Download citation
Download citation
link to html
The structures of trans-bis[2-(amino­methyl)­pyridine-[kappa]2N,N']­bis­(saccharinato-[kappa]N)­zinc(II), [Zn(C7H4NO3S)2(C6H8N2)2], (I), and [2-(amino­ethyl)­pyridine-[kappa]2N,N']bis­(saccharinato-[kappa]N)­zinc(II), [Zn(C7H4NO3S)2(C7H10N2)], (II), exhibit octa- and tetrahedrally coordinated ZnII atoms, respectively. The di­amine ligands behave as N,N'-bidentate ligands, while saccharinate (sac) is coordinated through the N atom. In (I), the complex lies about an inversion centre with the Zn atom disordered and displaced by 0.256 (2) Å from a centre of symmetry towards a sac N atom. The crystal structure of (I) is stabilized by N-H...O hydrogen bonds and the crystal packing of (II) is determined by hydrogen bonding as well as weak [pi]-[pi] stacking interactions between the sac ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103027653/ob1151sup1.cif
Contains datablocks I, II, vty8_16

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103027653/ob1151Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103027653/ob1151IIsup3.hkl
Contains datablock II

CCDC references: 231042; 231043

Comment top

Saccharin (3H-benzisothiazol-3-one 1,1-dioxide or o-benzosulfimide) is a well known artificial sweetener and is readily deprotonated to form the corresponding saccharinate anion (sac), which is a versatile polyfunctional ligand (Ager et al., 1998). Sac coordinates to metals both through the negatively charged N atom and through the carbonyl and sulfonyl O atoms as a mono- or bidentate ligand and, in some cases, also as a bridging ligand. This study forms part of our continuing research into the synthesis and spectral, thermal and structural characterization of a series of mixed-ligand complexes of sac with other co-ligands. In this work, we used two unsymmetrical diamine ligands, namely 2-aminomethylpyridine (ampy) and 2-aminoethylpyridine (aepy), as co-ligands, since metal complexes of both ligands are rare. This paper reports the structures of the title compounds, trans-[Zn(sac)2(ampy)2], (I), and [Zn(sac)2(aepy)], (II). Both consist of neutral molecules.

In (I) (Fig. 1), the disordered zinc cation is displaced from a centre of symmetry towards a sac N atom [Zn1—N1 = 2.188 (2) Å] and forms? a very long Zn1—N1i (see Table 1 for symmetry codes) bond [2.700 (2) Å] to a symmetry- equivalent N-bonded sac ligand in the trans position. This strongly distorted octahedral coordination is completed by two ampy ligands, thus forming the equatorial plane of the coordination polyhedron. The neutral ampy ligand behaves as a bidentate donor to the Zn atom through the two amine N atoms, thus forming a five-membered chelate ring. An alternative model of the structure, which placed the Zn species at the (1/2, 1/2, 1/2) inversion centre, resulted in slightly higher residuals and identical Zn—N(sac) bond lengths [2.443 (2) Å]. However, the zinc anisotropic displacement parameters displayed gross anisotropy normal to the Zn(ampy)2 plane and a PLATON (Spek, 2003) analysis indicated that the Zn1—N1(sac) bond failed the Hirshfeld (1976) rigid-bond test by over 100σ. The disorder in the Zn atom also results in non-equivalent Zn—Nampy bond distances, as shown in Table 1.

In (II) (Fig. 2), the Zn atom exhibits a somewhat distorted tetrahedral coordination geometry, with a neutral bidendate aepy ligand and two anionic sac ligands, thus forming a ZnN4 chromophore. The four Zn—N bond distances in (II) are practically identical (Table 3), but the N—Zn—N bond angle associated with the aepy grouping is significantly less than the nominal tetrahedral angle of 109.5°. The Zn—Nsac bond distance of (II) is similar to those observed in [Zn(sac)2(py)2] [1.977 (2) Å; py is pyridine; Quinzani et al., 1997] but considerably shorter than the corresponding values found in previously reported zinc(II) complexes with sac, viz. 2.200 (4) Å in [Zn(sac)2(H2O)4]·2H2O (Haider et al., 1984), 2.157 (5) Å in [Zn(sac)2(bpy)2]·H2O (Johns et al., 2001), 2.2423 (9) Å in [Zn(sac)2(mea)2] (Yilmaz et al., 2001), 2.159 Å in [Zn(H2O)(bpy)2(sac)](sac) (Grupce et al., 2001) and 2.1167 (16) Å in [Zn(sac)2(mpy)2] (Yilmaz et al., 2002), where bpy, mea and mpy are 2,2'-bipyridine, monoethanolamine and 2-pyridylmethanol, respectively.

It seems that the difference in the coordination geometry of complexes (I) and (II) may be the consequence of the steric hindrance created by the chelate rings, so that the aepy ligand prevents the coordination of a second aepy ligand, resulting in a tetrahedral coordination. Large distortions in the coordination polyhedra of both complexes are clearly evident from the N—Zn—N bond angles, which deviate significantly from the ideal values. The highest deviations occur at the bite angles of the ampy and aepy ligands.

The sac ligands in both complexes are essentially planar. The r.m.s. deviations from the best planes for atoms C1–C7, N1, O3 and S1 in (I), atoms C1–C7, N1 O1 and S1 in (II), and atoms C8–C14, N2, O4 and S2 in (II) are 0.014, 0.024 and 0.030 Å, respectively. The pyridine rings of the ampy and aepy ligands are also planar, with r.m.s. deviations of 0.013 Å for atoms C8–C13 and N3 in (I), and 0.004 Å for atoms C15–C20 and N3 in (II), respectively. For (II), atoms C21 and N4 deviate from the pyridine plane by 1.135 (3) and 0.846 (3) Å, respectively. The ampy and sac ligands in (I) are almost perpendicular to one another, with a dihedral angle of 89.67 (7)°.

Packing diagrams of (I) and (II) are shown in Figs. 3 and 4, respectively. In (I), the amine H atoms of the ampy ligand form intramolecular hydrogen bonds with the carbonyl and sulfonyl O atoms of the sac ligands (Table 2). The individual molecules of (I) are connected by relatively weak intermolecular C—H···O interactions involving one of the py ring H atoms and the sulfonyl O atom of the sac ligand in a neighboring unit. The molecules of (II) are linked by a strong hydrogen bond between the amine H atom of the aepy ligand and the sulfonyl O atom of the sac ligand of an adjacent molecule (Table 4). Furthermore, weak ππ interactions between the sac rings in (II) [Cg···Cgi = 3.690 Å; symmetry code: (i) 1/2 − x, 1/2 + y, 1/2 − z] contribute to the formation of a three-dimensional network.

Experimental top

Tetraaquabis(saccharinato)zinc(II) dihydrate, [Zn(H2O)4(sac)2]·2H2O, was prepared according to the method described by Haider et al. (1984). For the preparation of (I) and (II), an aqueous solution (25 ml) of [Zn(H2O)4(sac)2]·2H2O (0.27 g, 0.5 mmol) was mixed, at 333 K, with ampy (1 mmol) and aepy (1 mmol) ligands, respectively. The precipitated white polycrystalline solid was dissolved in a methanol–water mixture (1:2, v/v) and the resulting solution was left to stand at room temperature and allowed to evaporate slowly over a few days. Colourless crystals of (I) and (II) suitable for X-ray diffraction analyses were collected separately by suction filtration and dried in air.

Refinement top

All H atoms were placed in idealized positions and treated as riding. The Uiso(H) values were constrained to 1.2 Ueq(parent atom) in all cases.

Computing details top

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular view of (I), showing displacement ellipsoids at the 50% probability level. Symmetry codes are as given in Table 1. Atom Zn1 shows positional disorder, and the site occupation factor of atom Zn1 is 50%. Atom Zn1i and H atoms bonded to C atoms have been omitted for clarity. Hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. Molecular view of (II), showing displacement ellipsoids at the 50% probability level. H atoms bonded to C atoms have been omitted for clarity.
[Figure 3] Fig. 3. Packing diagram for (I). All H atoms have been omitted for clarity.
[Figure 4] Fig. 4. Packing diagram for (II). H atoms bonded to C atoms have been omitted for clarity. Hydrogen bonds are indicated by dashed lines.
(I) trans-bis(2-aminomethylpyridine-κ2N,N')bis(saccharinato-κN)zinc(II) top
Crystal data top
[Zn(C7H4NO3S)2(C6H8N2)2]F(000) = 664
Mr = 646.00Dx = 1.533 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4514 reflections
a = 7.4169 (4) Åθ = 2.5–29.2°
b = 21.5662 (10) ŵ = 1.08 mm1
c = 8.7502 (4) ÅT = 293 K
β = 90.257 (1)°Block, colourless
V = 1399.62 (12) Å30.46 × 0.41 × 0.20 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
4077 independent reflections
Radiation source: fine-focus sealed tube2798 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1010
Tmin = 0.637, Tmax = 0.813k = 3030
14105 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0612P)2]
where P = (Fo2 + 2Fc2)/3
4077 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Zn(C7H4NO3S)2(C6H8N2)2]V = 1399.62 (12) Å3
Mr = 646.00Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.4169 (4) ŵ = 1.08 mm1
b = 21.5662 (10) ÅT = 293 K
c = 8.7502 (4) Å0.46 × 0.41 × 0.20 mm
β = 90.257 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4077 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2798 reflections with I > 2σ(I)
Tmin = 0.637, Tmax = 0.813Rint = 0.032
14105 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 0.99Δρmax = 0.32 e Å3
4077 reflectionsΔρmin = 0.23 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.4884 (3)0.49061 (7)0.4850 (2)0.0457 (3)0.50
S10.16514 (6)0.40402 (2)0.32226 (6)0.04488 (14)
O10.05939 (19)0.40975 (7)0.45979 (18)0.0543 (4)
O20.1112 (2)0.44440 (7)0.2003 (2)0.0658 (4)
O30.63285 (18)0.35190 (7)0.3461 (2)0.0603 (4)
N10.3771 (2)0.41073 (7)0.3626 (2)0.0461 (4)
C10.4689 (2)0.35778 (9)0.3295 (2)0.0451 (4)
C20.3500 (3)0.30783 (9)0.2674 (2)0.0458 (4)
C30.3957 (3)0.24874 (11)0.2201 (3)0.0615 (6)
H30.51430.23500.22590.074*
C40.2624 (4)0.21100 (11)0.1647 (3)0.0718 (7)
H40.29180.17120.13260.086*
C50.0856 (4)0.23048 (12)0.1550 (3)0.0719 (7)
H50.00150.20390.11510.086*
C60.0357 (3)0.28933 (11)0.2043 (3)0.0612 (6)
H60.08330.30280.20060.073*
C70.1717 (3)0.32650 (9)0.2588 (2)0.0470 (4)
N20.4287 (2)0.55675 (7)0.30872 (19)0.0434 (4)
N30.7280 (2)0.48919 (8)0.3702 (2)0.0457 (4)
H10.82370.50260.42450.055*
H20.74400.44850.35180.055*
C80.2753 (3)0.58870 (10)0.2872 (3)0.0565 (6)
H80.19160.59010.36590.068*
C90.2374 (4)0.61923 (13)0.1545 (3)0.0695 (7)
H90.12800.63960.14090.083*
C100.3649 (4)0.61901 (17)0.0417 (3)0.0938 (11)
H100.34570.64100.04830.113*
C110.5204 (4)0.58616 (16)0.0627 (3)0.0902 (10)
H110.60630.58460.01420.108*
C120.5490 (3)0.55561 (10)0.1977 (2)0.0498 (5)
C130.7235 (3)0.52142 (15)0.2265 (3)0.0728 (8)
H130.74210.49180.14480.087*
H140.82230.55090.22390.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0329 (5)0.0547 (9)0.0495 (8)0.0104 (5)0.0128 (4)0.0176 (5)
S10.0340 (2)0.0448 (2)0.0559 (3)0.00780 (18)0.0050 (2)0.0036 (2)
O10.0370 (7)0.0616 (8)0.0643 (9)0.0058 (6)0.0121 (7)0.0064 (7)
O20.0573 (9)0.0636 (9)0.0764 (11)0.0160 (8)0.0031 (9)0.0187 (8)
O30.0371 (7)0.0634 (9)0.0804 (12)0.0140 (6)0.0054 (7)0.0027 (8)
N10.0329 (7)0.0451 (8)0.0605 (11)0.0066 (6)0.0087 (7)0.0024 (7)
C10.0391 (9)0.0487 (10)0.0477 (11)0.0095 (8)0.0101 (8)0.0045 (8)
C20.0455 (10)0.0465 (10)0.0455 (11)0.0083 (8)0.0090 (9)0.0033 (8)
C30.0676 (14)0.0533 (12)0.0638 (14)0.0156 (11)0.0121 (12)0.0016 (10)
C40.096 (2)0.0487 (12)0.0705 (16)0.0033 (13)0.0151 (15)0.0117 (11)
C50.0815 (18)0.0672 (15)0.0670 (15)0.0176 (14)0.0058 (14)0.0098 (12)
C60.0531 (13)0.0657 (14)0.0648 (15)0.0041 (11)0.0009 (11)0.0029 (11)
C70.0455 (10)0.0483 (10)0.0472 (11)0.0042 (8)0.0061 (9)0.0028 (8)
N20.0356 (7)0.0473 (8)0.0473 (9)0.0061 (6)0.0083 (7)0.0092 (7)
N30.0349 (8)0.0536 (9)0.0485 (10)0.0083 (7)0.0050 (7)0.0007 (7)
C80.0472 (11)0.0648 (13)0.0577 (13)0.0181 (10)0.0150 (10)0.0180 (10)
C90.0675 (15)0.0801 (16)0.0609 (15)0.0323 (13)0.0061 (12)0.0176 (12)
C100.093 (2)0.138 (3)0.0502 (15)0.051 (2)0.0153 (14)0.0369 (16)
C110.085 (2)0.138 (3)0.0485 (14)0.0486 (18)0.0254 (13)0.0316 (16)
C120.0472 (10)0.0611 (12)0.0413 (11)0.0109 (9)0.0099 (9)0.0031 (9)
C130.0535 (13)0.112 (2)0.0532 (14)0.0335 (14)0.0187 (11)0.0213 (14)
Geometric parameters (Å, º) top
Zn1—Zn1i0.512 (2)C5—H50.9300
Zn1—N32.046 (3)C6—C71.372 (3)
Zn1—N3i2.095 (3)C6—H60.9300
Zn1—N22.146 (3)N2—C121.322 (2)
Zn1—N2i2.161 (3)N2—C81.343 (2)
Zn1—N12.188 (2)N2—Zn1i2.161 (3)
Zn1—N1i2.700 (2)N3—C131.437 (3)
S1—O21.4333 (16)N3—Zn1i2.095 (3)
S1—O11.4447 (15)N3—H10.9000
S1—N11.6163 (17)N3—H20.9000
S1—C71.762 (2)C8—C91.363 (3)
O3—C11.231 (2)C8—H80.9300
N1—C11.361 (2)C9—C101.370 (3)
C1—C21.493 (3)C9—H90.9300
C2—C31.383 (3)C10—C111.365 (4)
C2—C71.384 (3)C10—H100.9300
C3—C41.368 (4)C11—C121.368 (3)
C3—H30.9300C11—H110.9300
C4—C51.379 (4)C12—C131.510 (3)
C4—H40.9300C13—H130.9700
C5—C61.391 (3)C13—H140.9700
Zn1i—Zn1—N388.4 (5)C4—C5—C6120.8 (2)
Zn1i—Zn1—N3i77.5 (5)C4—C5—H5119.6
N3—Zn1—N3i165.85 (6)C6—C5—H5119.6
Zn1i—Zn1—N284.9 (5)C7—C6—C5116.4 (2)
N3—Zn1—N280.43 (10)C7—C6—H6121.8
N3i—Zn1—N298.07 (10)C5—C6—H6121.8
Zn1i—Zn1—N2i81.5 (5)C6—C7—C2123.3 (2)
N3—Zn1—N2i99.11 (11)C6—C7—S1129.98 (17)
N3i—Zn1—N2i79.00 (10)C2—C7—S1106.65 (15)
N2—Zn1—N2i166.35 (6)C12—N2—C8118.73 (17)
Zn1i—Zn1—N1177.4 (5)C12—N2—Zn1112.22 (13)
N3—Zn1—N194.26 (9)C8—N2—Zn1127.88 (14)
N3i—Zn1—N199.89 (10)C12—N2—Zn1i114.47 (14)
N2—Zn1—N195.47 (10)C8—N2—Zn1i126.71 (14)
N2i—Zn1—N198.17 (9)C13—N3—Zn1113.94 (15)
Zn1i—Zn1—N1i2.1 (4)C13—N3—Zn1i114.45 (14)
N3—Zn1—N1i86.24 (8)C13—N3—H1108.8
N3i—Zn1—N1i79.62 (7)Zn1—N3—H1114.9
N2—Zn1—N1i84.59 (7)Zn1i—N3—H1102.6
N2i—Zn1—N1i81.76 (8)C13—N3—H2108.5
N1—Zn1—N1i179.50 (10)Zn1—N3—H2102.6
O2—S1—O1114.69 (9)Zn1i—N3—H2114.4
O2—S1—N1112.10 (9)H1—N3—H2107.6
O1—S1—N1109.98 (9)N2—C8—C9122.6 (2)
O2—S1—C7110.48 (10)N2—C8—H8118.7
O1—S1—C7111.06 (9)C9—C8—H8118.7
N1—S1—C797.22 (9)C8—C9—C10118.2 (2)
C1—N1—S1111.41 (14)C8—C9—H9120.9
C1—N1—Zn1125.23 (15)C10—C9—H9120.9
S1—N1—Zn1122.80 (10)C11—C10—C9119.3 (2)
C1—N1—Zn1i125.61 (14)C11—C10—H10120.3
S1—N1—Zn1i122.38 (9)C9—C10—H10120.3
O3—C1—N1123.79 (19)C10—C11—C12119.6 (2)
O3—C1—C2123.38 (17)C10—C11—H11120.2
N1—C1—C2112.82 (16)C12—C11—H11120.2
C3—C2—C7119.2 (2)N2—C12—C11121.5 (2)
C3—C2—C1128.97 (19)N2—C12—C13117.86 (18)
C7—C2—C1111.86 (17)C11—C12—C13120.6 (2)
C4—C3—C2118.5 (2)N3—C13—C12113.49 (18)
C4—C3—H3120.8N3—C13—H13108.9
C2—C3—H3120.8C12—C13—H13108.9
C3—C4—C5121.7 (2)N3—C13—H14108.9
C3—C4—H4119.1C12—C13—H14108.9
C5—C4—H4119.1H13—C13—H14107.7
O2—S1—N1—C1114.11 (15)Zn1i—Zn1—N2—C12102.4 (5)
O1—S1—N1—C1117.05 (14)N3—Zn1—N2—C1213.16 (15)
C7—S1—N1—C11.49 (16)N3i—Zn1—N2—C12178.93 (15)
O2—S1—N1—Zn174.04 (15)N2i—Zn1—N2—C12102.4 (5)
O1—S1—N1—Zn154.81 (15)N1—Zn1—N2—C1280.25 (16)
C7—S1—N1—Zn1170.37 (13)N1i—Zn1—N2—C12100.24 (15)
O2—S1—N1—Zn1i74.34 (14)Zn1i—Zn1—N2—C890.3 (5)
O1—S1—N1—Zn1i54.50 (13)N3—Zn1—N2—C8179.5 (2)
C7—S1—N1—Zn1i170.06 (12)N3i—Zn1—N2—C813.8 (2)
N3—Zn1—N1—C142.97 (19)N2i—Zn1—N2—C890.3 (5)
N3i—Zn1—N1—C1137.05 (17)N1—Zn1—N2—C887.0 (2)
N2—Zn1—N1—C1123.75 (17)N1i—Zn1—N2—C892.5 (2)
N2i—Zn1—N1—C156.88 (19)N3—Zn1—N2—Zn1i89.2 (5)
N3—Zn1—N1—S1146.32 (12)N3i—Zn1—N2—Zn1i76.6 (5)
N3i—Zn1—N1—S133.65 (16)N1—Zn1—N2—Zn1i177.4 (5)
N2—Zn1—N1—S165.55 (14)N1i—Zn1—N2—Zn1i2.1 (4)
N2i—Zn1—N1—S1113.83 (12)Zn1i—Zn1—N3—C1395.2 (6)
S1—N1—C1—O3177.89 (17)N3i—Zn1—N3—C1395.2 (6)
Zn1—N1—C1—O310.5 (3)N2—Zn1—N3—C1310.18 (18)
Zn1i—N1—C1—O310.9 (3)N2i—Zn1—N3—C13176.35 (18)
S1—N1—C1—C20.8 (2)N1—Zn1—N3—C1384.66 (19)
Zn1—N1—C1—C2170.85 (15)N1i—Zn1—N3—C1395.32 (19)
Zn1i—N1—C1—C2170.45 (13)N2—Zn1—N3—Zn1i85.1 (5)
O3—C1—C2—C30.5 (3)N2i—Zn1—N3—Zn1i81.1 (5)
N1—C1—C2—C3179.2 (2)N1—Zn1—N3—Zn1i179.9 (6)
O3—C1—C2—C7179.29 (19)N1i—Zn1—N3—Zn1i0.1 (5)
N1—C1—C2—C70.6 (2)C12—N2—C8—C91.0 (4)
C7—C2—C3—C40.7 (3)Zn1—N2—C8—C9165.5 (2)
C1—C2—C3—C4179.1 (2)Zn1i—N2—C8—C9177.4 (2)
C2—C3—C4—C50.0 (4)N2—C8—C9—C102.6 (4)
C3—C4—C5—C61.1 (4)C8—C9—C10—C113.1 (5)
C4—C5—C6—C71.4 (4)C9—C10—C11—C122.0 (6)
C5—C6—C7—C20.6 (3)C8—N2—C12—C110.1 (4)
C5—C6—C7—S1176.67 (18)Zn1—N2—C12—C11168.7 (2)
C3—C2—C7—C60.4 (3)Zn1i—N2—C12—C11176.7 (2)
C1—C2—C7—C6179.4 (2)C8—N2—C12—C13177.8 (2)
C3—C2—C7—S1178.27 (17)Zn1—N2—C12—C1313.7 (3)
C1—C2—C7—S11.6 (2)Zn1i—N2—C12—C131.0 (3)
O2—S1—C7—C662.6 (2)C10—C11—C12—N20.4 (5)
O1—S1—C7—C665.9 (2)C10—C11—C12—C13177.2 (3)
N1—S1—C7—C6179.4 (2)Zn1—N3—C13—C126.3 (3)
O2—S1—C7—C2115.08 (15)Zn1i—N3—C13—C129.2 (3)
O1—S1—C7—C2116.49 (15)N2—C12—C13—N35.4 (4)
N1—S1—C7—C21.80 (16)C11—C12—C13—N3176.9 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O1i0.902.313.071 (2)142
N3—H2···O30.902.243.051 (2)150
C8—H8···O1ii0.932.413.334 (3)171
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
(II) (2-aminoethylpyridine-κ2N,N')bis(saccharinato-κN)zinc(II) top
Crystal data top
[Zn(C7H4NO3S)2(C7H10N2)]F(000) = 1128
Mr = 551.88Dx = 1.666 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5706 reflections
a = 9.1654 (4) Åθ = 2.4–29.9°
b = 13.9784 (6) ŵ = 1.35 mm1
c = 17.4679 (7) ÅT = 293 K
β = 100.522 (1)°Chunk, colourless
V = 2200.31 (16) Å30.44 × 0.33 × 0.11 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
6434 independent reflections
Radiation source: fine-focus sealed tube4512 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1112
Tmin = 0.586, Tmax = 0.866k = 1912
16660 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0424P)2]
where P = (Fo2 + 2Fc2)/3
6434 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Zn(C7H4NO3S)2(C7H10N2)]V = 2200.31 (16) Å3
Mr = 551.88Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1654 (4) ŵ = 1.35 mm1
b = 13.9784 (6) ÅT = 293 K
c = 17.4679 (7) Å0.44 × 0.33 × 0.11 mm
β = 100.522 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
6434 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4512 reflections with I > 2σ(I)
Tmin = 0.586, Tmax = 0.866Rint = 0.026
16660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 0.94Δρmax = 0.40 e Å3
6434 reflectionsΔρmin = 0.33 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.32239 (2)0.538171 (15)0.289643 (12)0.03199 (7)
S10.01046 (6)0.58938 (4)0.19492 (3)0.03958 (12)
O10.24893 (15)0.40557 (10)0.15034 (8)0.0429 (3)
O20.07643 (18)0.57493 (12)0.26231 (10)0.0568 (4)
O30.00534 (18)0.68646 (11)0.17170 (11)0.0628 (5)
N10.14761 (17)0.53148 (11)0.20494 (9)0.0348 (4)
C10.1429 (2)0.45752 (13)0.15230 (11)0.0329 (4)
C20.0048 (2)0.45082 (13)0.09994 (11)0.0334 (4)
C30.0496 (2)0.38642 (15)0.03971 (12)0.0414 (5)
H30.01350.33800.02930.050*
C40.1903 (2)0.39605 (17)0.00432 (13)0.0485 (5)
H40.22230.35360.04490.058*
C50.2836 (2)0.46784 (18)0.01126 (14)0.0511 (6)
H50.37710.47340.01980.061*
C60.2422 (2)0.53192 (17)0.07182 (13)0.0465 (5)
H60.30590.57980.08270.056*
C70.1005 (2)0.52090 (14)0.11537 (11)0.0352 (4)
S20.47285 (5)0.70981 (4)0.20797 (3)0.03531 (11)
O40.64442 (18)0.57233 (12)0.37928 (10)0.0578 (4)
O50.34243 (17)0.76421 (12)0.21268 (10)0.0594 (5)
O60.48760 (18)0.67848 (13)0.13182 (8)0.0562 (4)
N20.48779 (17)0.62166 (11)0.26959 (9)0.0330 (3)
C80.6140 (2)0.62947 (14)0.32633 (12)0.0370 (4)
C90.7011 (2)0.71659 (14)0.31581 (11)0.0351 (4)
C100.8330 (2)0.74771 (17)0.36012 (14)0.0475 (5)
H100.88090.71190.40220.057*
C110.8918 (3)0.83278 (18)0.34059 (15)0.0534 (6)
H110.98120.85420.36950.064*
C120.8211 (3)0.88708 (17)0.27895 (15)0.0526 (6)
H120.86210.94530.26800.063*
C130.6896 (2)0.85645 (15)0.23286 (13)0.0442 (5)
H130.64170.89220.19080.053*
C140.6337 (2)0.77015 (13)0.25283 (11)0.0333 (4)
N30.25687 (17)0.59319 (11)0.38658 (9)0.0321 (3)
N40.39238 (19)0.40864 (12)0.33288 (10)0.0382 (4)
H4A0.34100.36310.30300.046*
H4B0.48870.40170.32970.046*
C150.2517 (2)0.68840 (14)0.39606 (12)0.0388 (4)
H150.27570.72770.35720.047*
C160.2127 (2)0.73031 (15)0.46021 (12)0.0442 (5)
H160.21150.79650.46520.053*
C170.1754 (3)0.67217 (16)0.51706 (13)0.0481 (5)
H170.14830.69860.56130.058*
C180.1785 (2)0.57407 (16)0.50783 (12)0.0423 (5)
H180.15260.53390.54570.051*
C190.2203 (2)0.53578 (13)0.44196 (11)0.0326 (4)
C200.2274 (2)0.42965 (14)0.42972 (13)0.0431 (5)
H20A0.15100.41210.38590.052*
H20B0.20480.39760.47540.052*
C210.3755 (3)0.39329 (15)0.41479 (12)0.0443 (5)
H21A0.45490.42610.44910.053*
H21B0.38400.32550.42670.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03876 (12)0.02832 (12)0.02931 (12)0.00321 (9)0.00735 (9)0.00036 (9)
S10.0395 (3)0.0316 (3)0.0494 (3)0.0029 (2)0.0125 (2)0.0066 (2)
O10.0425 (8)0.0422 (8)0.0417 (8)0.0129 (6)0.0014 (6)0.0075 (6)
O20.0595 (10)0.0625 (11)0.0543 (10)0.0002 (8)0.0261 (8)0.0175 (8)
O30.0590 (10)0.0286 (8)0.1002 (14)0.0024 (7)0.0130 (10)0.0011 (8)
N10.0373 (8)0.0324 (9)0.0343 (9)0.0030 (7)0.0053 (7)0.0069 (7)
C10.0387 (10)0.0305 (10)0.0293 (9)0.0006 (8)0.0062 (8)0.0006 (7)
C20.0348 (9)0.0339 (10)0.0312 (10)0.0002 (8)0.0053 (8)0.0041 (7)
C30.0470 (12)0.0414 (12)0.0348 (11)0.0007 (9)0.0046 (9)0.0032 (9)
C40.0461 (12)0.0572 (15)0.0395 (12)0.0120 (11)0.0009 (10)0.0013 (10)
C50.0345 (11)0.0723 (17)0.0438 (13)0.0061 (11)0.0001 (9)0.0117 (12)
C60.0353 (10)0.0532 (14)0.0523 (13)0.0041 (9)0.0115 (9)0.0107 (11)
C70.0359 (10)0.0349 (11)0.0361 (10)0.0017 (8)0.0098 (8)0.0033 (8)
S20.0362 (2)0.0364 (3)0.0333 (3)0.00100 (19)0.00645 (19)0.00789 (19)
O40.0555 (10)0.0549 (10)0.0550 (10)0.0082 (8)0.0113 (8)0.0258 (8)
O50.0432 (8)0.0545 (10)0.0810 (13)0.0149 (7)0.0129 (8)0.0249 (9)
O60.0674 (10)0.0717 (12)0.0294 (8)0.0193 (9)0.0083 (7)0.0028 (7)
N20.0345 (8)0.0304 (8)0.0335 (9)0.0032 (6)0.0042 (7)0.0066 (6)
C80.0367 (10)0.0352 (11)0.0385 (11)0.0003 (8)0.0049 (8)0.0036 (8)
C90.0355 (10)0.0324 (10)0.0385 (11)0.0005 (8)0.0099 (8)0.0022 (8)
C100.0403 (11)0.0496 (14)0.0511 (14)0.0055 (10)0.0044 (10)0.0028 (10)
C110.0421 (12)0.0511 (15)0.0676 (17)0.0123 (10)0.0114 (11)0.0169 (12)
C120.0588 (14)0.0378 (12)0.0683 (17)0.0143 (11)0.0303 (13)0.0129 (11)
C130.0571 (13)0.0353 (11)0.0442 (12)0.0040 (10)0.0200 (10)0.0010 (9)
C140.0387 (10)0.0291 (10)0.0350 (10)0.0025 (8)0.0142 (8)0.0039 (8)
N30.0407 (9)0.0287 (8)0.0272 (8)0.0037 (7)0.0069 (7)0.0010 (6)
N40.0405 (9)0.0311 (9)0.0449 (10)0.0001 (7)0.0128 (8)0.0016 (7)
C150.0512 (12)0.0299 (10)0.0370 (11)0.0022 (9)0.0127 (9)0.0017 (8)
C160.0582 (13)0.0320 (11)0.0430 (12)0.0041 (9)0.0111 (10)0.0039 (9)
C170.0668 (14)0.0456 (13)0.0346 (11)0.0110 (11)0.0166 (10)0.0038 (9)
C180.0546 (12)0.0428 (12)0.0323 (11)0.0041 (10)0.0151 (9)0.0065 (9)
C190.0358 (9)0.0317 (10)0.0303 (10)0.0033 (8)0.0056 (7)0.0024 (8)
C200.0612 (13)0.0298 (10)0.0419 (12)0.0091 (9)0.0196 (10)0.0027 (8)
C210.0600 (13)0.0304 (11)0.0404 (12)0.0045 (9)0.0038 (10)0.0066 (8)
Geometric parameters (Å, º) top
Zn1—N11.9744 (16)C9—C101.381 (3)
Zn1—N21.9942 (15)C10—C111.374 (3)
Zn1—N42.0207 (16)C10—H100.9300
Zn1—N32.0472 (15)C11—C121.379 (3)
S1—O31.4312 (17)C11—H110.9300
S1—O21.4326 (16)C12—C131.389 (3)
S1—N11.6407 (16)C12—H120.9300
S1—C71.763 (2)C13—C141.380 (3)
O1—C11.219 (2)C13—H130.9300
N1—C11.379 (2)N3—C151.343 (2)
C1—C21.491 (3)N3—C191.346 (2)
C2—C71.374 (3)N4—C211.483 (2)
C2—C31.389 (3)N4—H4A0.9000
C3—C41.382 (3)N4—H4B0.9000
C3—H30.9300C15—C161.369 (3)
C4—C51.378 (3)C15—H150.9300
C4—H40.9300C16—C171.374 (3)
C5—C61.385 (3)C16—H160.9300
C5—H50.9300C17—C181.382 (3)
C6—C71.388 (3)C17—H170.9300
C6—H60.9300C18—C191.385 (3)
S2—O61.4300 (15)C18—H180.9300
S2—O51.4317 (15)C19—C201.502 (3)
S2—N21.6253 (16)C20—C211.516 (3)
S2—C141.7543 (19)C20—H20A0.9700
O4—C81.215 (2)C20—H20B0.9700
N2—C81.383 (2)C21—H21A0.9700
C8—C91.486 (3)C21—H21B0.9700
C9—C141.380 (3)
N1—Zn1—N2115.77 (6)C11—C10—C9118.4 (2)
N1—Zn1—N4113.35 (7)C11—C10—H10120.8
N2—Zn1—N4112.98 (6)C9—C10—H10120.8
N1—Zn1—N3108.50 (6)C10—C11—C12121.3 (2)
N2—Zn1—N3105.82 (6)C10—C11—H11119.3
N4—Zn1—N398.54 (6)C12—C11—H11119.3
O3—S1—O2116.50 (11)C11—C12—C13121.2 (2)
O3—S1—N1111.40 (9)C11—C12—H12119.4
O2—S1—N1109.86 (10)C13—C12—H12119.4
O3—S1—C7110.39 (10)C14—C13—C12116.5 (2)
O2—S1—C7111.34 (9)C14—C13—H13121.8
N1—S1—C795.36 (9)C12—C13—H13121.8
C1—N1—S1112.27 (13)C9—C14—C13122.91 (19)
C1—N1—Zn1117.23 (12)C9—C14—S2108.21 (14)
S1—N1—Zn1129.52 (9)C13—C14—S2128.87 (16)
O1—C1—N1122.50 (18)C15—N3—C19118.90 (16)
O1—C1—C2125.75 (17)C15—N3—Zn1119.78 (13)
N1—C1—C2111.74 (16)C19—N3—Zn1121.32 (13)
C7—C2—C3119.96 (18)C21—N4—Zn1114.11 (12)
C7—C2—C1112.05 (17)C21—N4—H4A108.7
C3—C2—C1127.96 (18)Zn1—N4—H4A108.7
C4—C3—C2118.4 (2)C21—N4—H4B108.7
C4—C3—H3120.8Zn1—N4—H4B108.7
C2—C3—H3120.8H4A—N4—H4B107.6
C5—C4—C3120.7 (2)N3—C15—C16123.06 (18)
C5—C4—H4119.6N3—C15—H15118.5
C3—C4—H4119.6C16—C15—H15118.5
C4—C5—C6121.9 (2)C15—C16—C17118.4 (2)
C4—C5—H5119.0C15—C16—H16120.8
C6—C5—H5119.0C17—C16—H16120.8
C5—C6—C7116.4 (2)C16—C17—C18119.32 (19)
C5—C6—H6121.8C16—C17—H17120.3
C7—C6—H6121.8C18—C17—H17120.3
C2—C7—C6122.58 (19)C17—C18—C19119.67 (19)
C2—C7—S1108.51 (14)C17—C18—H18120.2
C6—C7—S1128.90 (17)C19—C18—H18120.2
O6—S2—O5115.96 (11)N3—C19—C18120.66 (18)
O6—S2—N2111.90 (10)N3—C19—C20117.63 (16)
O5—S2—N2109.57 (9)C18—C19—C20121.71 (17)
O6—S2—C14110.38 (9)C19—C20—C21114.76 (17)
O5—S2—C14111.19 (10)C19—C20—H20A108.6
N2—S2—C1496.11 (9)C21—C20—H20A108.6
C8—N2—S2111.90 (13)C19—C20—H20B108.6
C8—N2—Zn1118.90 (12)C21—C20—H20B108.6
S2—N2—Zn1125.81 (9)H20A—C20—H20B107.6
O4—C8—N2122.64 (18)N4—C21—C20111.84 (17)
O4—C8—C9125.36 (19)N4—C21—H21A109.2
N2—C8—C9111.96 (16)C20—C21—H21A109.2
C14—C9—C10119.63 (19)N4—C21—H21B109.2
C14—C9—C8111.77 (17)C20—C21—H21B109.2
C10—C9—C8128.60 (19)H21A—C21—H21B107.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O5i0.902.152.952 (2)147
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Zn(C7H4NO3S)2(C6H8N2)2][Zn(C7H4NO3S)2(C7H10N2)]
Mr646.00551.88
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)293293
a, b, c (Å)7.4169 (4), 21.5662 (10), 8.7502 (4)9.1654 (4), 13.9784 (6), 17.4679 (7)
β (°) 90.257 (1) 100.522 (1)
V3)1399.62 (12)2200.31 (16)
Z24
Radiation typeMo KαMo Kα
µ (mm1)1.081.35
Crystal size (mm)0.46 × 0.41 × 0.200.44 × 0.33 × 0.11
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Bruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Multi-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.637, 0.8130.586, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
14105, 4077, 2798 16660, 6434, 4512
Rint0.0320.026
(sin θ/λ)max1)0.7040.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 0.99 0.033, 0.081, 0.94
No. of reflections40776434
No. of parameters190307
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.230.40, 0.33

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected bond lengths (Å) for (I) top
Zn1—N32.046 (3)Zn1—N2i2.161 (3)
Zn1—N3i2.095 (3)Zn1—N12.188 (2)
Zn1—N22.146 (3)Zn1—N1i2.700 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O1i0.902.313.071 (2)141.9
N3—H2···O30.902.243.051 (2)149.5
C8—H8···O1ii0.932.413.334 (3)171.2
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
Zn1—N11.9744 (16)Zn1—N42.0207 (16)
Zn1—N21.9942 (15)Zn1—N32.0472 (15)
N1—Zn1—N2115.77 (6)N1—Zn1—N3108.50 (6)
N1—Zn1—N4113.35 (7)N2—Zn1—N3105.82 (6)
N2—Zn1—N4112.98 (6)N4—Zn1—N398.54 (6)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O5i0.902.152.952 (2)147.3
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds