Download citation
Download citation
link to html
The title ligand, C14H14Cl4N5O2P3, is a cyclo­phosphazene lariat (PNP pivot) ether with a spiro-cyclic 11-membered macrocyclic ring containing two ether O and two N atoms; the phosphazene ring is nearly planar. The macrocyclic ring contains a four-centred (trifurcate) N-H...O/N-H...N hydrogen bond, and the relative inner-hole size of the macrocycle is ~1.14 Å in radius. The mol­ecules are linked about inversion centres by N-H...N hydrogen bonds into centrosymmetric dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104010169/ob1177sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104010169/ob1177Isup2.hkl
Contains datablock I

CCDC reference: 245873

Comment top

Chlorocyclophosphazenes are a useful class of molecules that have prepared the ground for other substituted phosphazene frameworks. The reactions of hexachlorocyclotriphosphazatriene, N3P3Cl6, with amines (Contractor et al., 1987), diamines (Parwolik-Czomperlik et al., 2002; Beşli et al., 2003), polyamines (Kılıç et al., 1991; Coles et al., 2002), aryloxides (Kılıç et al., 1996; Chandrasekhar et al., 2002) and oligoethylene glycols (Shaw & Ture, 1991; Al-Madfa et al., 1990) under different conditions have been investigated in the past three decades. Cyclophosphazene (PNP-pivot) lariat ethers and other phosphazene derivatives have been synthesized with the aim of designing highly ion-selective macrocyclic multidentate ligands (Yıldız et al., 1999; Allcock et al., 1991; Kruszynski et al., 2001; Bartsch et al., 2002; Brandt, Seliger et al., 2001), and anticancer (Song et al., 2003), antibacterial (Konar et al., 2000) and anti-HIV (Brandt, Bartczak et al., 2001) agents, and of investigating the stereogenic properties of cyclophosphazene derivatives (Davies et al., 2000; Coles et al., 2002).

The title ligand, (I), a spiro-cyclic 11-membered macrocyclic ligand, belongs to a new class of lariat ether ligand in which the macrocyclic and phosphazene rings are linked together, forming a novel structure. Compound (I) may be a potential ion-selective reagent for lithium and transition-metal cations. The structure determination of (I) was carried out in order to ascertain the macrocyclic ring hole size and to understand the influence of the highly hindered macrocyclic ring on the structure of the cyclic trimeric phosphazene.

The macrocyclic ring of (I) contains two ether O and two N atoms (Fig. 1 and Table 1) and is contracted? with a trifurcate N—H···O/N—H···N hydrogen bond (Table 2). Atoms N4, N5, O1 and O2 deviate from the least-squares plane defined by these atoms by 0.103 (4), −0.084 (4), −0.066 (4) and 0.108 (5) Å, respectively. The intramolecular C6···C14 [5.346 (3) Å], P1···C7 [4.435 (4) Å], N4···O1 [2.659 (4) Å], N4···O2 [2.788 (4) Å], N5···O1 [4.609 (4) Å] and N5···O2 [2.782 (4) Å] distances may indicate the hole size of the macrocyclic ring. The relative macrocyclic inner-hole size is approximately 1.14 Å in radius, taking into account the mean plane defined by atoms N4, N5, O1 and O2, and using the `modified covalent radii' of the Nsp2 (0.66 Å) and Osp3 (0.76 Å) atoms as in the literature method (Goodwin et al., 1982; Adam et al., 1983; Drummond et al., 1982).

The phosphazene ring is nearly planar, with P—N bond lengths in the range 1.554 (3)–1.610 (3) Å. The P—N bonds lengths have a regular dependence on the distance from atom P1 in the ring, such that P1—N1 P1—N3 > P2—N1 P3—N3 < P2—N2 P3—N2. The phosphazene ring P—N bonds have double-bond character, while the P—N bond lengths in the macroring correspond to the lower limit of the single-bond length; in phosphazene derivatives, the P—N single and double bonds are generally in the ranges 1.628–1.691 and 1.571–1.604 Å, respectively (Allen et al., 1987). The shortening of the macroring P—N bonds is probably due to electron release from the N atoms of the macroring to the phosphazene skeleton.

In the phosphazene ring, for the angles nearest to the macroring, viz. endocyclic α (N1—P1—N3) and exocyclic α' (N4—P1—N5), α decreases while α' increases with increasing electron supply and repulsions of the substituents relative to the standard compound N3P3Cl6. The β (P1—N1—P2 and P1—N3—P3) values differ considerably and seem to increase with increasing electron supply to the N3P3 ring (Kılıç et al., 1996). In (I), β(P1—N1—P2) β(P1—N3—P3) > (P2—N2—P3), and α [114.2 (2)°] is significantly smaller and α' [105.8 (2)°] is slightly larger than the corresponding values in N3P3Cl6? [118.3 (2) and 101.2 (1)°, respectively], but the β angles [122.9 (2) and 122.9 (2)°] are larger than the value [121.4 (3)°] reported for N3P3Cl6 (Bullen, 1971). The α and β angles are nearly identical, but α' [105.8 (2)°] is larger than the corresponding value [103.3 (1)°] in 4,4,6,6-tetrachloro-2,2-(propylenedioxydi-o-phenylenediimino)-2λ5,4λ5, 6λ5-cyclotriphosphazene (Tercan et al., 2004).

For the phosphazene and macrocyclic rings, the Cremer & Pople (1975) total puckering amplitudes, QT, are 0.096 (3) and 0.916 (4) Å, respectively. The torsion angles of the macroring (Table 1) have the sequence -ap, +ap, -sp, -sc, +ap, -sc, -ap, +ap, +sp, -ac, +sc (sp is synperiplanar, sc is synclinical, ac is anticlinical and ap is antiperiplanar), corresponding to the P1—N4,···, N5—P1 bond sequence. The conformation of the macrocyclic ring is conditioned by the three hydrogen bonds and planarity of the two benzo-fused N—C—C—O systems. As can be seen from the packing diagram (Fig. 2), the intermolecular N—H···N hydrogen bonds led to the formation of the centrosymmetric dimers.

Experimental top

A solution of N3P3Cl6 (1.77 g, 5 mmol) in acetonitrile (100 ml) was added dropwise to a mixture of ethylene glycol bis(2-aminophenyl ether) (1.22 g, 5 mmol) and NEt3 (2.52 g, 25 mmol) in acetonitrile (50 ml) at 263 K for over 1 h. After the mixture had been allowed to come to an ambient temperature, it was stirred for 24 h under argon. The precipitated amine hydrochloride was filtered off and the solvent was evaporated under reduced pressure. The residue was dissolved in benzene and subjected to column chromatography (silica gel 35 g, eluant benzene) and crystallized from n-heptane (m.p. 486 K; yield 1.35 g, 52%).

Refinement top

Atoms H4 and H101 were located in a difference synthesis and refined isotropically [C10–H101 = 0.94 (5) Å and N4—H4 = 0.78 (4) Å]. All other H atoms were positioned geometrically at distances of 0.93 Å (Csp2—H) and 0.97 Å (Csp3—H) from the parent atoms; a riding model was used during the refinement process. The Uiso values were constrained to be 1.2Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and broken lines indicate hydrogen bonds.
[Figure 2] Fig. 2. A packing diagram of (I). Broken lines indicate hydrogen bonds.
(I) top
Crystal data top
C14H14Cl4N5O2P3Z = 2
Mr = 519.01F(000) = 524
Triclinic, P1Dx = 1.609 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.045 (2) ÅCell parameters from 25 reflections
b = 11.647 (3) Åθ = 10–15°
c = 12.225 (2) ŵ = 0.80 mm1
α = 103.663 (17)°T = 293 K
β = 107.458 (19)°Plate, colourless
γ = 109.78 (2)°0.40 × 0.25 × 0.20 mm
V = 1071.1 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.022
Radiation source: fine-focus sealed tubeθmax = 26.3°, θmin = 2.5°
Graphite monochromatorh = 011
non–profiled ω scansk = 1413
4615 measured reflectionsl = 1514
4329 independent reflections3 standard reflections every 120 min
3011 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0935P)2 + 0.849P]
where P = (Fo2 + 2Fc2)/3
4329 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C14H14Cl4N5O2P3γ = 109.78 (2)°
Mr = 519.01V = 1071.1 (5) Å3
Triclinic, P1Z = 2
a = 9.045 (2) ÅMo Kα radiation
b = 11.647 (3) ŵ = 0.80 mm1
c = 12.225 (2) ÅT = 293 K
α = 103.663 (17)°0.40 × 0.25 × 0.20 mm
β = 107.458 (19)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.022
4615 measured reflections3 standard reflections every 120 min
4329 independent reflections intensity decay: 1%
3011 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.89 e Å3
4329 reflectionsΔρmin = 0.44 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.0460 (2)0.24917 (14)0.34389 (15)0.0872 (5)
Cl20.1057 (2)0.23157 (13)0.10929 (12)0.0836 (4)
Cl30.0206 (2)0.62603 (14)0.11872 (14)0.0964 (6)
Cl40.0882 (2)0.61134 (15)0.34581 (19)0.1010 (6)
P10.39261 (12)0.61944 (9)0.39507 (9)0.0412 (3)
P20.05729 (13)0.57485 (10)0.26177 (10)0.0486 (3)
P30.12856 (14)0.36509 (9)0.25724 (10)0.0451 (3)
O10.8137 (4)0.9115 (3)0.4001 (3)0.0609 (8)
O20.6886 (5)0.9125 (3)0.5794 (4)0.0847 (12)
N10.2514 (4)0.6698 (3)0.3439 (3)0.0466 (8)
N20.0048 (4)0.4210 (3)0.2117 (4)0.0619 (10)
N30.3236 (4)0.4623 (3)0.3362 (3)0.0518 (9)
N40.5638 (4)0.6882 (3)0.3697 (3)0.0472 (8)
N50.4624 (4)0.6621 (3)0.5451 (3)0.0481 (8)
C10.5699 (5)0.7100 (4)0.2634 (4)0.0462 (9)
C20.4596 (6)0.6217 (5)0.1442 (4)0.0680 (13)
C30.4776 (7)0.6494 (6)0.0444 (5)0.0776 (15)
C40.6109 (7)0.7645 (6)0.0628 (5)0.0767 (15)
C50.7227 (6)0.8535 (5)0.1804 (5)0.0654 (12)
C60.7014 (5)0.8273 (4)0.2796 (4)0.0488 (9)
C70.7689 (8)1.0132 (5)0.4502 (5)0.0792 (16)
C80.7854 (7)1.0313 (4)0.5759 (6)0.0760 (15)
C90.6119 (6)0.9039 (4)0.6599 (4)0.0533 (10)
C100.6498 (7)1.0117 (5)0.7601 (5)0.0688 (13)
C110.5646 (8)0.9953 (6)0.8368 (5)0.0793 (15)
C120.4437 (9)0.8722 (7)0.8126 (5)0.0842 (17)
C130.4103 (7)0.7660 (5)0.7153 (4)0.0654 (12)
C140.4915 (5)0.7787 (4)0.6381 (3)0.0461 (9)
H20.37190.54250.13120.082*
H30.39990.59050.03550.093*
H40.634 (6)0.743 (4)0.433 (4)0.049 (13)*
H4A0.62500.78180.00490.092*
H50.48520.60580.57260.058*
H5A0.81250.93110.19280.078*
H7A0.65080.99060.39780.095*
H7B0.84341.09540.44970.095*
H8A0.90581.06430.63100.091*
H8B0.74541.09540.60370.091*
H100.73211.09470.77590.083*
H110.58931.06720.90410.095*
H120.38430.86100.86250.101*
H130.33000.68290.70150.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0843 (10)0.0757 (9)0.1050 (11)0.0188 (7)0.0454 (8)0.0561 (8)
Cl20.1032 (11)0.0644 (8)0.0706 (8)0.0444 (8)0.0288 (7)0.0031 (6)
Cl30.0936 (11)0.0683 (8)0.0840 (9)0.0245 (8)0.0096 (8)0.0345 (7)
Cl40.0773 (10)0.0754 (9)0.1589 (15)0.0376 (8)0.0709 (10)0.0243 (9)
P10.0377 (5)0.0295 (5)0.0540 (6)0.0149 (4)0.0156 (4)0.0165 (4)
P20.0405 (6)0.0362 (5)0.0635 (7)0.0192 (4)0.0142 (5)0.0160 (5)
P30.0466 (6)0.0291 (5)0.0559 (6)0.0153 (4)0.0192 (5)0.0146 (4)
O10.0390 (15)0.0549 (18)0.072 (2)0.0084 (13)0.0246 (14)0.0121 (15)
O20.118 (3)0.0376 (16)0.109 (3)0.0216 (18)0.082 (3)0.0181 (17)
N10.0396 (17)0.0292 (15)0.064 (2)0.0175 (13)0.0124 (15)0.0150 (14)
N20.0415 (19)0.0356 (17)0.084 (3)0.0131 (15)0.0084 (18)0.0115 (17)
N30.0439 (18)0.0301 (16)0.075 (2)0.0181 (14)0.0170 (17)0.0176 (15)
N40.0380 (18)0.0431 (18)0.049 (2)0.0113 (15)0.0143 (16)0.0129 (16)
N50.054 (2)0.0412 (17)0.056 (2)0.0251 (15)0.0216 (16)0.0248 (15)
C10.0357 (19)0.047 (2)0.052 (2)0.0180 (17)0.0173 (17)0.0152 (18)
C20.056 (3)0.063 (3)0.059 (3)0.010 (2)0.020 (2)0.010 (2)
C30.072 (3)0.094 (4)0.054 (3)0.031 (3)0.025 (3)0.015 (3)
C40.083 (4)0.107 (4)0.072 (3)0.056 (4)0.047 (3)0.044 (3)
C50.064 (3)0.072 (3)0.081 (3)0.034 (3)0.044 (3)0.038 (3)
C60.038 (2)0.052 (2)0.061 (2)0.0223 (18)0.0250 (19)0.020 (2)
C70.109 (4)0.041 (2)0.082 (4)0.029 (3)0.038 (3)0.022 (2)
C80.076 (3)0.045 (3)0.105 (4)0.018 (2)0.051 (3)0.019 (3)
C90.054 (2)0.049 (2)0.060 (3)0.027 (2)0.026 (2)0.0169 (19)
C100.065 (3)0.057 (3)0.070 (3)0.025 (2)0.025 (2)0.006 (2)
C110.091 (4)0.088 (4)0.058 (3)0.047 (3)0.030 (3)0.016 (3)
C120.109 (5)0.108 (5)0.065 (3)0.061 (4)0.054 (3)0.040 (3)
C130.075 (3)0.071 (3)0.064 (3)0.033 (3)0.036 (3)0.037 (2)
C140.048 (2)0.050 (2)0.044 (2)0.0277 (19)0.0164 (18)0.0205 (17)
Geometric parameters (Å, º) top
Cl2—P31.9905 (16)C6—C51.369 (6)
Cl3—P21.9869 (18)C6—C11.398 (5)
Cl4—P21.9877 (18)O2—C91.367 (5)
P1—N11.603 (3)O2—C81.383 (5)
P1—N31.610 (3)C5—C41.370 (7)
P1—N51.635 (3)C5—H5A0.9300
P1—N41.644 (4)C12—C131.368 (7)
P3—N31.560 (3)C12—C111.372 (8)
P3—N21.578 (4)C12—H120.9300
P3—Cl11.9925 (16)C9—C101.387 (6)
P2—N11.554 (3)C13—H130.9300
P2—N21.580 (3)C7—C81.455 (7)
O1—C61.383 (5)C7—H7A0.9700
O1—C71.439 (6)C7—H7B0.9700
C14—C131.365 (6)C8—H8A0.9700
C14—C91.397 (6)C8—H8B0.9700
C14—N51.433 (5)C10—C111.388 (7)
N5—H50.8600C10—H100.9300
N4—C11.394 (5)C11—H110.9300
N4—H40.78 (4)C3—C41.380 (7)
C2—C31.374 (7)C3—H30.9300
C2—C11.379 (6)C4—H4A0.9300
C2—H20.9300
N1—P1—N3114.17 (17)P3—N2—P2119.1 (2)
N1—P1—N5110.85 (18)P3—N3—P1122.9 (2)
N3—P1—N5107.03 (18)C6—C5—C4119.6 (5)
N1—P1—N4110.94 (18)C6—C5—H5A120.2
N3—P1—N4107.67 (19)C4—C5—H5A120.2
N5—P1—N4105.75 (18)C13—C12—C11120.2 (5)
N3—P3—N2119.45 (17)C13—C12—H12119.9
N3—P3—Cl2108.93 (15)C11—C12—H12119.9
N2—P3—Cl2107.82 (16)O2—C9—C10123.2 (4)
N3—P3—Cl1109.75 (15)O2—C9—C14116.7 (4)
N2—P3—Cl1109.25 (17)C10—C9—C14120.1 (4)
Cl2—P3—Cl199.82 (8)C14—C13—C12121.8 (5)
N1—P2—N2120.11 (18)C14—C13—H13119.1
N1—P2—Cl3108.39 (14)C12—C13—H13119.1
N2—P2—Cl3108.46 (16)O1—C7—C8112.4 (4)
N1—P2—Cl4110.51 (15)O1—C7—H7A109.1
N2—P2—Cl4107.43 (16)C8—C7—H7A109.1
Cl3—P2—Cl4100.08 (10)O1—C7—H7B109.1
C6—O1—C7114.3 (4)C8—C7—H7B109.1
C13—C14—C9118.6 (4)H7A—C7—H7B107.9
C13—C14—N5118.8 (4)O2—C8—C7109.7 (4)
C9—C14—N5122.3 (4)O2—C8—H8A109.7
C14—N5—P1130.1 (3)C7—C8—H8A109.7
C14—N5—H5114.9O2—C8—H8B109.7
P1—N5—H5114.9C7—C8—H8B109.7
C1—N4—P1128.2 (3)H8A—C8—H8B108.2
C1—N4—H4117 (3)C9—C10—C11119.8 (5)
P1—N4—H4106 (3)C9—C10—H10120.1
P2—N1—P1122.89 (19)C11—C10—H10120.1
C3—C2—C1120.8 (5)C12—C11—C10119.5 (5)
C3—C2—H2119.6C12—C11—H11120.3
C1—C2—H2119.6C10—C11—H11120.3
C5—C6—O1122.0 (4)C2—C3—C4120.0 (5)
C5—C6—C1121.3 (4)C2—C3—H3120.0
O1—C6—C1116.7 (4)C4—C3—H3120.0
C2—C1—N4124.5 (4)C5—C4—C3120.2 (5)
C2—C1—C6118.0 (4)C5—C4—H4A119.9
N4—C1—C6117.4 (4)C3—C4—H4A119.9
C9—O2—C8122.8 (4)
C13—C14—N5—P1124.0 (4)Cl4—P2—N2—P3121.1 (3)
C9—C14—N5—P162.0 (5)N2—P3—N3—P111.4 (4)
N1—P1—N5—C1435.4 (4)Cl2—P3—N3—P1135.8 (2)
N3—P1—N5—C14160.5 (3)Cl1—P3—N3—P1115.8 (2)
N4—P1—N5—C1484.9 (4)N1—P1—N3—P311.7 (3)
N1—P1—N4—C142.3 (4)N5—P1—N3—P3111.3 (3)
N3—P1—N4—C183.3 (4)N4—P1—N3—P3135.4 (3)
N5—P1—N4—C1162.6 (3)O1—C6—C5—C4177.8 (4)
N2—P2—N1—P17.5 (4)C1—C6—C5—C41.5 (7)
Cl3—P2—N1—P1132.8 (2)C8—O2—C9—C1012.7 (8)
Cl4—P2—N1—P1118.4 (2)C8—O2—C9—C14168.0 (5)
N3—P1—N1—P29.7 (3)C13—C14—C9—O2179.2 (4)
N5—P1—N1—P2111.2 (3)N5—C14—C9—O26.9 (6)
N4—P1—N1—P2131.6 (3)C13—C14—C9—C101.5 (6)
C7—O1—C6—C588.3 (5)N5—C14—C9—C10172.5 (4)
C7—O1—C6—C195.2 (5)C9—C14—C13—C120.1 (7)
C3—C2—C1—N4178.1 (5)N5—C14—C13—C12174.3 (4)
C3—C2—C1—C60.8 (7)C11—C12—C13—C141.6 (8)
P1—N4—C1—C240.5 (6)C6—O1—C7—C8136.2 (4)
P1—N4—C1—C6142.2 (3)C9—O2—C8—C7148.5 (5)
C5—C6—C1—C21.1 (6)O1—C7—C8—O254.9 (6)
O1—C6—C1—C2177.7 (4)O2—C9—C10—C11179.1 (5)
C5—C6—C1—N4176.4 (4)C14—C9—C10—C111.6 (7)
O1—C6—C1—N40.1 (5)C13—C12—C11—C101.5 (9)
N3—P3—N2—P28.2 (4)C9—C10—C11—C120.1 (8)
Cl2—P3—N2—P2133.1 (2)C1—C2—C3—C42.3 (8)
Cl1—P3—N2—P2119.3 (3)C6—C5—C4—C30.1 (8)
N1—P2—N2—P36.3 (4)C2—C3—C4—C51.9 (8)
Cl3—P2—N2—P3131.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O10.78 (4)2.29 (5)2.659 (5)110 (4)
N4—H4···O20.78 (4)2.12 (5)2.788 (5)144 (6)
N4—H4···N50.78 (4)2.47 (6)2.614 (6)92 (4)
N5—H5···N3i0.862.253.026 (5)151
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H14Cl4N5O2P3
Mr519.01
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.045 (2), 11.647 (3), 12.225 (2)
α, β, γ (°)103.663 (17), 107.458 (19), 109.78 (2)
V3)1071.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.40 × 0.25 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4615, 4329, 3011
Rint0.022
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.172, 1.03
No. of reflections4329
No. of parameters257
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.89, 0.44

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
P1—N11.603 (3)P3—N31.560 (3)
P1—N31.610 (3)P3—N21.578 (4)
P1—N51.635 (3)P2—N11.554 (3)
P1—N41.644 (4)P2—N21.580 (3)
N1—P1—N3114.17 (17)N3—P3—N2119.45 (17)
N1—P1—N5110.85 (18)N1—P2—N2120.11 (18)
N3—P1—N5107.03 (18)P2—N1—P1122.89 (19)
N1—P1—N4110.94 (18)P3—N2—P2119.1 (2)
N3—P1—N4107.67 (19)P3—N3—P1122.9 (2)
N5—P1—N4105.75 (18)
C9—C14—N5—P162.0 (5)C8—O2—C9—C14168.0 (5)
N4—P1—N5—C1484.9 (4)N5—C14—C9—O26.9 (6)
N5—P1—N4—C1162.6 (3)C6—O1—C7—C8136.2 (4)
C7—O1—C6—C195.2 (5)C9—O2—C8—C7148.5 (5)
P1—N4—C1—C6142.2 (3)O1—C7—C8—O254.9 (6)
O1—C6—C1—N40.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O10.78 (4)2.29 (5)2.659 (5)110 (4)
N4—H4···O20.78 (4)2.12 (5)2.788 (5)144 (6)
N4—H4···N50.78 (4)2.47 (6)2.614 (6)92 (4)
N5—H5···N3i0.862.253.026 (5)151
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds