our crystallographic studies have shown a phenol-imine form in (V) and (VII), which are naphthaldimine and salicylaldimine Schiff bases, respectively. Compound (IV) is also a salicylaldimine Schiff base, having nitro groups at the 3- and 5-positions of the phenyl ring. The molecular structure observed in (IV) corresponds to the situation where symmetric hydrogen bonds occur between the two forms (Scheme 2), which might be an artifact due to the disorder caused by H-atom transfer. The N-substituents in (IV), (V) and (VII) are the same, but in (IV) and (V), the aldehyde parts are different. It was once claimed that the hydrogen-bond type depends neither on the stereochemistry of the molecule nor on the type of substituent bonded to the imino N atom, but on the type of aldehyde used (Gavranic et al., 1996), with only an intramolecular O—H···N (phenol-imine form) type of hydrogen bond being observed in salicylaldimines, and an O···H—N (keto-amine form) type of hydrogen bond in naphthaldimines (Kaitner & Pavlovic, 1996; Elerman et al., 1998). However, compound (V) indicates that the naphthaldimine could also exist in the phenol-imine form. These crystallographic results clearly reflect the importance of the stereochemistry of the molecule and the kind of N-substituents in salicylaldimine and naphthaldimine Schiff bases. In this paper, the structure of the title compound, (I), has been determined and is compared with those reported previously. \sch

The molecule of (I) is in the phenol-imine form (Fig. 1). In CDCl3 solution, 1H NMR data for (I) also show the existence of only the phenol-imine form (δ = 13.97 p.p.m., singlet for OH; δ = 8.67 p.p.m., singlet for HCN). The CN imine bond distances and C—N—C bond angles (Table 1) are comparable with the corresponding values of 1.270 (3) Å and 123.5 (2)° in (VIII), and those of 1.288 (4) Å and 121.3 (3)°, and 1.277 (4) Å and 124.3 (3)° in (VI).

There are short intramolecular O—H···N hydrogen bonds in the structure of (I) (Table 2). The dihedral angles between the best planes of the salicylidenes and the N-substituted benzene rings are 6.09 (6) and 9.30 (5)°. The C6—C7—N1—C8 and C22—N2—C23—C24 torsion angles (Table 1) show that the configurations about the C7—N1 and N2—C23 bonds are anti (1E), while the O1—C14—C15—C16 and C14—C15—C16—O2 torsion angles correspond to the gauche conformation (Hilgenfeld & Saenger, 1982). The dihedral angle between the two N-substituted benzene rings is 86.72 (6)°. Scheme 2 here.

For all compounds (I)-(VIII), the salicylidene and naphthalidene groups are characterized by short N···O distances (Table 3). On the basis of studies of intramolecular hydrogen bonds (Gilli et al., 1989), a short hydrogen bond associated with a charge flow through the system of conjugated double bonds (Scheme 2) is denoted `resonance-assisted hydrogen bonding' and a delocalization parameter, Q = (d1-d4) + (d3-d2), is defined (distances d1 to d4 are as defined in Scheme 2). In general, the Q values (Table 3) have negative and positive signs in the naphthaldimine and salicylaldimine derivatives, respectively, and there is no clear relationship between the corresponding Q and N···O values. In the extreme case of a symmetric position of the H atom, Q is nearly zero, as in the salicylaldimine derivative (IV). In contrast, the Q value is positive in the naphthaldimine derivative (V), due to the strongly electron-withdrawing N-substituent group.

Experimental top

A solution of 1,3-propanedioxybis(2-aminophenyl ether) (0.50 g, 1.94 mmol) in dry MeOH (25 ml) was added dropwise to a stirred solution of salicylaldehyde (0.47 g, 3.88 mmol) in dry MeOH (75 ml) over the period of 1 h. The mixture was refluxed for 4 h and then cooled. The precipitated orange solid of (I) was filtered off and crystallized from ethanol (yield 0.73 g, 81%; m.p. 406 K).

Refinement top

H atoms were located from difference syntheses and refined isotropically [C—H = 0.93 (2)–1.04 (2) Å and O—H = 0.96 (3)–0.985 (18) Å].

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A drawing of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The broken lines show the intramolecular hydrogen bonds.
1,3-[Bis(N-2-oxyphenylsalicylydene)]propane top
Crystal data top
C29H26N2O4F(000) = 1968
Mr = 466.52Dx = 1.272 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 14.3665 (10) Åθ = 10–22°
b = 17.1608 (18) ŵ = 0.69 mm1
c = 19.762 (3) ÅT = 293 K
V = 4872.1 (10) Å3Block, orange
Z = 80.35 × 0.25 × 0.15 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
3296 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 74.2°, θmin = 4.5°
non–profiled ω scansh = 017
Absorption correction: ψ scan
(North et al., 1968)
k = 021
Tmin = 0.814, Tmax = 0.902l = 240
4900 measured reflections3 standard reflections every 120 min
4893 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.4634P]
where P = (Fo2 + 2Fc2)/3
4893 reflections(Δ/σ)max < 0.001
420 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C29H26N2O4V = 4872.1 (10) Å3
Mr = 466.52Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 14.3665 (10) ŵ = 0.69 mm1
b = 17.1608 (18) ÅT = 293 K
c = 19.762 (3) Å0.35 × 0.25 × 0.15 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
3296 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.051
Tmin = 0.814, Tmax = 0.9023 standard reflections every 120 min
4900 measured reflections intensity decay: 1%
4893 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.136All H-atom parameters refined
S = 1.06Δρmax = 0.13 e Å3
4893 reflectionsΔρmin = 0.21 e Å3
420 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39443 (9)0.15739 (8)0.49362 (6)0.0632 (3)
O20.19042 (10)0.10168 (7)0.56907 (6)0.0658 (4)
O30.13643 (14)0.02279 (10)0.41059 (9)0.0924 (5)
O40.48972 (11)0.25102 (10)0.62570 (9)0.0896 (5)
N10.55973 (11)0.15060 (9)0.54573 (8)0.0596 (4)
N20.12482 (11)0.03363 (9)0.53125 (7)0.0586 (4)
C10.57325 (14)0.25106 (12)0.65768 (11)0.0669 (5)
C20.58790 (18)0.30317 (14)0.71031 (13)0.0808 (6)
C30.67162 (19)0.30428 (14)0.74397 (12)0.0808 (6)
C40.74173 (17)0.25370 (14)0.72651 (12)0.0768 (6)
C50.72802 (15)0.20155 (13)0.67469 (11)0.0678 (5)
C60.64396 (13)0.19897 (10)0.63918 (9)0.0573 (4)
C70.63287 (14)0.14699 (12)0.58221 (10)0.0600 (5)
C80.54506 (13)0.10691 (11)0.48615 (9)0.0589 (4)
C90.61174 (16)0.06279 (15)0.45290 (12)0.0799 (6)
C100.59024 (18)0.02503 (16)0.39317 (13)0.0893 (8)
C110.50244 (18)0.03097 (15)0.36639 (12)0.0839 (7)
C120.43484 (16)0.07465 (13)0.39844 (10)0.0700 (5)
C130.45561 (13)0.11259 (11)0.45813 (9)0.0570 (4)
C140.30310 (13)0.16830 (14)0.46600 (11)0.0644 (5)
C150.24838 (16)0.21440 (13)0.51704 (12)0.0685 (5)
C160.23688 (16)0.17299 (11)0.58384 (11)0.0642 (5)
C170.17664 (12)0.04948 (10)0.62027 (8)0.0541 (4)
C180.19653 (14)0.06512 (13)0.68779 (9)0.0631 (5)
C190.18124 (15)0.00822 (13)0.73612 (10)0.0674 (5)
C200.14651 (16)0.06302 (13)0.71770 (10)0.0700 (5)
C210.12609 (15)0.07883 (12)0.65078 (10)0.0659 (5)
C220.14087 (12)0.02241 (10)0.60134 (9)0.0536 (4)
C230.08074 (13)0.09234 (12)0.50756 (10)0.0590 (4)
C240.06788 (13)0.10155 (11)0.43550 (10)0.0603 (5)
C250.02694 (16)0.16956 (14)0.41017 (12)0.0746 (6)
C260.01388 (17)0.17936 (18)0.34162 (14)0.0880 (8)
C270.04015 (18)0.1213 (2)0.29744 (14)0.0915 (8)
C280.08053 (18)0.05406 (18)0.32064 (12)0.0827 (7)
C290.09587 (15)0.04370 (13)0.38965 (10)0.0674 (5)
H20.5409 (15)0.3376 (13)0.7231 (10)0.076 (6)*
H30.6833 (15)0.3434 (12)0.7776 (11)0.081 (7)*
H3A0.140 (2)0.0161 (17)0.4585 (17)0.136 (11)*
H40.7994 (19)0.2527 (14)0.7497 (12)0.098 (8)*
H4A0.502 (2)0.2132 (15)0.5893 (12)0.137 (11)*
H50.7765 (17)0.1656 (13)0.6614 (11)0.092 (8)*
H70.6861 (17)0.1130 (13)0.5735 (10)0.086 (7)*
H90.6756 (18)0.0593 (13)0.4745 (12)0.099 (7)*
H100.6359 (19)0.0062 (14)0.3683 (13)0.107 (8)*
H110.4872 (16)0.0011 (13)0.3237 (12)0.089 (7)*
H120.3730 (15)0.0814 (11)0.3788 (10)0.069 (6)*
H180.2180 (14)0.1178 (12)0.7003 (9)0.068 (6)*
H190.1944 (16)0.0211 (12)0.7854 (12)0.088 (7)*
H200.1333 (16)0.1041 (14)0.7520 (12)0.098 (7)*
H210.0996 (16)0.1330 (13)0.6384 (11)0.092 (7)*
H230.0533 (13)0.1341 (11)0.5355 (9)0.066 (6)*
H250.0060 (15)0.2072 (13)0.4437 (10)0.079 (7)*
H260.0137 (18)0.2255 (15)0.3256 (12)0.100 (8)*
H270.0319 (17)0.1270 (14)0.2472 (13)0.104 (8)*
H280.102 (2)0.0132 (15)0.2913 (14)0.112 (9)*
H1410.3080 (14)0.1977 (12)0.4213 (10)0.076 (6)*
H1420.2738 (14)0.1184 (12)0.4564 (10)0.069 (6)*
H1510.2782 (14)0.2648 (12)0.5247 (10)0.073 (6)*
H1520.1895 (18)0.2243 (12)0.4974 (11)0.086 (7)*
H1610.1990 (14)0.2040 (11)0.6148 (10)0.069 (6)*
H1620.3008 (15)0.1624 (11)0.6070 (10)0.070 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0508 (7)0.0763 (8)0.0626 (7)0.0090 (6)0.0015 (6)0.0022 (6)
O20.0758 (9)0.0651 (8)0.0566 (7)0.0122 (7)0.0026 (6)0.0034 (6)
O30.1181 (14)0.0853 (11)0.0739 (10)0.0262 (10)0.0077 (9)0.0116 (8)
O40.0648 (9)0.0945 (11)0.1094 (12)0.0190 (8)0.0174 (9)0.0233 (10)
N10.0517 (8)0.0627 (9)0.0645 (9)0.0003 (7)0.0015 (7)0.0032 (7)
N20.0586 (9)0.0613 (9)0.0557 (8)0.0005 (7)0.0023 (7)0.0004 (7)
C10.0615 (11)0.0620 (11)0.0771 (13)0.0014 (10)0.0065 (10)0.0042 (10)
C20.0781 (15)0.0764 (15)0.0878 (16)0.0015 (12)0.0017 (13)0.0084 (13)
C30.0936 (17)0.0756 (14)0.0733 (14)0.0152 (13)0.0079 (13)0.0020 (12)
C40.0705 (14)0.0847 (15)0.0751 (13)0.0115 (12)0.0145 (12)0.0132 (12)
C50.0634 (12)0.0729 (13)0.0672 (12)0.0024 (11)0.0067 (10)0.0116 (11)
C60.0566 (10)0.0555 (10)0.0599 (10)0.0036 (8)0.0019 (8)0.0129 (8)
C70.0542 (11)0.0631 (11)0.0626 (11)0.0028 (9)0.0010 (9)0.0105 (9)
C80.0541 (10)0.0642 (11)0.0585 (10)0.0026 (9)0.0013 (8)0.0053 (8)
C90.0596 (12)0.1024 (17)0.0777 (14)0.0157 (12)0.0016 (11)0.0082 (13)
C100.0763 (15)0.113 (2)0.0789 (15)0.0301 (14)0.0045 (12)0.0183 (14)
C110.0828 (16)0.1029 (18)0.0659 (13)0.0128 (14)0.0012 (12)0.0157 (13)
C120.0626 (12)0.0893 (15)0.0580 (11)0.0055 (11)0.0042 (10)0.0015 (10)
C130.0535 (10)0.0611 (10)0.0564 (10)0.0049 (8)0.0045 (8)0.0089 (8)
C140.0495 (10)0.0784 (14)0.0653 (11)0.0041 (10)0.0010 (9)0.0167 (11)
C150.0586 (12)0.0612 (12)0.0857 (14)0.0089 (10)0.0069 (11)0.0152 (11)
C160.0645 (12)0.0575 (11)0.0706 (12)0.0017 (9)0.0082 (10)0.0027 (9)
C170.0481 (9)0.0613 (10)0.0530 (9)0.0026 (8)0.0040 (7)0.0037 (8)
C180.0634 (12)0.0685 (12)0.0576 (11)0.0011 (10)0.0028 (9)0.0068 (9)
C190.0680 (12)0.0833 (14)0.0509 (10)0.0054 (11)0.0000 (9)0.0000 (10)
C200.0777 (14)0.0739 (13)0.0583 (11)0.0089 (11)0.0010 (10)0.0103 (10)
C210.0718 (13)0.0619 (11)0.0641 (11)0.0003 (10)0.0006 (10)0.0050 (9)
C220.0502 (9)0.0582 (10)0.0525 (9)0.0063 (8)0.0008 (8)0.0003 (8)
C230.0539 (10)0.0605 (11)0.0627 (11)0.0023 (9)0.0009 (8)0.0008 (9)
C240.0523 (10)0.0645 (11)0.0643 (11)0.0077 (9)0.0075 (8)0.0048 (9)
C250.0637 (13)0.0768 (14)0.0832 (15)0.0051 (11)0.0104 (11)0.0139 (12)
C260.0713 (15)0.0992 (18)0.0935 (18)0.0116 (14)0.0253 (13)0.0328 (16)
C270.0764 (16)0.128 (2)0.0704 (15)0.0280 (16)0.0201 (12)0.0213 (16)
C280.0774 (15)0.1066 (19)0.0641 (13)0.0158 (14)0.0078 (11)0.0016 (14)
C290.0632 (12)0.0775 (13)0.0614 (11)0.0049 (11)0.0060 (9)0.0010 (10)
Geometric parameters (Å, º) top
O1—C131.362 (2)C19—C201.370 (3)
O1—C141.433 (2)C19—C181.383 (3)
O2—C161.424 (2)C21—C201.382 (3)
O2—C171.366 (2)C25—C261.378 (3)
O3—C291.346 (3)C27—C261.377 (4)
O4—C11.356 (2)C5—C41.374 (3)
N1—C71.276 (2)C7—H70.98 (2)
N1—C81.412 (2)C23—H230.99 (2)
N2—C221.417 (2)C19—H191.02 (2)
N2—C231.279 (2)C18—H180.99 (2)
C1—C21.388 (3)C16—H1621.04 (2)
C1—C61.402 (3)C16—H1610.98 (2)
C2—C31.375 (3)O3—H3A0.96 (3)
C3—C41.374 (3)O4—H4A0.985 (18)
C5—C61.397 (3)C14—H1420.97 (2)
C6—C71.445 (3)C14—H1411.02 (2)
C8—C91.387 (3)C21—H211.03 (2)
C8—C131.403 (2)C15—H1510.98 (2)
C9—C101.382 (3)C15—H1520.95 (2)
C10—C111.372 (3)C20—H201.00 (2)
C11—C121.381 (3)C25—H250.97 (2)
C14—C151.504 (3)C27—H271.01 (3)
C15—C161.508 (3)C5—H50.97 (2)
C17—C221.388 (2)C12—H120.98 (2)
C23—C241.445 (3)C28—H280.96 (3)
C24—C251.399 (3)C9—H91.01 (3)
C24—C291.403 (3)C4—H40.95 (3)
C27—C281.371 (4)C11—H111.01 (2)
C28—C291.393 (3)C2—H20.93 (2)
C22—C211.392 (2)C10—H100.98 (3)
C13—C121.380 (3)C3—H30.96 (2)
C17—C181.391 (2)C26—H260.94 (3)
C13—O1—C14117.93 (15)O1—C14—H141109.4 (12)
C17—O2—C16118.66 (15)C15—C14—H141110.9 (11)
C7—N1—C8124.64 (17)H142—C14—H141107.2 (16)
C23—N2—C22123.05 (16)C20—C21—C22120.2 (2)
O4—C1—C2118.9 (2)C20—C21—H21118.7 (12)
O4—C1—C6121.30 (18)C22—C21—H21121.1 (12)
C2—C1—C6119.8 (2)C14—C15—C16113.36 (17)
C5—C6—C1118.37 (19)C14—C15—H151110.0 (12)
C5—C6—C7120.40 (18)C16—C15—H151109.2 (12)
C1—C6—C7121.12 (17)C14—C15—H152106.6 (13)
N1—C7—C6120.06 (18)C16—C15—H152110.2 (14)
C9—C8—N1125.60 (18)H151—C15—H152107.3 (18)
C13—C8—N1115.41 (16)C19—C20—C21120.5 (2)
C17—C22—N2116.39 (15)C19—C20—H20121.3 (13)
C21—C22—N2124.52 (17)C21—C20—H20118.2 (13)
O3—C29—C28118.5 (2)C26—C25—C24120.7 (3)
O3—C29—C24121.68 (18)C26—C25—H25123.2 (13)
C28—C29—C24119.8 (2)C24—C25—H25116.1 (13)
C17—C22—C21119.06 (17)C28—C27—C26120.9 (2)
O1—C13—C12124.53 (17)C28—C27—H27117.5 (15)
O1—C13—C8115.28 (16)C26—C27—H27121.6 (15)
C12—C13—C8120.18 (18)C4—C5—C6121.2 (2)
C9—C8—C13118.93 (19)C4—C5—H5121.0 (14)
O2—C17—C22115.91 (15)C6—C5—H5117.8 (14)
O2—C17—C18123.67 (17)C13—C12—C11119.7 (2)
C22—C17—C18120.42 (17)C13—C12—H12118.7 (12)
N1—C7—H7125.1 (13)C11—C12—H12121.5 (12)
C6—C7—H7114.8 (13)C27—C28—C29120.1 (3)
C25—C24—C29118.66 (19)C27—C28—H28123.3 (16)
C25—C24—C23119.8 (2)C29—C28—H28116.6 (17)
C29—C24—C23121.51 (18)C10—C9—C8120.4 (2)
N2—C23—C24120.69 (19)C10—C9—H9122.3 (14)
N2—C23—H23124.4 (11)C8—C9—H9117.2 (14)
C24—C23—H23114.9 (11)C3—C4—C5119.6 (2)
C20—C19—C18120.30 (19)C3—C4—H4122.1 (15)
C20—C19—H19121.1 (12)C5—C4—H4118.3 (15)
C18—C19—H19118.6 (12)C10—C11—C12120.7 (2)
C19—C18—C17119.57 (19)C10—C11—H11118.9 (13)
C19—C18—H18121.6 (11)C12—C11—H11120.4 (14)
C17—C18—H18118.7 (11)C3—C2—C1120.3 (2)
O2—C16—C15106.07 (17)C3—C2—H2119.6 (14)
O2—C16—H162110.7 (11)C1—C2—H2120.1 (14)
C15—C16—H162111.8 (11)C11—C10—C9120.0 (2)
O2—C16—H161109.6 (12)C11—C10—H10117.6 (15)
C15—C16—H161110.6 (11)C9—C10—H10122.4 (15)
H162—C16—H161108.2 (16)C4—C3—C2120.7 (2)
C29—O3—H3A103.2 (18)C4—C3—H3119.2 (14)
C1—O4—H4A100.3 (19)C2—C3—H3119.9 (14)
O1—C14—C15106.97 (18)C27—C26—C25119.8 (3)
O1—C14—H142110.8 (12)C27—C26—H26120.8 (15)
C15—C14—H142111.6 (12)C25—C26—H26119.4 (15)
C23—N2—C22—C17170.27 (17)C13—O1—C14—C15175.91 (16)
C23—N2—C22—C2111.9 (3)C17—C22—C21—C200.3 (3)
C14—O1—C13—C122.3 (3)N2—C22—C21—C20178.04 (18)
C14—O1—C13—C8177.28 (16)C25—C24—C29—O3179.40 (19)
O1—C13—C8—C9179.58 (18)C25—C24—C29—C281.5 (3)
C12—C13—C8—C90.1 (3)C23—C24—C29—C28178.7 (2)
O1—C13—C8—N12.1 (2)C18—C19—C20—C210.2 (3)
C12—C13—C8—N1177.49 (17)C22—C21—C20—C190.1 (3)
C7—N1—C8—C910.1 (3)C5—C6—C1—O4179.33 (18)
C7—N1—C8—C13172.69 (17)C5—C6—C1—C20.2 (3)
C16—O2—C17—C22172.81 (17)C29—C24—C25—C260.4 (3)
C16—O2—C17—C187.1 (3)C23—C24—C25—C26179.8 (2)
C21—C22—C17—O2179.23 (16)C1—C6—C5—C40.1 (3)
N2—C22—C17—O21.3 (2)C7—C6—C5—C4176.23 (18)
C21—C22—C17—C180.6 (3)O1—C13—C12—C11179.7 (2)
N2—C22—C17—C18178.58 (16)C8—C13—C12—C110.1 (3)
O1—C14—C15—C1662.1 (2)C26—C27—C28—C290.2 (4)
O2—C16—C15—C1459.0 (2)O3—C29—C28—C27179.4 (2)
C1—C6—C7—N13.5 (3)C24—C29—C28—C271.5 (3)
C5—C6—C7—N1172.73 (18)C13—C8—C9—C100.1 (3)
C7—C6—C1—O44.4 (3)N1—C8—C9—C10177.2 (2)
C7—C6—C1—C2176.50 (19)C6—C5—C4—C30.1 (3)
C8—N1—C7—C6174.92 (16)C13—C12—C11—C100.2 (4)
C22—N2—C23—C24178.86 (16)O4—C1—C2—C3179.6 (2)
C23—C24—C29—O30.4 (3)C6—C1—C2—C30.5 (3)
C25—C24—C23—N2174.22 (18)C12—C11—C10—C90.2 (4)
C29—C24—C23—N25.6 (3)C8—C9—C10—C110.1 (4)
C20—C19—C18—C170.2 (3)C5—C4—C3—C20.2 (4)
O2—C17—C18—C19179.27 (17)C1—C2—C3—C40.4 (4)
C22—C17—C18—C190.6 (3)C28—C27—C26—C250.9 (4)
C17—O2—C16—C15175.45 (16)C24—C25—C26—C270.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.96 (3)1.69 (3)2.579 (2)154 (3)
O4—H4A···N10.98 (2)1.61 (3)2.545 (2)158 (3)

Experimental details

Crystal data
Chemical formulaC29H26N2O4
Mr466.52
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)14.3665 (10), 17.1608 (18), 19.762 (3)
V3)4872.1 (10)
Z8
Radiation typeCu Kα
µ (mm1)0.69
Crystal size (mm)0.35 × 0.25 × 0.15
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.814, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
4900, 4893, 3296
Rint0.051
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.136, 1.06
No. of reflections4893
No. of parameters420
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.13, 0.21

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O1—C131.362 (2)C3—C41.374 (3)
O1—C141.433 (2)C5—C61.397 (3)
O2—C161.424 (2)C6—C71.445 (3)
O2—C171.366 (2)C8—C131.403 (2)
O3—C291.346 (3)C14—C151.504 (3)
O4—C11.356 (2)C15—C161.508 (3)
N1—C71.276 (2)C17—C221.388 (2)
N1—C81.412 (2)C23—C241.445 (3)
N2—C221.417 (2)C24—C251.399 (3)
N2—C231.279 (2)C24—C291.403 (3)
C1—C21.388 (3)C27—C281.371 (4)
C1—C61.402 (3)C28—C291.393 (3)
C2—C31.375 (3)
C13—O1—C14117.93 (15)C1—C6—C7121.12 (17)
C17—O2—C16118.66 (15)N1—C7—C6120.06 (18)
C7—N1—C8124.64 (17)C9—C8—N1125.60 (18)
C23—N2—C22123.05 (16)C13—C8—N1115.41 (16)
O4—C1—C2118.9 (2)C17—C22—N2116.39 (15)
O4—C1—C6121.30 (18)C21—C22—N2124.52 (17)
C2—C1—C6119.8 (2)O3—C29—C28118.5 (2)
C5—C6—C1118.37 (19)O3—C29—C24121.68 (18)
C5—C6—C7120.40 (18)C28—C29—C24119.8 (2)
O1—C14—C15—C1662.1 (2)C8—N1—C7—C6174.92 (16)
O2—C16—C15—C1459.0 (2)C22—N2—C23—C24178.86 (16)
C1—C6—C7—N13.5 (3)C23—C24—C29—O30.4 (3)
C5—C6—C7—N1172.73 (18)C25—C24—C23—N2174.22 (18)
C7—C6—C1—O44.4 (3)C29—C24—C23—N25.6 (3)
C7—C6—C1—C2176.50 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.96 (3)1.69 (3)2.579 (2)154 (3)
O4—H4A···N10.98 (2)1.61 (3)2.545 (2)158 (3)
Q (Å) and d(N···O) (Å) values for compounds (I)-(VIII). top
CompoundQd(N···O)
(I)0.123 (3)/0.109 (3)2.579 (2)/2.545 (2)
(II)-0.135 (5)2.572 (4)
(III)-0.121 (4)2.583 (3)
(IV)-0.009 (3)/-0.005 (3)2.525 (3)/2.555 (3)
(V)0.122 (6)2.527 (4)
(VI)0.114 (5)/0.098 (5)2.587 (4)/2.542 (4)
(VII)0.120 (2)2.607 (3)
(VIII)0.142 (3)2.578 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds