Download citation
Download citation
link to html
In the complex cation of the title compound, [Ir2(C2H6NS)2(C4H12N2S2)2]Br4·2H2O, which was obtained by rearrangement of [Re{Ir(aet)3}2]3+ (aet is 2-amino­ethane­thiol­ate) in an aqueous solution, two approximately octahedral fac(S)-[Ir(NH2CH2CH2S)3] units are linked by two coordinated di­sulfide bonds. The complex cation has a twofold axis, and the two non-bridging thiol­ate S atoms in the complex are located on opposite sides of the two di­sulfide bonds. Considering the absolute configurations of the two octahedral units ([Delta] and [Lambda]) and the four asymmetric di­sulfide S atoms (R and S), the complex consists of the [Delta]RR[Delta]RR and [Lambda]SS[Lambda]SS isomers, which combine to form the racemic compound.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104016816/ob1185sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104016816/ob1185Isup2.hkl
Contains datablock I

CCDC reference: 251289

Comment top

Previously, we have reported dinuclear RhIII and IrIII complexes containing a coordinated disulfide bond, [{M(aet)2}2(µ-cysta)]2+ (M = RhIII and IrIII, aet is 2-aminoethanethiolate and cysta is cystamine), formed? by oxidation of mononuclear complexes containing three thiolate S atoms, fac(S)-[M(aet)3] (Konno et al., 1997; Miyashita et al., 1998). Furthermore, since thiolate S atoms can bridge two metal ions, construction of S-bridged polynuclear complexes using fac(S)-[M(aet)3] units as building blocks has been investigated (Konno, 2004). For example, the reaction of fac(S)-[M(aet)3] with metal ions, which prefer an octahedral geometry, selectively forms linear-type trinuclear complexes, [M'{M(aet)3}2]3+ (M' = CrIII, CoIII, RhIII etc.; Mahboob et al., 2004). Recently, we have synthesized the trinuclear complex involving the ReIII ion, [Re{Ir(aet)3}2]3+ (Mahboob et al., 2002). During the course of the recrystallizing processes, a novel dinuclear IrIII complex containing two coordinated disulfide bonds was obtained. We report here the crystal structure of the title compound, [{Ir(aet)}2(µ-cysta)2]Br4·2H2O, (I), for comparison with those of the related complexes.

The asymmetric unit of (I) comprises one-half of a tetravalent dinuclear complex cation, two bromide anions and one water molecule. The complex cation consists of two approximately octahedral fac(S)-[Ir(NH2CH2CH2S)3] units, which are linked by two disulfide bonds (Fig. 1). There is a crystallographic twofold axis through the center of the S1—Sii and S2—S2i bonds [symmetry code: (i) 1 − x, 1/2 − y, z]. The two non-bridging thiolate S atoms (S3 and S3i) are located on opposite sides of the two disulfide bonds. Considering the absolute configurations of the two octahedral units (Δ or Λ) and the four asymmetric disulfide S atoms (R or S), the present crystal of the double disulfide-bridged complex, [{Ir(aet)}2(µ-cysta)2]4+, is racemic, with ΔRRΔRR and ΛSSΛSS configurations. (The isomer shown in Fig. 1 is the ΛSSΛSS isomer.) This configuration contrasts with the fact that the corresponding single disulfide-bridged complexes [{M(aet)2}2(µ-cysta)]2+ (M = RhIII, IrIII) are selectively obtained as the meso isomer, with ΔRΛS configurations (Konno et al., 1997; Miyashita et al., 1998). On the other hand, a triple disulfide-bridged RuIII complex (Albela et al., 1999) and a triple diselenide-bridged RhIII complex (Konno et al., 2003) are obtained as the racemic isomer with ΔRRRΔRRR and ΛSSSΛSSS configurations.

As given in Table 1, the Ir—N(trans to disulfide) distances [mean 2.089 (12) Å] are shorter than the Ir—N(trans to thiolate) distances [2.148 (10) Å]. This behavior is in agreement with the case of [{Ir(aet)2}2(µ-cysta)]2+ (Konno et al., 1997; Miyashita et al., 1998), implying the trans influence of thiolate S atoms. The Ir—S(disulfide) distances [mean 2.304 (3) Å] are ca 0.04 Å shorter than the Ir—S(thiolate) distances [2.348 (3) Å]. The difference between the distances is smaller than that (0.08 Å) in [{Ir(aet)2}2(µ-cysta)]2+, probably because the S—S distances [mean 2.127 (6) Å] in (I) are slightly shorter than that [2.158 (3) Å] in [{Ir(aet)2}2(µ-cysta)]2+. In addition, these S—S distances are relatively long. For example, the S—S distance in [{IrCl(µ-SC6H2Me2CH2)(PPh3)}2(µ-ArSSAr)] (Ar is mesityl) is 2.109 (3) Å (Matsukawa et al., 2000).

Since the S(disulfide)—Ir—S(disulfide) angles [100.3 (1)°] are significantly larger than the ideal angle (90°), the N(trans to disulfide)—Ir—N(trans to disulfide) angles [86.9 (5)°] are smaller than the other N—Ir—N angles. On the other hand, the S(disulfide)—Ir—S(disulfide) angle in (I) is smaller than those in [M2LI2(MeCN)2]2+ [mean 110.80 (4)° for M = CuII and mean 110.5 (2)° for M = NiII] with a macrocyclic ligand L (Fox et al., 2000). This means that the stereochemistry of the complex cation in (I) shows less strain, i.e., the Ir—S—S—Ir torsion angles are remarkably deviated from 0°. Interestingly, the two disulfide bonds have obviously distinguishable torsion angles (Table 1). Atom N1 of the aet moiety involving atom S1 occupies the position trans to the disulfide S atom, whereas atom N2 atom of the aet moiety involving atom S2 occupies the position trans to the thilate S atom. This difference leads to the difference in bond angles involving the disulfide bonds.

Since (I) could not be obtained by the direct oxidation of Δ/Λ-fac(S)-[Ir(aet)3] or ΔRΛS-[{Ir(aet)2}2(µ-cysta)]2+, it appears that the absolute configuration plays an important role in the formation of dinuclear complexes.

Experimental top

Orange powder of ΔΔ/ΛΛ-[Re{Ir(aet)3}2]I3 (Mahboob et al., 2002) was dissolved in a small amount of water and subjected to an QAE-Sephadex A-25 column (Br form). The orange solution, which was eluted with water, was concentrated by a rotary evaporator and kept in a refrigerator after the addition of a few drops of a saturated NaBr aqueous solution. A small number of orange octahedral crystals appeared within several days.

Refinement top

H atoms bonded to C or N atoms were positioned geometrically and allowed to ride on their attached atoms [C—H = N—H = 0.95 Å and Uiso(H) = 1.2Ueq(C,N)]. H atoms of the water molecules were not included in the calculations.

Computing details top

Data collection: WinAFC (Rigaku, 1999); cell refinement: WinAFC; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN; molecular graphics: reference?; software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. A perspective drawing of the ΛSSΛSS isomer of [{Ir(aet)}2(µ-cysta)2]4+, with the atom-numbering scheme, viewed down the crystallographic C2 axis. Displacement ellipsoids are shown at the 30% probability level and H atoms have been omitted for clarity. Atoms labelled with an asterisk (*) are at the symmetry position (1 − x, 1/2 − y, z).
(I) top
Crystal data top
[Ir2(C2H6NS)2(C4H12N2S2)2]Br4·2H2ODx = 2.597 Mg m3
Mr = 1196.90Mo Kα radiation, λ = 0.7107 Å
Tetragonal, I41/aCell parameters from 22 reflections
a = 16.392 (3) Åθ = 10.0–12.8°
c = 22.784 (6) ŵ = 14.38 mm1
V = 6121 (2) Å3T = 296 K
Z = 8Octahedron, red
F(000) = 44800.15 × 0.15 × 0.15 mm
Data collection top
Rigaku AFC-7S
diffractometer
Rint = 0.044
ω scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 621
Tmin = 0.102, Tmax = 0.116k = 021
4032 measured reflectionsl = 829
3512 independent reflections3 standard reflections every 150 reflections
2082 reflections with F2 > 2σ(F2) intensity decay: 9.1%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/{σ2(Fo2) + [0.03(Max(Fo2,0) + 2Fc2]/3)2}
wR(F2) = 0.117(Δ/σ)max = 0.001
S = 1.01Δρmax = 1.72 e Å3
3512 reflectionsΔρmin = 1.93 e Å3
145 parameters
Crystal data top
[Ir2(C2H6NS)2(C4H12N2S2)2]Br4·2H2OZ = 8
Mr = 1196.90Mo Kα radiation
Tetragonal, I41/aµ = 14.38 mm1
a = 16.392 (3) ÅT = 296 K
c = 22.784 (6) Å0.15 × 0.15 × 0.15 mm
V = 6121 (2) Å3
Data collection top
Rigaku AFC-7S
diffractometer
2082 reflections with F2 > 2σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.044
Tmin = 0.102, Tmax = 0.1163 standard reflections every 150 reflections
4032 measured reflections intensity decay: 9.1%
3512 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047145 parameters
wR(F2) = 0.117H-atom parameters constrained
S = 1.01Δρmax = 1.72 e Å3
3512 reflectionsΔρmin = 1.93 e Å3
Special details top

Refinement. Refinement using reflections with F2 > −10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.64050 (3)0.23658 (3)0.04710 (2)0.0195 (1)
Br10.6200 (1)0.0098 (1)0.13903 (7)0.0439 (5)
Br20.8636 (1)0.0958 (1)0.07177 (8)0.0517 (5)
S10.5438 (2)0.2020 (2)0.1167 (1)0.0231 (8)
S20.5623 (2)0.2324 (2)0.0364 (1)0.0242 (8)
S30.6298 (2)0.3777 (2)0.0629 (2)0.0297 (9)
O10.954 (1)0.1582 (9)0.1988 (6)0.087 (6)
N10.7227 (7)0.2332 (7)0.1167 (5)0.026 (3)
N20.6542 (7)0.1095 (6)0.0262 (5)0.026 (3)
N30.7399 (7)0.2674 (7)0.0064 (6)0.035 (3)
C10.6027 (9)0.2335 (9)0.1817 (6)0.033 (4)
C20.6893 (10)0.2033 (10)0.1734 (6)0.037 (4)
C30.5487 (8)0.1215 (8)0.0481 (7)0.034 (4)
C40.5784 (8)0.0748 (8)0.0030 (7)0.031 (4)
C50.7254 (9)0.4070 (8)0.0292 (7)0.038 (4)
C60.7406 (9)0.3540 (9)0.0243 (8)0.043 (5)
H10.76660.19850.10590.0312*
H20.74260.28700.12280.0312*
H30.69590.10370.00240.0317*
H40.66910.08070.06080.0317*
H50.78880.25630.01460.0414*
H60.73800.23460.04070.0414*
H70.60230.29120.18510.0395*
H80.57980.21000.21600.0395*
H90.68960.14530.17340.0441*
H100.72240.22280.20460.0441*
H110.49240.11020.05380.0408*
H120.57840.10540.08200.0408*
H130.58810.02000.00860.0375*
H140.53800.07580.03290.0375*
H150.72270.46260.01760.0453*
H160.76850.39990.05650.0453*
H170.79220.36720.04080.0521*
H180.69910.36320.05260.0521*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.0202 (2)0.0182 (2)0.0202 (2)0.0007 (2)0.0018 (2)0.0000 (2)
Br10.058 (1)0.0411 (9)0.0329 (8)0.0053 (8)0.0064 (7)0.0101 (7)
Br20.0457 (10)0.061 (1)0.049 (1)0.0192 (9)0.0036 (8)0.0090 (9)
S10.027 (2)0.022 (2)0.020 (2)0.004 (1)0.001 (1)0.001 (1)
S20.020 (2)0.031 (2)0.022 (2)0.002 (1)0.001 (1)0.000 (1)
S30.032 (2)0.016 (2)0.041 (2)0.001 (1)0.003 (2)0.001 (1)
O10.11 (1)0.08 (1)0.07 (1)0.005 (9)0.021 (10)0.014 (9)
N10.026 (6)0.027 (6)0.024 (6)0.003 (5)0.009 (5)0.002 (5)
N20.038 (7)0.011 (5)0.031 (6)0.000 (5)0.007 (5)0.014 (5)
N30.025 (6)0.035 (7)0.043 (7)0.000 (5)0.005 (6)0.003 (6)
C10.035 (8)0.046 (9)0.018 (6)0.004 (7)0.004 (6)0.005 (6)
C20.046 (9)0.049 (9)0.016 (7)0.015 (8)0.012 (6)0.002 (6)
C30.026 (7)0.033 (8)0.043 (9)0.003 (6)0.012 (7)0.005 (7)
C40.017 (6)0.025 (7)0.051 (9)0.002 (5)0.004 (6)0.001 (7)
C50.037 (8)0.021 (7)0.06 (1)0.010 (6)0.006 (7)0.001 (7)
C60.038 (9)0.037 (9)0.05 (1)0.006 (7)0.011 (8)0.028 (8)
Geometric parameters (Å, º) top
Ir1—S12.313 (3)N1—H20.950
Ir1—S22.295 (3)N2—H30.950
Ir1—S32.348 (3)N2—H40.950
Ir1—N12.082 (11)N3—H50.950
Ir1—N22.148 (10)N3—H60.950
Ir1—N32.096 (12)C1—H70.950
S1—S1i2.130 (6)C1—H80.950
S1—C11.840 (14)C2—H90.950
S2—S2i2.124 (6)C2—H100.950
S2—C31.852 (14)C3—H110.950
S3—C51.809 (16)C3—H120.950
N1—C21.48 (2)C4—H130.950
N2—C41.46 (2)C4—H140.950
N3—C61.48 (2)C5—H150.950
C1—C21.52 (2)C5—H160.949
C3—C41.48 (2)C6—H170.950
C5—C61.52 (2)C6—H180.949
N1—H10.950
Br1···N23.28 (1)Br2···N23.59 (1)
Br1···N3ii3.28 (1)O1···N3iv3.09 (2)
Br1···N2ii3.45 (1)O1···O1v3.36 (3)
Br1···C3ii3.45 (1)O1···C6iv3.38 (2)
Br1···C43.46 (2)O1···C1vi3.38 (2)
Br2···N13.38 (1)O1···N1iv3.54 (2)
Br2···O1iii3.39 (2)O1···C5iv3.54 (2)
Br2···O13.41 (2)C4···C4vii3.56 (3)
Br2···N1iv3.51 (1)
S1—Ir1—S2100.3 (1)C4—N2—H3108.91
S1—Ir1—S394.9 (1)C4—N2—H4108.91
S1—Ir1—N185.1 (3)H3—N2—H4109.46
S1—Ir1—N289.2 (3)Ir1—N3—H5108.46
S1—Ir1—N3172.0 (3)Ir1—N3—H6108.46
S2—Ir1—S396.6 (1)C6—N3—H5108.50
S2—Ir1—N1172.8 (3)C6—N3—H6108.45
S2—Ir1—N281.1 (3)H5—N3—H6109.45
S2—Ir1—N387.7 (3)S1—C1—H7109.99
S3—Ir1—N187.6 (3)S1—C1—H8110.00
S3—Ir1—N2175.7 (3)C2—C1—H7109.97
S3—Ir1—N384.8 (3)C2—C1—H8109.98
N1—Ir1—N294.3 (4)H7—C1—H8109.42
N1—Ir1—N386.9 (5)N1—C2—H9109.28
N2—Ir1—N391.4 (4)N1—C2—H10109.28
Ir1—S1—S1i106.3 (2)C1—C2—H9109.30
Ir1—S1—C197.1 (5)C1—C2—H10109.31
S1—S1i—C1i98.4 (5)H9—C2—H10109.45
Ir1—S2—S2i121.96 (9)S2—C3—H11109.10
Ir1—S2—C3102.5 (5)S2—C3—H12109.13
S2—S2i—C3i98.6 (5)C4—C3—H11109.13
Ir1—S3—C597.6 (5)C4—C3—H12109.17
Ir1—N1—C2115.6 (9)H11—C3—H12109.46
Ir1—N2—C4111.6 (8)N2—C4—H13109.04
Ir1—N3—C6113.5 (9)N2—C4—H14109.05
S1—C1—C2107.5 (10)C3—C4—H13108.98
N1—C2—C1110 (1)C3—C4—H14109.02
S2—C3—C4110 (1)H13—C4—H14109.47
N2—C4—C3111 (1)S3—C5—H15109.49
S3—C5—C6109.4 (10)S3—C5—H16109.54
N3—C6—C5108 (1)C6—C5—H15109.39
Ir1—N1—H1107.91C6—C5—H16109.51
Ir1—N1—H2107.90H15—C5—H16109.48
C2—N1—H1107.93N3—C6—H17109.53
C2—N1—H2107.91N3—C6—H18109.59
H1—N1—H2109.45C5—C6—H17109.56
Ir1—N2—H3108.94C5—C6—H18109.62
Ir1—N2—H4108.96H17—C6—H18109.53
Ir1—S1—S1i—Ir1i88.7 (2)S2—S2i—Ir1i—N1i172 (2)
Ir1—S1—S1i—C1i171.3 (5)S2—S2i—Ir1i—N2i122.0 (4)
Ir1—S1—C1—C243 (1)S2—S2i—Ir1i—N3i146.2 (4)
Ir1—S2—S2i—Ir1i24.5 (4)S2—S2i—C3i—C4i116.0 (9)
Ir1—S2—S2i—C3i86.1 (5)S2—C3—C4—N240 (1)
Ir1—S2—C3—C49.6 (10)S3—Ir1—S1—C168.0 (5)
Ir1—S3—C5—C637 (1)S3—Ir1—S2—C3170.3 (4)
Ir1—N1—C2—C137 (1)S3—Ir1—N1—C2101.7 (9)
Ir1—N2—C4—C355 (1)S3—Ir1—N2—C496 (4)
Ir1—N3—C6—C547 (1)S3—Ir1—N3—C618 (1)
S1—Ir1—S2—S2i34.5 (3)S3—C5—C6—N356 (1)
S1—Ir1—S2—C374.1 (4)N1—Ir1—S1—C119.2 (6)
S1—Ir1—S3—C5161.8 (5)N1—Ir1—S2—C364 (2)
S1—Ir1—N1—C26.6 (9)N1—Ir1—S3—C576.9 (6)
S1—Ir1—N2—C462.9 (9)N1—Ir1—N2—C4147.9 (9)
S1—Ir1—N3—C6106 (2)N1—Ir1—N3—C6106 (1)
S1—S1i—Ir1i—S2i64.6 (2)N2—Ir1—S1—C1113.6 (6)
S1—S1i—Ir1i—S3i33.0 (2)N2—Ir1—S2—C313.4 (5)
S1—S1i—Ir1i—N1i120.1 (3)N2—Ir1—S3—C538 (4)
S1—S1i—Ir1i—N2i145.4 (3)N2—Ir1—N1—C282.2 (10)
S1—S1i—Ir1i—N3i120 (2)N2—Ir1—N3—C6159 (1)
S1—S1i—C1i—C2i151.5 (10)N3—Ir1—S1—C119 (2)
S1—C1—C2—N154 (1)N3—Ir1—S2—C3105.2 (5)
S2—Ir1—S1—C1165.6 (5)N3—Ir1—S3—C510.2 (6)
S2—Ir1—S3—C597.2 (5)N3—Ir1—N1—C2173.3 (10)
S2—Ir1—N1—C2132 (2)N3—Ir1—N2—C4125.1 (10)
S2—Ir1—N2—C437.7 (9)C1—S1—S1i—C1i71.3 (10)
S2—Ir1—N3—C678 (1)C3—S2—S2i—C3i163.3 (10)
S2—S2i—Ir1i—S3i61.7 (3)
Symmetry codes: (i) x+1, y+1/2, z; (ii) y+3/4, x3/4, z+1/4; (iii) y+3/4, x+5/4, z+1/4; (iv) y+5/4, x3/4, z+1/4; (v) x+2, y+1/2, z; (vi) x+3/2, y+1/2, z+1/2; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ir2(C2H6NS)2(C4H12N2S2)2]Br4·2H2O
Mr1196.90
Crystal system, space groupTetragonal, I41/a
Temperature (K)296
a, c (Å)16.392 (3), 22.784 (6)
V3)6121 (2)
Z8
Radiation typeMo Kα
µ (mm1)14.38
Crystal size (mm)0.15 × 0.15 × 0.15
Data collection
DiffractometerRigaku AFC-7S
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.102, 0.116
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
4032, 3512, 2082
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.117, 1.01
No. of reflections3512
No. of parameters145
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.72, 1.93

Computer programs: WinAFC (Rigaku, 1999), WinAFC, TEXSAN (Molecular Structure Corporation, 1999), SIR92 (Altomare et al., 1994), TEXSAN, reference?.

Selected geometric parameters (Å, º) top
Ir1—S12.313 (3)Ir1—N22.148 (10)
Ir1—S22.295 (3)Ir1—N32.096 (12)
Ir1—S32.348 (3)S1—S1i2.130 (6)
Ir1—N12.082 (11)S2—S2i2.124 (6)
S1—Ir1—S2100.3 (1)N1—Ir1—N386.9 (5)
S1—Ir1—S394.9 (1)N2—Ir1—N391.4 (4)
S2—Ir1—S396.6 (1)Ir1—S1—S1i106.3 (2)
N1—Ir1—N294.3 (4)Ir1—S2—S2i121.96 (9)
Ir1—S1—S1i—Ir1i88.7 (2)C1—S1—S1i—C1i71.3 (10)
Ir1—S2—S2i—Ir1i24.5 (4)C3—S2—S2i—C3i163.3 (10)
Symmetry code: (i) x+1, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds