Download citation
Download citation
link to html
cis,cis,cis-1,2,4,5-Cyclo­hexane­tetra­carboxyl­ic acid, C10H12O8, (I), contains a mirror plane and the cyclo­hexane ring exhibits a chair conformation. Two crystallographically independent hydrogen bonds form R22(14), R22(16) and R44(16) ring motifs, and propagation of these two hydrogen bonds along the c and b axes generates C22(16) and C22(7) chains. cis,cis,cis-1,2:4,5-Cyclo­hexane­tetra­carboxyl­ic dianhydride, C10H8O6, (II), was prepared by the reaction of (I) with acetic anhydride. The cyclo­hexane ring of (II) exhibits a boat conformation and the dihedral angle between the two an­hydro rings is 117.5 (1)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103013362/ob1124sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103013362/ob1124Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103013362/ob1124IIsup3.hkl
Contains datablock II

CCDC references: 219570; 219571

Comment top

Over the past 15 years, considerable efforts have been made to obtain polyimide films possessing low linear thermal-expansion coefficients (CTEs) in order to reduce thermal stress (Numata et al., 1986, 1987). Recently, polyimides with low dielectric constants (ε) have also been in demand, in order to increase the signal-propagation rate in chips (Matsuura et al., 1991; Sachdev et al., 1999). We have tried to develop polyimides showing both low CTE and low ε. According to the structure–property relationship, promising as target materials include polyimides with stiff linear-chain structures for low CTE and low polarizability for low ε (Hasegawa 2001). We have highlighted the combination of cycloaliphatic 1,2,4,5-cyclohexanetetracarboxylic anhydride, (II), and rod-like 2,2'-bis(trifluromethyl)benzidine, (III). The polyimide film (IV) resulted in low ε values, as expected, but did not show low CTE (Hasegawa et al., 2001). The present X-ray investigation was undertaken to obtain structural information about (II) and its intermediate, 1,2,4,5-cyclohexanetetracarboxylic acid, (I).

In (I), atoms C1 and C4 lie on a mirror plane (Fig. 1). The cyclohexane ring assumes a chair conformation, with the carboxyl group on atom C2 in an equatorial position and that on C3 in an axial position, resulting in the four carboxyl groups being in a mutually cis conformation, which is roughly similar to that of cis,cis,cis- tetramethyl 1,2,4,5-cyclohexanetetracarboxylate, (V) (Robinson et al., 2000). Among the endocyclic angles, the C3—C4—C3i angle [114.2 (2)°] of (I) (Table 1) and the corresponding angle [114.6 (3)°] of (V) are the largest because of the 1,3-diaxial repulsion, and the angles at atoms with the axial substituents in both structures [110.7 (1)° in (I) and 108.9 (3) and 110.7 (3) ° in (V)] are smaller [symmetry code: (i) x, y, 1/2 − z]. The two carbonyl goups of the carboxyl groups in (I) are synperiplanar with respect to an endocyclic bond [O1—C5—C2—C1 = −8.5 (2)° and O3—C6—C3—C2 = 3.0 (2)°], and all four carbonyl groups in (V) are also synperiplanar, with larger deviations from an eclipsed position [the corresponding torsion angles are −13.0 (6) and 21.4 (5)° for the equatorial carboxyl groups and −19.8 (5) and −25.6 (5)° for the axial ones].

Two crystallographically independent hydrogen bonds (Table 2 and Fig. 2), viz. O2—H2···O3 and O4—H4···O1, form R22(14) rings about an inversion center, R22(16) rings along a 21 screw axis and R44(16) rigns about a twofold axis (Etter, 1990; Bernstein et al., 1995). Propagation of these two hydrogen bonds along the c and b axes generates two chain motifs, viz. C22(16) and C22(7). This results in two-dimensional networks perpendicular to the a axis.

The structure of (II) is shown in Fig. 3. The molecule possesses approximate C2v symmetry. The displacement ellipsoids of atoms O3 and O4 are appreciably larger than those of the other atoms, which may be due to hydrolysis of the anhydro rings, where the hydrogen bonds associated with atoms O3 and O4 may promote the reaction (Table 4 and Fig. 4). Crystals kept at ambient temperature showed degradation of crystallinity in a few months.

The cyclohexane ring of (II) assumes a boat conformation [Cremer & Pople (1975) puckering parameters are Q = 0.749 (2) Å, θ =90.3 (2)° and ϕ = −61.8 (2)°], while the cyclohexane ring of cis-1,2-cyclohexane-dicarboxylic acid anhydride, (VI), adopts a chair conformation (Pawel et al., 1982). The mean torsion angle of the cyclohexane ring of (I) is 52.2 (1)°, and the corresponding value in (VI) is 49 (4)°. The cyclohexane ring of (VI) is largely flattened at the anhydro side of the ring and puckered at the opposite side. Although the anhydro ring of (VI) adopts a slightly distorted envelope conformation, the anhydro rings of (II) assume a favorable planar conformation [maximum deviations are 0.03 Å for C1/C2/C8/O2/C7 and 0.01 Å for C4/C5/C10/O5/C9], as observed in succinic anhydride (Ehrenberg, 1965; Fodor et al., 1984) and 5,6,11,12-tetrahydro-5,12;6, 11-di-o-benzenodibenzo[a,e]cyclooctene-5,6-dicarboxylic anhydride (Cicogna et al., 2002). For (VI), the strain induced from anhydro ring formation is relaxed by the deformations of the anhydro and cyclohexane rings, while for (II), the cyclohexane adopts a boat conformation, because the four carboxyl groups that are mutually in the cis conformation form anhydro rings at either side of the cyclohexane ring.

The dihedral angle between the two anhydro rings is 117.5 (1)°. Hence, the polyimide chain containing (II) as an anhydride monomer is expected to be non-linear. We ascribe the low CTE of the polyimide film (IV) to the non-linearity of the polyimide chain.

Experimental top

Compound (I) was prepared by esterifying 1,2,4,5-benzenetetracarboxylic dianhydride with methanol in the presence of Ti(OBu)4 to give 1,2,4,5- benzenetetracarboxylic tetramethyl ester and then hydrogenating the latter at 423 K under 5 MPa hydrogen pressure in the presence of Ru on a carbon support (New Japan Chemical Co. Ltd., 1996). Hydrolysis of the resulting ester in the presence of water and sulfuric acid gave (I). Compound (II) was prepared by the reaction of (I) with acetic anhydride. Crystals of (I) and (II) suitable for X-ray diffraction studies were obtained by slow evaporation of an aqueous solution and an acetic anhydride solution, respectively, at room temperature.

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1996); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEPIII (Burnett et al., 1996); software used to prepare material for publication: SHELXL97, PLATON and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. : The crystal packing of (I), showing the hydrogen bonding.
[Figure 3] Fig. 3. : The molecular structure of (II), showing displacement ellipsoids at the 50% probability level.
[Figure 4] Fig. 4. : The crystal packing of (II), showing the hydrogen bonding.
(I) cis,cis,cis-1,2,4,5-cyclohexanetetracarboxylic acid top
Crystal data top
C10H12O8? # Insert any comments here.
Mr = 260.20Dx = 1.559 Mg m3
Orthorhombic, PbcmCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2c 2bCell parameters from 25 reflections
a = 5.9425 (18) Åθ = 25.1–28.2°
b = 12.436 (2) ŵ = 1.21 mm1
c = 14.999 (2) ÅT = 298 K
V = 1108.5 (4) Å3Cubic, colorless
Z = 40.20 × 0.20 × 0.20 mm
F(000) = 544
Data collection top
Rigaku AFC6R
diffractometer
1038 reflections with I > 2σ(I)
Radiation source: fine-focus rotating anodeRint = 0.016
Graphite monochromatorθmax = 74.9°, θmin = 5.9°
2θ/ω scansh = 07
Absorption correction: psi scan
(North et al., 1968)
k = 016
Tmin = 0.774, Tmax = 0.786l = 019
1188 measured reflections3 standard reflections every 150 reflections
1188 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.3575P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1188 reflectionsΔρmax = 0.27 e Å3
88 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0050 (7)
Crystal data top
C10H12O8V = 1108.5 (4) Å3
Mr = 260.20Z = 4
Orthorhombic, PbcmCu Kα radiation
a = 5.9425 (18) ŵ = 1.21 mm1
b = 12.436 (2) ÅT = 298 K
c = 14.999 (2) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku AFC6R
diffractometer
1038 reflections with I > 2σ(I)
Absorption correction: psi scan
(North et al., 1968)
Rint = 0.016
Tmin = 0.774, Tmax = 0.7863 standard reflections every 150 reflections
1188 measured reflections intensity decay: none
1188 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.11Δρmax = 0.27 e Å3
1188 reflectionsΔρmin = 0.20 e Å3
88 parameters
Special details top

Experimental. ? #Insert any special details here.

Refinement. For both compounds, the equivalent reflections, −h, −k, l, were measured up to 2θ =60° in order to obtain the Rint value, but these reflections were not included in the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5595 (2)0.33961 (9)0.41822 (8)0.0545 (4)
O20.2624 (2)0.40312 (11)0.49090 (8)0.0573 (4)
H20.34700.39690.53380.086*
O30.46671 (18)0.58326 (9)0.36509 (8)0.0436 (3)
O40.1639 (3)0.68604 (11)0.36292 (14)0.0825 (6)
H40.25430.73190.37910.124*
C10.3669 (4)0.37454 (17)0.25000.0387 (5)
H1A0.49420.42340.25000.046*
H1B0.42510.30170.25000.046*
C20.2285 (3)0.39250 (12)0.33446 (10)0.0391 (4)
H2A0.11150.33700.33510.047*
C30.1063 (3)0.50196 (12)0.33583 (11)0.0402 (4)
H30.00190.49940.38510.048*
C40.0297 (4)0.5182 (2)0.25000.0451 (6)
H4A0.09130.59040.25000.054*
H4B0.15510.46830.25000.054*
C50.3702 (3)0.37538 (12)0.41726 (10)0.0420 (4)
C60.2663 (3)0.59341 (12)0.35542 (11)0.0401 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0694 (9)0.0479 (7)0.0461 (7)0.0179 (6)0.0036 (6)0.0036 (5)
O20.0593 (8)0.0766 (9)0.0360 (6)0.0029 (7)0.0040 (6)0.0004 (6)
O30.0402 (6)0.0413 (6)0.0492 (7)0.0012 (4)0.0001 (5)0.0061 (5)
O40.0626 (9)0.0414 (7)0.1434 (16)0.0141 (6)0.0346 (10)0.0263 (9)
C10.0492 (12)0.0316 (10)0.0353 (11)0.0004 (9)0.0000.000
C20.0462 (8)0.0332 (7)0.0380 (8)0.0098 (6)0.0027 (6)0.0016 (6)
C30.0361 (7)0.0427 (8)0.0416 (8)0.0036 (6)0.0056 (6)0.0001 (6)
C40.0303 (10)0.0517 (13)0.0534 (13)0.0059 (10)0.0000.000
C50.0567 (10)0.0303 (7)0.0390 (9)0.0042 (7)0.0027 (7)0.0010 (6)
C60.0442 (8)0.0353 (8)0.0409 (8)0.0027 (6)0.0018 (7)0.0030 (6)
Geometric parameters (Å, º) top
O1—C51.210 (2)C2—C51.515 (2)
O2—C51.322 (2)C2—C31.543 (2)
O2—H20.8200C2—H2A0.9800
O3—C61.206 (2)C3—C61.511 (2)
O4—C61.3077 (19)C3—C41.533 (2)
O4—H40.8200C3—H30.9800
C1—C2i1.5267 (19)C4—C3i1.533 (2)
C1—C21.5267 (19)C4—H4A0.9700
C1—H1A0.9700C4—H4B0.9700
C1—H1B0.9700
C5—O2—H2109.5C4—C3—C2110.67 (14)
C6—O4—H4109.5C6—C3—H3106.9
C2i—C1—C2112.13 (19)C4—C3—H3106.9
C2i—C1—H1A109.2C2—C3—H3106.9
C2—C1—H1A109.2C3i—C4—C3114.19 (18)
C2i—C1—H1B109.2C3—C4—H4A108.7
C2—C1—H1B109.2C3i—C4—H4A108.7
H1A—C1—H1B107.9C3—C4—H4B108.7
C5—C2—C1111.11 (14)C3i—C4—H4B108.7
C5—C2—C3111.99 (12)H4A—C4—H4B107.6
C1—C2—C3113.18 (13)O1—C5—O2122.43 (15)
C5—C2—H2A106.7O1—C5—C2125.30 (15)
C1—C2—H2A106.7O2—C5—C2112.26 (14)
C3—C2—H2A106.7O3—C6—O4122.77 (15)
C6—C3—C4113.32 (14)O3—C6—C3124.45 (14)
C6—C3—C2111.75 (13)O4—C6—C3112.77 (14)
C2i—C1—C2—C5179.39 (11)C1—C2—C5—O18.5 (2)
C2i—C1—C2—C352.4 (2)C3—C2—C5—O1136.13 (16)
C5—C2—C3—C651.02 (17)C1—C2—C5—O2172.26 (15)
C1—C2—C3—C675.53 (17)C3—C2—C5—O244.60 (18)
C5—C2—C3—C4178.31 (13)C4—C3—C6—O3122.89 (18)
C1—C2—C3—C451.77 (19)C2—C3—C6—O33.0 (2)
C6i—C3—C4—C374.0 (2)C4—C3—C6—O458.5 (2)
C2i—C3—C4—C352.5 (2)C2—C3—C6—O4175.62 (16)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3ii0.821.892.699 (2)167
O4—H4···O1iii0.821.832.653 (2)176
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z.
(II) cis,cis,cis-1,2,4,5-cyclohexanetetracarboxylic dianhydride top
Crystal data top
C10H8O6? # Insert any comments here.
Mr = 224.16Dx = 1.527 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2nCell parameters from 25 reflections
a = 13.591 (2) Åθ = 26.6–28.4°
b = 9.306 (2) ŵ = 1.12 mm1
c = 7.711 (3) ÅT = 298 K
V = 975.2 (5) Å3Rod, colorless
Z = 40.25 × 0.25 × 0.20 mm
F(000) = 464
Data collection top
Rigaku AFC6R
diffractometer
984 reflections with I > 2σ(I)
Radiation source: fine-focus rotating anodeRint = 0.017
Graphite monochromatorθmax = 74.9°, θmin = 5.8°
2θ/ω scansh = 017
Absorption correction: psi scan
(North et al., 1968)
k = 011
Tmin = 0.723, Tmax = 0.799l = 09
1074 measured reflections3 standard reflections every 150 reflections
1074 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.1313P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max = 0.007
S = 1.07Δρmax = 0.19 e Å3
1074 reflectionsΔρmin = 0.16 e Å3
146 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.053 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.0 (4)
Crystal data top
C10H8O6V = 975.2 (5) Å3
Mr = 224.16Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 13.591 (2) ŵ = 1.12 mm1
b = 9.306 (2) ÅT = 298 K
c = 7.711 (3) Å0.25 × 0.25 × 0.20 mm
Data collection top
Rigaku AFC6R
diffractometer
984 reflections with I > 2σ(I)
Absorption correction: psi scan
(North et al., 1968)
Rint = 0.017
Tmin = 0.723, Tmax = 0.7993 standard reflections every 150 reflections
1074 measured reflections intensity decay: none
1074 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.110Δρmax = 0.19 e Å3
S = 1.07Δρmin = 0.16 e Å3
1074 reflectionsAbsolute structure: Flack (1983)
146 parametersAbsolute structure parameter: 0.0 (4)
1 restraint
Special details top

Experimental. ? #Insert any special details here.

Refinement. For both compounds, the equivalent reflections, −h, −k, l, were measured up to 2θ =60° in order to obtain the Rint value, but these reflections were not included in the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0649 (2)0.8750 (3)0.3765 (3)0.0820 (7)
O20.1939 (2)0.7333 (3)0.4120 (3)0.0919 (9)
O30.3093 (3)0.5875 (5)0.5180 (5)0.1437 (17)
O40.1157 (2)0.4727 (3)1.1692 (6)0.1178 (13)
O50.01415 (16)0.6148 (3)1.1308 (4)0.0788 (8)
O60.11751 (15)0.7871 (3)1.0483 (4)0.0850 (8)
C10.13272 (19)0.8416 (3)0.6675 (3)0.0457 (6)
H10.15330.94000.69450.055*
C20.2154 (2)0.7375 (3)0.7165 (4)0.0525 (6)
H20.26970.79130.76930.063*
C30.18218 (19)0.6205 (3)0.8393 (4)0.0529 (6)
H3A0.23820.56310.87530.064*
H3B0.13540.55800.78170.064*
C40.13404 (17)0.6905 (2)0.9979 (3)0.0443 (6)
H40.18470.73901.06700.053*
C50.05272 (17)0.7980 (3)0.9529 (3)0.0431 (5)
H50.07000.89270.99970.052*
C60.03488 (18)0.8107 (3)0.7570 (4)0.0469 (6)
H6A0.00710.72190.71290.056*
H6B0.01130.88780.73380.056*
C70.1230 (2)0.8252 (3)0.4731 (4)0.0615 (8)
C80.2486 (3)0.6758 (5)0.5462 (5)0.0873 (11)
C90.0839 (2)0.5798 (4)1.1075 (5)0.0708 (9)
C100.03653 (18)0.7426 (4)1.0442 (4)0.0582 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1054 (18)0.0974 (17)0.0432 (11)0.0191 (14)0.0082 (13)0.0124 (12)
O20.1006 (19)0.132 (2)0.0432 (13)0.0411 (18)0.0059 (12)0.0116 (15)
O30.130 (3)0.215 (4)0.085 (2)0.104 (3)0.006 (2)0.030 (3)
O40.0900 (18)0.0946 (18)0.169 (3)0.0099 (15)0.015 (2)0.082 (2)
O50.0572 (11)0.0897 (16)0.0896 (17)0.0190 (11)0.0076 (12)0.0368 (14)
O60.0487 (11)0.127 (2)0.0795 (17)0.0076 (12)0.0146 (11)0.0118 (17)
C10.0523 (13)0.0461 (12)0.0387 (12)0.0042 (11)0.0006 (10)0.0001 (9)
C20.0408 (12)0.0692 (16)0.0476 (14)0.0026 (12)0.0014 (10)0.0068 (13)
C30.0463 (12)0.0490 (12)0.0635 (17)0.0064 (10)0.0136 (12)0.0027 (13)
C40.0386 (11)0.0481 (11)0.0463 (13)0.0084 (9)0.0089 (10)0.0091 (10)
C50.0429 (12)0.0472 (12)0.0394 (12)0.0026 (9)0.0009 (10)0.0024 (10)
C60.0447 (12)0.0538 (13)0.0422 (13)0.0057 (10)0.0057 (11)0.0029 (11)
C70.0737 (19)0.0714 (18)0.0395 (13)0.0020 (14)0.0034 (13)0.0047 (13)
C80.081 (2)0.121 (3)0.060 (2)0.035 (2)0.0075 (18)0.017 (2)
C90.0594 (16)0.0703 (16)0.083 (2)0.0122 (14)0.0085 (16)0.0330 (18)
C100.0450 (13)0.0790 (17)0.0505 (15)0.0083 (13)0.0016 (11)0.0089 (14)
Geometric parameters (Å, º) top
O1—C71.181 (4)C2—C31.512 (4)
O2—C71.371 (4)C2—H20.9800
O2—C81.382 (5)C3—C41.532 (4)
O3—C81.185 (5)C3—H3A0.9700
O4—C91.185 (4)C3—H3B0.9700
O5—C91.384 (4)C4—C91.497 (4)
O5—C101.397 (4)C4—C51.531 (3)
O6—C101.176 (3)C4—H40.9800
C1—C71.512 (4)C5—C101.494 (3)
C1—C61.525 (4)C5—C61.535 (4)
C1—C21.531 (4)C5—H50.9800
C1—H10.9800C6—H6A0.9700
C2—C81.503 (5)C6—H6B0.9700
C7—O2—C8111.2 (3)C3—C4—H4109.2
C9—O5—C10110.4 (2)C10—C5—C4104.7 (2)
C7—C1—C6110.7 (2)C10—C5—C6111.2 (2)
C7—C1—C2104.2 (2)C4—C5—C6112.8 (2)
C6—C1—C2114.2 (2)C10—C5—H5109.3
C7—C1—H1109.2C4—C5—H5109.3
C6—C1—H1109.2C6—C5—H5109.3
C2—C1—H1109.2C1—C6—C5108.8 (2)
C8—C2—C3111.2 (3)C1—C6—H6A109.9
C8—C2—C1104.3 (3)C5—C6—H6A109.9
C3—C2—C1113.0 (2)C1—C6—H6B109.9
C8—C2—H2109.4C5—C6—H6B109.9
C3—C2—H2109.4H6A—C6—H6B108.3
C1—C2—H2109.4O1—C7—O2119.8 (3)
C2—C3—C4108.74 (19)O1—C7—C1130.1 (3)
C2—C3—H3A109.9O2—C7—C1110.0 (3)
C4—C3—H3A109.9O3—C8—O2120.4 (4)
C2—C3—H3B109.9O3—C8—C2129.4 (4)
C4—C3—H3B109.9O2—C8—C2110.1 (3)
H3A—C3—H3B108.3O4—C9—O5119.8 (3)
C9—C4—C5104.4 (2)O4—C9—C4129.7 (3)
C9—C4—C3110.6 (2)O5—C9—C4110.4 (2)
C5—C4—C3113.9 (2)O6—C10—O5119.4 (3)
C9—C4—H4109.2O6—C10—C5130.6 (3)
C5—C4—H4109.2O5—C10—C5110.0 (2)
C7—C1—C2—C82.3 (3)C6—C1—C7—O2127.0 (3)
C6—C1—C2—C8123.2 (3)C2—C1—C7—O23.8 (4)
C7—C1—C2—C3118.6 (3)C7—O2—C8—O3175.5 (5)
C6—C1—C2—C32.3 (3)C7—O2—C8—C22.3 (5)
C8—C2—C3—C4171.0 (2)C3—C2—C8—O355.7 (7)
C1—C2—C3—C454.1 (3)C1—C2—C8—O3177.8 (6)
C2—C3—C4—C9169.8 (2)C3—C2—C8—O2121.9 (3)
C2—C3—C4—C552.5 (3)C1—C2—C8—O20.2 (4)
C9—C4—C5—C101.6 (3)C10—O5—C9—O4178.5 (4)
C3—C4—C5—C10122.3 (2)C10—O5—C9—C40.3 (4)
C9—C4—C5—C6119.5 (3)C5—C4—C9—O4177.5 (5)
C3—C4—C5—C61.3 (3)C3—C4—C9—O454.5 (5)
C7—C1—C6—C5168.5 (2)C5—C4—C9—O51.2 (4)
C2—C1—C6—C551.4 (3)C3—C4—C9—O5124.1 (3)
C10—C5—C6—C1170.0 (2)C9—O5—C10—O6178.8 (3)
C4—C5—C6—C152.7 (3)C9—O5—C10—C50.8 (4)
C8—O2—C7—O1174.1 (4)C4—C5—C10—O6179.3 (4)
C8—O2—C7—C13.9 (4)C6—C5—C10—O657.1 (5)
C6—C1—C7—O150.8 (5)C4—C5—C10—O51.5 (3)
C2—C1—C7—O1174.0 (3)C6—C5—C10—O5120.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.982.453.320 (5)148
C2—H2···O4ii0.982.423.193 (4)135
C6—H6A···O4iii0.972.493.406 (4)158
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x, y+1, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC10H12O8C10H8O6
Mr260.20224.16
Crystal system, space groupOrthorhombic, PbcmOrthorhombic, Pna21
Temperature (K)298298
a, b, c (Å)5.9425 (18), 12.436 (2), 14.999 (2)13.591 (2), 9.306 (2), 7.711 (3)
V3)1108.5 (4)975.2 (5)
Z44
Radiation typeCu KαCu Kα
µ (mm1)1.211.12
Crystal size (mm)0.20 × 0.20 × 0.200.25 × 0.25 × 0.20
Data collection
DiffractometerRigaku AFC6R
diffractometer
Rigaku AFC6R
diffractometer
Absorption correctionPsi scan
(North et al., 1968)
Psi scan
(North et al., 1968)
Tmin, Tmax0.774, 0.7860.723, 0.799
No. of measured, independent and
observed [I > 2σ(I)] reflections
1188, 1188, 1038 1074, 1074, 984
Rint0.0160.017
(sin θ/λ)max1)0.6260.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.11 0.039, 0.110, 1.07
No. of reflections11881074
No. of parameters88146
No. of restraints01
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.200.19, 0.16
Absolute structure?Flack (1983)
Absolute structure parameter?0.0 (4)

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1996), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 2000), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003) and ORTEPIII (Burnett et al., 1996), SHELXL97, PLATON and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) for (I) top
C1—C21.5267 (19)C3—C41.533 (2)
C2—C31.543 (2)
C2i—C1—C2112.13 (19)C4—C3—C2110.67 (14)
C1—C2—C3113.18 (13)C3i—C4—C3114.19 (18)
C1—C2—C5—O18.5 (2)C2—C3—C6—O33.0 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3ii0.821.892.699 (2)167
O4—H4···O1iii0.821.832.653 (2)176
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z.
Selected geometric parameters (Å, º) for (II) top
O2—C71.371 (4)C1—C21.531 (4)
O2—C81.382 (5)C2—C31.512 (4)
O5—C91.384 (4)C3—C41.532 (4)
O5—C101.397 (4)C4—C51.531 (3)
C1—C61.525 (4)C5—C61.535 (4)
C7—O2—C8111.2 (3)C2—C3—C4108.74 (19)
C9—O5—C10110.4 (2)C5—C4—C3113.9 (2)
C6—C1—C2114.2 (2)C4—C5—C6112.8 (2)
C3—C2—C1113.0 (2)C1—C6—C5108.8 (2)
C2—C1—C7—O1174.0 (3)C5—C4—C9—O4177.5 (5)
C1—C2—C8—O3177.8 (6)C4—C5—C10—O6179.3 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.982.453.320 (5)148
C2—H2···O4ii0.982.423.193 (4)135
C6—H6A···O4iii0.972.493.406 (4)158
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x, y+1, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds